JPH06120085A - Electrolytic solution for electrolytic capacitor - Google Patents

Electrolytic solution for electrolytic capacitor

Info

Publication number
JPH06120085A
JPH06120085A JP28951392A JP28951392A JPH06120085A JP H06120085 A JPH06120085 A JP H06120085A JP 28951392 A JP28951392 A JP 28951392A JP 28951392 A JP28951392 A JP 28951392A JP H06120085 A JPH06120085 A JP H06120085A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic capacitor
capacitor
salt
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28951392A
Other languages
Japanese (ja)
Inventor
Kenichi Iida
謙一 飯田
Yoshinori Makita
好則 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP28951392A priority Critical patent/JPH06120085A/en
Publication of JPH06120085A publication Critical patent/JPH06120085A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a electrolytic capacitor to be enhanced in sparking voltage, elongated in service life at high temperatures, and enhanced in reliability by a method wherein at least either 3, 6-endomethylene-DELTA<4>-tetrahydrophthalic acid or its salt is dissolved into solvent. CONSTITUTION:At least either 3,6-endomethylene-DELTA<4>-tetrahydrophthalic acid or its salt is dissolved into electrolytic capacitor electrolytic solution whose main solvent is polyhydric alcohol. By this setup, an electrolytic capacitor can be increased in sparking voltage and lessened in resistivity, tandelta, and leakage current. Even if a high voltage is applied to an electrolytic capacitor in an atmosphere of high temperature, a capacitor case is prevented from expanding or a safety valve is restrained from being actuated, and the capacitor can be set stable in characteristics such as capacity change, tandelta, leakage current, and others to operate stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電解コンデンサ用電解液
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for electrolytic capacitors.

【0002】[0002]

【従来の技術】電解液のうち、特に中高圧の電解コンデ
ンサに用いるものは、火花発生電圧を高くする必要があ
る。このため、従来の中高圧用電解液は、一般的にエチ
レングリコール等の多価アルコールを溶媒とし、これに
硼酸や硼酸アンモニウムを溶解した組成にしている。し
かし、この電解液は、エチレングリコール等と硼酸等と
の間でエステル化反応を起こして多量の水を発生する。
それ故、この電解液を含浸した電解コンデンサを100
℃以上の温度で使用すると、蒸気圧が高くなり、またア
ルミニウム等の電極と反応し易くなり、水素ガスが発生
する。そして蒸気圧が上昇し、水素ガスが発生して所定
圧力になると、電解コンデンサは、安全弁が作動し、電
解液が漏れたりして機器に組み込んだ他の電子部品を損
なう問題がある。
2. Description of the Related Art Among electrolytic solutions, those used for medium and high voltage electrolytic capacitors are required to have a high spark generation voltage. For this reason, the conventional medium- and high-voltage electrolytes generally have a composition in which a polyhydric alcohol such as ethylene glycol is used as a solvent and boric acid or ammonium borate is dissolved therein. However, this electrolytic solution causes an esterification reaction between ethylene glycol or the like and boric acid or the like to generate a large amount of water.
Therefore, the electrolytic capacitor impregnated with this electrolytic solution is 100
When it is used at a temperature of ℃ or more, the vapor pressure becomes high, and it becomes easy to react with the electrode such as aluminum, and hydrogen gas is generated. Then, when the vapor pressure rises and hydrogen gas is generated to reach a predetermined pressure, the safety valve of the electrolytic capacitor operates, there is a problem that the electrolytic solution leaks and the other electronic parts incorporated in the device are damaged.

【0003】この点を改良するために、従来は、電解液
にブチルオクタン二酸やその塩を溶質としたり(特公昭
60−13293号)、5,6−デカンジカルボン酸や
その塩を溶質としたり(特公昭63−15738号)し
ている。これ等の溶質は、二塩基性酸等であり、エステ
ル化反応が非常に遅くなる。そのため、電化液中に発生
する水分が少なