JPH0612014U - High kneading screw - Google Patents

High kneading screw

Info

Publication number
JPH0612014U
JPH0612014U JP052571U JP5257192U JPH0612014U JP H0612014 U JPH0612014 U JP H0612014U JP 052571 U JP052571 U JP 052571U JP 5257192 U JP5257192 U JP 5257192U JP H0612014 U JPH0612014 U JP H0612014U
Authority
JP
Japan
Prior art keywords
parallel
flight
parallel portion
sub
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP052571U
Other languages
Japanese (ja)
Other versions
JP2561781Y2 (en
Inventor
村 幸 生 飯
代 一 広 田
橋 尚 吾 石
木 謙 克 鈴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP1992052571U priority Critical patent/JP2561781Y2/en
Publication of JPH0612014U publication Critical patent/JPH0612014U/en
Application granted granted Critical
Publication of JP2561781Y2 publication Critical patent/JP2561781Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

(57)【要約】 【目的】 吐出樹脂の温度差が少なく可塑化能力のよい
高混練スクリュ。 【構成】 主フライト4と、この主フライト4の高さよ
り低い高さの副フライト2aを有する高混練スクリュ1
5であって、副フライト2aは形成開始点3において主
フライト4から分岐した非平行部16と、この非平行部
16に続く平行部17と、この平行部17に続く非平行
部18とを有し、ソリッド溝7の深さは、上流側の非平
行部16では下流側に向け漸次深く形成され、平行部1
7及びこれに続く非平行部18では漸次浅く、かつ、副
フライト2aのスクリュ軸に平行に主フライト4に続く
部分からは漸次深く形成されて最終溝21に続き、メル
ト溝8の深さは、副フライト2aの形成開始点3に続く
非平行部16では下流側に向け漸次浅く形成され、平行
部17では漸次深く、かつ、下流側の非平行部18では
平行部17の最大深さと同一の深さに形成され、さら
に、非平行部18の終了点19手前の所定位置より漸次
浅く形成されて最終溝21に続いている構成となってい
る。
(57) [Summary] [Purpose] A highly kneading screw with little temperature difference of the discharged resin and good plasticizing ability. [Structure] A high kneading screw 1 having a main flight 4 and a sub-flight 2a having a height lower than the height of the main flight 4.
5, the sub-flight 2a has a non-parallel portion 16 branched from the main flight 4 at the formation start point 3, a parallel portion 17 following the non-parallel portion 16, and a non-parallel portion 18 following the parallel portion 17. The depth of the solid groove 7 is gradually increased toward the downstream side in the non-parallel portion 16 on the upstream side.
7 and the following non-parallel portion 18 are gradually shallower, and gradually deeper from the portion following the main flight 4 in parallel to the screw axis of the sub-flight 2a and continuing to the final groove 21, and the depth of the melt groove 8 is , The non-parallel portion 16 following the formation start point 3 of the sub-flight 2a is formed to be gradually shallower toward the downstream side, is gradually deeper in the parallel portion 17, and is the same as the maximum depth of the parallel portion 17 in the non-parallel portion 18 on the downstream side. Of the non-parallel portion 18, and is formed so as to be gradually shallower than a predetermined position before the end point 19 of the non-parallel portion 18 and continues to the final groove 21.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、熱可塑性樹脂を成形する成形機のスクリュに関する。 The present invention relates to a screw of a molding machine for molding a thermoplastic resin.

【0002】[0002]

【従来の技術】[Prior art]

従来、主フライトと副フライトとを有するスクリュとして以下に示すような2 つのスクリュが主に知られている。その第1例を図6により説明する。 Conventionally, the following two screws are mainly known as a screw having a main flight and a sub flight. The first example will be described with reference to FIG.

【0003】 このスクリュ1の副フライト2は、図6(a)に示すように副フライト2の形 成開始点3において主フライト4から分岐し、主フライト4に対して非平行な非 平行部5で形成されている。そして、主フライト4と副フライト2との高さの差 はすべて一定に形成されている。また、ソリッド溝7の深さは、、図6(b)に 示すように副フライト2の形成開始点3より漸次浅くなるように形成されており 、メルト溝8の深さは、副フライト2の形成開始点3より漸次浅く形成され、所 定位置より漸次深く形成されたのちソリッド溝7の深さと同一深さになった点か ら副フライト2の終了点9に向かって漸次浅くなるように形成されている。The sub-flight 2 of the screw 1 branches from the main flight 4 at a formation start point 3 of the sub-flight 2 as shown in FIG. It is formed by 5. The height differences between the main flight 4 and the sub-flight 2 are all constant. Further, as shown in FIG. 6B, the depth of the solid groove 7 is formed so as to be gradually shallower than the formation start point 3 of the sub flight 2, and the depth of the melt groove 8 is formed. Is gradually shallower than the formation start point 3 and gradually deeper than the predetermined position, and then gradually becomes shallower from the point where it becomes the same depth as the solid groove 7 to the end point 9 of the sub-flight 2. Is formed in.

【0004】 次に第2例を図7により説明する。Next, a second example will be described with reference to FIG.

【0005】 副フライト2は、図7(a)に示すように副フライト2の形成開始点3におい て主フライト4から非平行に分岐し、その後主フライト4に対して平行な平行部 10で形成されている。そして、主フライト4と副フライト2との高さの差はす べて一定に形成されている。また、ソリッド溝7の深さは、図7(b)に示すよ うに副フライト2の形成開始点3より漸次深く、平行部10の形成開始点12よ り漸次浅く形成され、平行部10の所定位置より副フライト2の終了点9に向か って漸次深くなるように形成される。また、メルト溝8の深さは、副フライト2 の形成開始点3より漸次浅く、平行部10の形成開始点12より漸次深く形成さ れ、平行部10の所定位置より副フライト2の終了点9に向かって漸次浅くなる ように形成されている。As shown in FIG. 7 (a), the sub-flight 2 branches off from the main flight 4 at the formation start point 3 of the sub-flight 2 in a non-parallel manner, and then at a parallel portion 10 parallel to the main flight 4. Has been formed. The height differences between the main flight 4 and the sub-flight 2 are all constant. Further, as shown in FIG. 7B, the depth of the solid groove 7 is gradually deeper than the formation start point 3 of the sub-flight 2, and is gradually shallower than the formation start point 12 of the parallel portion 10. It is formed so as to become gradually deeper from a predetermined position toward the end point 9 of the sub-flight 2. In addition, the depth of the melt groove 8 is gradually shallower than the formation start point 3 of the sub-flight 2 and gradually deeper than the formation start point 12 of the parallel part 10, and the end point of the sub-flight 2 from the predetermined position of the parallel part 10. It is formed so that it gradually becomes shallower toward 9.

【0006】 スクリュ1は、このように構成したことによりメルトプールとソリッドベッド とを常に分離しながら溶融をおこなうので、副フライト2のないスクリュに較べ て効率のよい溶融をおこなうことができる。Since the screw 1 is configured as described above and thus melts while always separating the melt pool and the solid bed, it is possible to perform the melting more efficiently than the screw without the sub-flight 2.

【0007】[0007]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかるに上記のスクリュ1のうち、第1例のスクリュ1においては、ソリッド 溝7は、バレル14への接触面積が下流へ向かうに従い次第に減少するため樹脂 の溶融速度が低下し、したがって、可塑化能力は低下する。また、第2例のスク リュ1においては、メルト溝8は、幅が一定であり深さは下流側へ行くにしたが って深くなっているので、可塑化能力は第1例のスクリュ1より優れているが、 最深部での樹脂の滞留が発生し樹脂替え、色替え不良や、滞留による樹脂劣化が 発生し易く、また最終部付近のメルト溝8が深い為、メルト溝内の溶融樹脂が外 部加熱を均一に受けられず、吐出樹脂の温度バラツキが大きくなる弱点があった 。 However, in the screw 1 of the first example among the above-mentioned screws 1, the solid groove 7 gradually decreases in contact area with the barrel 14 toward the downstream, so that the melting rate of the resin decreases, and therefore the plasticizing ability is increased. Will fall. Further, in the screw 1 of the second example, the melt groove 8 has a constant width and the depth becomes deeper as it goes to the downstream side, so that the plasticizing ability is the screw 1 of the first example. It is more excellent, but resin stagnation occurs at the deepest part, resin change, color change failure, and resin deterioration due to stagnation easily occur, and since the melt groove 8 near the last part is deep, melting in the melt groove There was a weak point that the resin could not receive the external heating uniformly, and the temperature variation of the discharged resin became large.

【0008】 本考案はこれに鑑み、吐出樹脂の温度のばらつきが少なく、可塑化能力のよい 高混練スクリュを提供することを目的としてなされたものである。In view of this, the present invention has been made for the purpose of providing a highly kneading screw having a small variation in the temperature of the discharged resin and a good plasticizing ability.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

上記従来技術の課題を解決するため本考案は、主フライトとこの主フライトの 高さより低い高さに形成された副フライトとを有する高混練スクリュにおいて、 前記副フライトは、副フライトの形成開始点において前記主フライトから分岐し 、主フライトに対して非平行でメルト溝を持たない非平行部と、この非平行部に 続き主フライトに対して平行な平行部と、この平行部に続き再び主フライトに対 して非平行な非平行部とを有し該非平行部においてスクリュ軸と平行に主フライ トと接続し、ソリッド溝の深さは、上流側の非平行部では下流側に向け漸次深く 形成され、平行部及びこれに続く非平行部では漸次浅く、かつ副フライトのスク リュ軸に平行に主フライトに続く部分からは漸次深く形成されて最終溝に続き、 メルト溝の深さは副フライトの形成開始点に続く非平行部では下流側に向け漸次 浅く形成され、平行部では漸次深く、かつ下流側の非平行部では前記平行部の最 大深さと同一の深さに形成され、さらに、非平行部の終了点手前の所定位置より 漸次浅く形成されて最終溝に続いていることを特徴とする高混練スクリュとした 。そして、前記主フライトと前記副フライトとの高さの差は、主フライトと副フ ライトとが平行な部分では一定の高さの差に形成され、下流側の非平行部では、 副フライトの山の高さは主フライトの高さに漸次近づき、その後ある差をもって 一定の高さに形成したことを特徴とする請求項2記載の高混練スクリュとするも のである。 In order to solve the above-mentioned problems of the prior art, the present invention provides a high-mixing screw having a main flight and a sub-flight formed at a height lower than the height of the main flight, wherein the sub-flight is a starting point of formation of the sub-flight. , The non-parallel portion that is branched from the main flight and is not parallel to the main flight and has no melt groove, the parallel portion that is parallel to the main flight and the parallel portion that is parallel to the main flight It has a non-parallel part that is non-parallel to the flight and is connected to the main flyt in parallel with the screw axis in the non-parallel part, and the depth of the solid groove gradually increases toward the downstream side in the non-parallel part on the upstream side. The depth of the melt groove, which is deeper and gradually shallower in the parallel part and the following non-parallel part, and gradually deeper from the part following the main flight parallel to the screw axis of the sub-flight, and continuing to the final groove. In the non-parallel part following the formation start point of the sub-flight, it is formed shallower toward the downstream side, gradually deeper in the parallel part, and at the same depth as the maximum depth of the parallel part in the non-parallel part on the downstream side. Further, the high-mixing screw is characterized in that it is formed so as to be gradually shallower than a predetermined position before the end point of the non-parallel portion and continues to the final groove. Then, the height difference between the main flight and the sub-flight is formed to be a constant height difference in the parallel portion of the main flight and the sub-flight, and in the non-parallel portion on the downstream side, The height of the ridge gradually approaches the height of the main flight, and then the height of the ridge is formed with a certain difference so as to have a constant height.

【0010】[0010]

【作用】[Action]

上記高混練スクリュにおいて、溶融を開始した樹脂は、メルト溝上流側の非平 行部で緩やかに未溶融樹脂より分離されて平行部に送られる。平行部に送られた 溶融樹脂はその増加量をメルト溝深さで吸収されつつ下流側の非平行部へ送られ る。非平行部において溶融樹脂は、その増加量をメルト溝幅で吸収され、溝深さ が増大しないメルト溝を通過する為、滞留が少なく充分に混練溶融されてメルト 溝から下流側に吐出される。 In the high-kneading screw, the resin that has started melting is gently separated from the unmelted resin in the non-planar portion on the upstream side of the melt groove and sent to the parallel portion. The molten resin sent to the parallel section is sent to the non-parallel section on the downstream side while absorbing the increased amount by the melt groove depth. In the non-parallel portion, the increased amount of molten resin is absorbed by the melt groove width and passes through the melt groove where the groove depth does not increase, so there is little stagnation and it is sufficiently kneaded and melted and discharged from the melt groove to the downstream side. .

【0011】 また、上流側非平行部ソリッド溝内の未溶融樹脂はメルト溝へ流入する事無く 平行部へ送られ、溶融樹脂を随時メルト溝へ輸送しながら下流側の非平行部へ送 られる。非平行部で未溶融樹脂は、溝幅方向及び溝深さ方向の圧縮を受けること により溶融が促進しソリッド溝終了点にて完全に溶融を完了する。Further, the unmelted resin in the solid groove of the upstream non-parallel portion is sent to the parallel portion without flowing into the melt groove, and is sent to the non-parallel portion of the downstream side while transporting the molten resin to the melt groove at any time. . The unmelted resin in the non-parallel portion undergoes compression in the groove width direction and groove depth direction to accelerate melting, and complete melting at the solid groove end point.

【0012】[0012]

【実施例】【Example】

以下、本考案を図1〜図3に示す実施例を参照し、従来技術と同一の構成部材 には同一符号を用いて説明する。 Hereinafter, the present invention will be described with reference to the embodiments shown in FIGS. 1 to 3 by using the same reference numerals for the same components as those of the prior art.

【0013】 高混練スクリュ15は、図1(a)に示すように主フライト4と副フライト2 aで構成され、ソリッド溝7とメルト溝8とが形成されている。As shown in FIG. 1A, the high kneading screw 15 is composed of a main flight 4 and a sub flight 2 a, and a solid groove 7 and a melt groove 8 are formed therein.

【0014】 副フライト2aは、図1(a)及び図2に示すように高混練スクリュ15の上 流側(図における右側)の副フライト2aの形成開始点3で主フライトから分岐 し、主フライト4に対して非平行な非平行部16と、この非平行部16に続き主 フライト4に対して平行な平行部17と、この平行部17に続き再び主フライト に対して非平行な非平行部18とを有してその終端は、スクリュ軸と平行に主フ ライト4に接続している。非平行部16では、副フライト2aが主フライト4と 密接しておりメルト溝を形成するにはいたっていないが、ソリッド溝が副フライ ト2aの巾分だけ縮小されその断面積を縮小する為、樹脂に圧縮佐用を与えるよ うになっている。As shown in FIGS. 1A and 2, the sub-flight 2a diverges from the main flight at the formation start point 3 of the sub-flight 2a on the upstream side (right side in the figure) of the high-mixing screw 15 and A non-parallel portion 16 that is non-parallel to the flight 4, a parallel portion 17 that follows the non-parallel portion 16 and that is parallel to the main flight 4, and a parallel portion that follows the parallel portion 17 and that is non-parallel to the main flight again. It has a parallel part 18 and its end is connected to the main fly 4 in parallel with the screw shaft. In the non-parallel portion 16, the sub-flight 2a is in close contact with the main flight 4 to form a melt groove, but since the solid groove is reduced by the width of the sub-flyt 2a and its cross-sectional area is reduced, It is designed to give compression support to the resin.

【0015】 ソリッド溝7の深さは、図1(b)に示すように副フライト2aの非平行部1 6ではバレル14に対して漸次深く形成され、平行部17及びこの平行部17に 続く非平行部18では漸次浅く形成されて、非平行部18の終了点19からは漸 次深く、そして、最終溝20に続くようになっている。また、メルト溝8の深さ は、図1(c)に示すように副フライト2aの非平行部16ではバレル14に対 して漸次浅く形成され、平行部17では漸次深くかつ、下流側の非平行部18で は平行部17の最大深さと同じ深さに形成されている。そして非平行部18の終 了点19の手前の所定位置より漸次浅くそして、最終溝20に続くようになって いる。As shown in FIG. 1B, the depth of the solid groove 7 is gradually deeper than the barrel 14 in the non-parallel portion 16 of the sub-flight 2 a, and continues to the parallel portion 17 and the parallel portion 17. The non-parallel portion 18 is formed so as to be gradually shallower, gradually deeper from the end point 19 of the non-parallel portion 18, and continue to the final groove 20. The depth of the melt groove 8 is gradually shallower in the non-parallel portion 16 of the sub-flight 2a with respect to the barrel 14 as shown in FIG. 1 (c), and gradually deeper in the parallel portion 17 and at the downstream side. The non-parallel portion 18 is formed to have the same depth as the maximum depth of the parallel portion 17. Then, it is gradually shallower than a predetermined position before the end point 19 of the non-parallel portion 18 and continues to the final groove 20.

【0016】 主フライト4と副フライト2aの山の高さの差は、図3に示すように平行部1 7では一定に形成し、副フライト2aの終了点手前の非平行部18において下流 側に向かって副フライトの山の高さを主フライトの高さに近づけ、かつ、その後 一定の高さに形成している。The difference in mountain height between the main flight 4 and the sub-flight 2a is formed to be constant in the parallel portion 17 as shown in FIG. 3, and the downstream side in the non-parallel portion 18 before the end point of the sub-flight 2a. The height of the mountain of the secondary flight is approached to the height of the main flight toward, and then it is formed to a constant height.

【0017】 次に、この高混練スクリュ15の作用を説明する。Next, the operation of the high kneading screw 15 will be described.

【0018】 図示しないホッパから供給された樹脂はバレル14からの熱に加熱されつつ図 示しないスクリュのフィードゾーンを介して図1あるいは図2の右側へ送られる 。溶融の始まった樹脂は、メルト溝を持たない非平行部16により緩やかに未溶 融樹脂より分離され平行部メルト溝8へ輸送される。未溶融樹脂は平行部ソリッ ド溝7へ送られる。平行部ソリッド溝7では未溶融樹脂とバレルとの接触面積が 常に一定の為、高効率に熱の交換がおこなわれる。それにより溶融した樹脂は随 時平行部メルト溝8へ輸送され、平行部ソリッド溝7は常に未溶融樹脂のみで満 たされながら、未溶融樹脂に対し深さ方向の圧縮を行いつつ下流へ向かう。平行 部ソリッド溝7に対応する平行部メルト溝8は平行部ソリッド溝7より輸送され てくる溶融樹脂量の増加をその溝深さで吸収しつつ下流へ向かう。平行部ソリッ ド溝7に続く非平行部ソリッド溝7aでは未溶融樹脂に対し主に幅方向の圧縮を 加え深さ方向の圧縮を緩和する。この緩和により未溶融樹脂厚さが過剰に薄くな ることを防ぎ未溶融樹脂の移動抵抗を低減すると共に、未溶融樹脂の分断(溶融 樹脂との混在)を防ぐ。本非平行部ソリッド溝7aでは下流へ向かうに従いバレ ルとの接触面積が減少してゆくが、平行部ソリッド溝7にて充分な潜熱をうけて いる未溶融樹脂の溶融速度を低下させることはない。また本非平行部ソリッド溝 7aに於いて副フライト2aが非平行になっているため、溶融樹脂のメルト溝へ の輸送力が増加し、それによる弊害として未溶融樹脂のメルト溝への流入が発生 するが非平行部ソリッド溝7a開始点より主フライト4と副フライト2aの高さ の差を漸次浅く、かつ、その後一定とする事で本問題を解決し充分溶融した樹脂 がメルト溝へ輸送され非平行部の終了点9迄に未溶融樹脂は溶融を完了する。非 平行部ソリッド溝7aに対応する非平行部メルト溝8aでは平行部メルト溝8と は異なりソリッド溝より輸送された溶融樹脂量の増加を幅方向の増加で吸収し、 溝深さを平行部メルト溝8の最終深さと同一一定としてあるため、溶融樹脂厚さ が厚くならず、バレルからの給熱を溶融樹脂が均一に受けられる。また更に、溝 深さが比較的浅いため、スクリュの回転によってポンプ作用が発生し、背圧に対 し強い安定した均一溶融樹脂が吐出される。また溝底部の樹脂滞留が少なく樹脂 替え色替えに優れる。The resin supplied from the hopper (not shown) is heated by the heat from the barrel 14 and sent to the right side in FIG. 1 or 2 through the feed zone of the screw (not shown). The resin which has started to be melted is gently separated from the unmelted resin by the non-parallel portion 16 having no melt groove and is transported to the parallel melt groove 8. The unmelted resin is sent to the parallel solid groove 7. Since the contact area between the unmelted resin and the barrel is always constant in the parallel solid groove 7, heat can be efficiently exchanged. As a result, the melted resin is transported to the parallel melt groove 8 at any time, and while the parallel solid groove 7 is always filled with the unmelted resin, the melted resin is compressed in the depth direction toward the downstream. . The parallel melt groove 8 corresponding to the parallel solid groove 7 moves downstream while absorbing the increase in the amount of molten resin transported from the parallel solid groove 7 at the groove depth. In the non-parallel solid groove 7a following the parallel solid groove 7, compression in the width direction is mainly applied to the unmelted resin to relax the compression in the depth direction. This relaxation prevents the unmelted resin from becoming excessively thin, reduces the migration resistance of the unmelted resin, and prevents the unmelted resin from being divided (mixed with the molten resin). In the non-parallel portion solid groove 7a, the contact area with the barrel decreases as it goes downstream, but it is not possible to reduce the melting rate of the unmelted resin that has received sufficient latent heat in the parallel portion solid groove 7a. Absent. Further, since the sub-flight 2a is non-parallel in the non-parallel portion solid groove 7a, the transport force of the molten resin to the melt groove is increased, and the adverse effect of this is that the unmelted resin flows into the melt groove. Although this occurs, the difference in height between the main flight 4 and the sub-flight 2a is gradually shallowed from the starting point of the solid groove 7a in the non-parallel portion, and is then made constant to solve this problem and the resin melted sufficiently is transported to the melt groove. The unmelted resin is completely melted by the end point 9 of the non-parallel portion. In the non-parallel part melt groove 8a corresponding to the non-parallel part solid groove 7a, unlike the parallel part melt groove 8, the increase in the amount of molten resin transported from the solid groove is absorbed by the increase in the width direction, and the groove depth is set to the parallel part. Since the final depth of the melt groove 8 is the same as the final depth, the thickness of the molten resin does not become thick, and the heat supplied from the barrel can be uniformly received by the molten resin. Furthermore, since the groove depth is relatively shallow, a pump action is generated by the rotation of the screw, and a stable and uniform molten resin that is strong against back pressure is discharged. Also, there is little resin retention at the bottom of the groove, which is excellent for resin color change.

【0019】 次に、本考案による高混練スクリュの一実験例を図4及び図5を参照して説明 する。Next, an experimental example of the high kneading screw according to the present invention will be described with reference to FIGS. 4 and 5.

【0020】 図4の(a)は本考案による高混練スクリュ、(b)は従来技術の第2例、( c)は従来技術の第1例のスクリュを示しいづれもφ100のスクリュを128 rpmで回転させ、樹脂として低メルトインデックス(流動性が低い)ポリプロ ピレンを用いた場合を示している。4A shows a high kneading screw according to the present invention, FIG. 4B shows a second example of the prior art, and FIG. 4C shows a screw of the first example of the prior art. The figure shows a case where low melt index (low fluidity) propylene is used as the resin by rotating at.

【0021】 ここで、第1例のスクリュの吐出樹脂温度は264.3℃〜267.0℃で温 度のばらつきは2.7℃であり、第2例のスクリュの吐出樹脂温度は249.6 ℃〜256.3℃で温度のばらつきは6.7℃である。そして、本考案による高 混練スクリュの吐出樹脂温度は、256.1℃〜258.7℃で温度のばらつき は2.6℃である。すなわち、本考案の高混練スクリュにより混練溶融されたポ リプロピレンは、比較的温度上昇がなく、またその温度にばらつきを生じないで 均一に溶融されている。Here, the discharge resin temperature of the screw of the first example is 264.3 ° C. to 267.0 ° C. and the temperature variation is 2.7 ° C., and the discharge resin temperature of the screw of the second example is 249. The temperature variation between 6 ° C and 256.3 ° C is 6.7 ° C. The discharge resin temperature of the high kneading screw according to the present invention is 256.1 ° C to 258.7 ° C, and the temperature variation is 2.6 ° C. That is, the polypropylene kneaded and melted by the highly kneading screw of the present invention has a relatively high temperature rise and is uniformly melted without any variation in the temperature.

【0022】 図5は、φ100の高混練スクリュを回転数128rpmにて低メルトインデ ックスのポリプロピレンを計量した場合の可塑化能力の比較を示す。 本考案スクリュは、従来の第2例スクリュと同等の可塑化能力を有し、第1例の スクリュに対し10%の可塑化能力の向上を示している。FIG. 5 shows a comparison of the plasticizing ability of a high kneading screw having a diameter of 100 and a polypropylene having a low melt index measured at a rotation speed of 128 rpm. The screw of the present invention has a plasticizing ability equivalent to that of the conventional second example screw, and shows an improvement in plasticizing ability of 10% over the screw of the first example.

【0023】[0023]

【考案の効果】[Effect of device]

以上説明したように本考案による高混練スクリュは、副フライトが形成開始点 において主フライトから分岐し、主フライトに対する非平行部と、この非平行部 に続く平行部と、この平行部に続く非平行部とを有し該非平行部においてスクリ ュ軸と平行に主フライトと接続し、ソリッド溝の深さは、上流側の非平行部では 下流側に向け漸次深く形成され、平行部及びこれに続く非平行部では漸次浅く、 かつ、副フライトのスクリュ軸に平行に主フライトに続く部分からは漸次深く形 成されて最終溝に続き、メルト溝の深さは副フライトの形成開始点に続く非平行 部では下流側に向け漸次浅く形成され、平行部では漸次深く、かつ、下流側の非 平行部では平行部の最大深さと同一の深さに形成され、さらに、非平行部の終了 点手前の所定位置より漸次浅く形成されて最終溝に続いているようにしたので、 メルト溝をもたない上流側の非平行部から平行部のメルト溝に急激な断面積変化 を生じさせずに接続し、平行副フライトによる高い溶融効率と、非平行副フライ トのソリッドベッド幅方向の絞り込み効果により、ソリッドベッドの溶融を促進 する。また、下流側非平行部のメルト溝の最深部を浅くしたことによるバレルか らの熱の伝達向上により溶融樹脂の滞留は軽減され、可塑化能力が向上する。さ らに、メルト溝の下流側非平行部に一定の溝深さを軸線方向に設けたことにより スクリュの回転による高い周速度が連続して形成され、溶融樹脂の吐出効果をよ くすることができるなどの優れた効果がある。 As described above, in the high-mixing screw according to the present invention, the auxiliary flight diverges from the main flight at the formation start point, and the non-parallel portion with respect to the main flight, the parallel portion that follows this non-parallel portion, and the non-parallel portion that follows this parallel portion. The non-parallel portion has a parallel portion and is connected to the main flight in parallel with the screw axis, and the depth of the solid groove is gradually increased toward the downstream side in the non-parallel portion on the upstream side. It is gradually shallower in the non-parallel part that follows, and gradually deeper from the part that follows the main flight parallel to the screw axis of the sub-flight and continues to the final groove, and the depth of the melt groove follows the formation start point of the sub-flight. In the non-parallel part, it is formed gradually shallower toward the downstream side, gradually deeper in the parallel part, and at the same depth as the maximum depth of the parallel part in the non-parallel part on the downstream side. Position in front Since it was formed to be shallower gradually and continued to the final groove, it was connected from the non-parallel portion on the upstream side, which has no melt groove, to the melt groove in the parallel portion without causing a sudden change in cross-sectional area, and The high melting efficiency of the secondary flight and the narrowing effect of the non-parallel secondary flies in the width direction of the solid bed promotes the melting of the solid bed. Further, by making the deepest part of the melt groove in the non-parallel portion on the downstream side shallow, the heat transfer from the barrel is improved, so that the retention of the molten resin is reduced and the plasticizing ability is improved. Furthermore, by providing a constant groove depth in the non-parallel portion on the downstream side of the melt groove in the axial direction, a high peripheral velocity due to the rotation of the screw is continuously formed, and the molten resin discharge effect is improved. It has an excellent effect that it can

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の高混練スクリュの一実施例を示す説明
図。
FIG. 1 is an explanatory view showing an embodiment of a high kneading screw of the present invention.

【図2】主フライト及び副フライトの展開図。FIG. 2 is a development view of a main flight and a sub flight.

【図3】主フライトと副フライトの高さ関係を示す説明
図。
FIG. 3 is an explanatory diagram showing a height relationship between a main flight and a sub flight.

【図4】本考案の高混練スクリュと従来のスクリュとの
吐出樹脂温度の状態を示す説明図。
FIG. 4 is an explanatory view showing a state of discharge resin temperature of a high kneading screw of the present invention and a conventional screw.

【図5】本考案の高混練スクリュと従来のスクリュとの
可塑化能力を示す説明図。
FIG. 5 is an explanatory view showing the plasticizing ability of the high kneading screw of the present invention and the conventional screw.

【図6】従来のスクリュの説明図。FIG. 6 is an explanatory view of a conventional screw.

【図7】従来のスクリュの説明図。FIG. 7 is an explanatory view of a conventional screw.

【符号の説明】[Explanation of symbols]

1 スクリュ 2 副フライト 2a 副フライト 4 主フライト 7 ソリッド溝 8 メルト溝 14 バレル 15 高混練スクリュ 16 非平行部 17 平行部 18 非平行部 1 screw 2 secondary flight 2a secondary flight 4 main flight 7 solid groove 8 melt groove 14 barrel 15 high kneading screw 16 non-parallel part 17 parallel part 18 non-parallel part

───────────────────────────────────────────────────── フロントページの続き (72)考案者 鈴 木 謙 克 静岡県沼津市大岡2068の3 東芝機械株式 会社沼津事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Katsu Suzuki 2068 Ooka, Numazu City, Shizuoka Prefecture Toshiba Machine Co., Ltd. Numazu Office

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】主フライトとこの主フライトの高さより低
い高さに形成された副フライトとを有する高混練スクリ
ュにおいて、前記副フライトは、副フライトの形成開始
点において前記主フライトから分岐し、主フライトに対
して非平行でメルト溝を持たない非平行部と、この非平
行部に続き主フライトに対して平行な平行部と、この平
行部に続き再び主フライトに対して非平行な非平行部と
を有し該非平行部においてスクリュ軸と平行に主フライ
トと接続し、ソリッド溝の深さは、上流側の非平行部で
は下流側に向け漸次深く形成され、平行部及びこれに続
く非平行部では漸次浅く、かつ副フライトのスクリュ軸
に平行に主フライトに続く部分からは漸次深く形成され
て最終溝に続き、メルト溝の深さは副フライトの形成開
始点に続く非平行部では下流側に向け漸次浅く形成さ
れ、平行部では漸次深く、かつ下流側の非平行部では前
記平行部の最大深さと同一の深さに形成され、さらに、
非平行部の終了点手前の所定位置より漸次浅く形成され
て最終溝に続いていることを特徴とする高混練スクリ
ュ。
1. A high-kneading screw having a main flight and a sub-flight formed at a height lower than the height of the main flight, wherein the sub-flight branches from the main flight at a formation start point of the sub-flight, A non-parallel part that is not parallel to the main flight and has no melt groove, a parallel part that follows this non-parallel part and that is parallel to the main flight, and a non-parallel part that follows this parallel part and that is not parallel to the main flight again. The non-parallel portion has a parallel portion and is connected to the main flight parallel to the screw axis in the non-parallel portion, and the depth of the solid groove is gradually deeper toward the downstream side in the non-parallel portion on the upstream side. It is gradually shallower in the non-parallel part, and gradually deeper from the part following the main flight parallel to the screw axis of the sub-flight, and then to the final groove.The depth of the melt groove is non-parallel to the starting point of the sub-flight formation. In the gradually shallower toward the downstream side, gradually deeper and the non-parallel portion of the downstream side are formed in the same depth and the maximum depth of the parallel portion is parallel portion, further,
A high-kneading screw, which is formed so as to be gradually shallower than a predetermined position before the end point of the non-parallel portion and continues to the final groove.
【請求項2】前記主フライトと前記副フライトとの高さ
の差は、主フライトと副フライトとが平行な部分では一
定の高さの差に形成され、下流側の非平行部では、副フ
ライトの山の高さは主フライトの高さに漸次近づき、そ
の後ある差をもって一定の高さに形成したことを特徴と
する請求項1記載の高混練スクリュ。
2. The height difference between the main flight and the sub-flight is formed to be a constant height difference in a portion where the main flight and the sub-flight are parallel, and in the non-parallel portion on the downstream side. 2. The high kneading screw according to claim 1, wherein the height of the flight peak gradually approaches the height of the main flight, and then is formed to have a constant height with a certain difference.
JP1992052571U 1992-07-27 1992-07-27 High kneading screw Expired - Lifetime JP2561781Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992052571U JP2561781Y2 (en) 1992-07-27 1992-07-27 High kneading screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992052571U JP2561781Y2 (en) 1992-07-27 1992-07-27 High kneading screw

Publications (2)

Publication Number Publication Date
JPH0612014U true JPH0612014U (en) 1994-02-15
JP2561781Y2 JP2561781Y2 (en) 1998-02-04

Family

ID=12918501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992052571U Expired - Lifetime JP2561781Y2 (en) 1992-07-27 1992-07-27 High kneading screw

Country Status (1)

Country Link
JP (1) JP2561781Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056505A1 (en) * 2010-10-25 2012-05-03 三菱重工プラスチックテクノロジー株式会社 Plasticizing screw for injection molding and injection molding method using same
JP2013091170A (en) * 2011-10-24 2013-05-16 Yamashiro Seiki Seisakusho:Kk Double flight screw

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056505A1 (en) * 2010-10-25 2012-05-03 三菱重工プラスチックテクノロジー株式会社 Plasticizing screw for injection molding and injection molding method using same
CN102958666A (en) * 2010-10-25 2013-03-06 三菱重工塑胶科技有限公司 Plasticizing screw for injection molding and injection molding method using same
EP2633972A1 (en) * 2010-10-25 2013-09-04 Mitsubishi Heavy Industries Plastic Technology Co., Ltd. Plasticizing screw for injection molding and injection molding method using same
EP2633972A4 (en) * 2010-10-25 2014-09-17 Mitsubishi Heavy Ind Plastic T Plasticizing screw for injection molding and injection molding method using same
US8900506B2 (en) 2010-10-25 2014-12-02 Mitsubishi Heavy Industries Plastic Technology Plasticizing screw for injection molding and injection molding method using same
JP5645952B2 (en) * 2010-10-25 2014-12-24 三菱重工プラスチックテクノロジー株式会社 Plasticizing screw for injection molding and injection molding method using the same
JP2013091170A (en) * 2011-10-24 2013-05-16 Yamashiro Seiki Seisakusho:Kk Double flight screw

Also Published As

Publication number Publication date
JP2561781Y2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US4000884A (en) Extruder screw
US3858856A (en) Extruder screw
JPH04219221A (en) Barrier screw
JPH0612014U (en) High kneading screw
CN210759047U (en) High-efficient fused injection molding machine screw rod
US6988821B2 (en) Plastics screw with barrier members
JPS6153215B2 (en)
US4049245A (en) Apparatus and method for preparing a plasticated material
JP2005131855A (en) Plasticator of injection molding machine
JP3187021B2 (en) Screw structure of injection molding machine
JPS59202835A (en) High kneading screw
JPS6319324B2 (en)
JP2666093B2 (en) High kneading screw
JPS6229224Y2 (en)
JPS59103732A (en) Efficient kneading screw
JPS62208907A (en) Apparatus for plasticizing plastic, rubber and the like
JPH09300413A (en) Injection screw
CN211138016U (en) High-efficient compounding double screw injection molding machine
JP2646154B2 (en) Plasticizer
JPH0123297B2 (en)
JPS6384904A (en) Thermoplastic resin kneading screw
JPS5829734B2 (en) bent extruder
JPH081730A (en) Plasticization screw
JPS60217123A (en) Plunger type injection mold
JPS5938041A (en) Screw shaft for injection molding machine and the like

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term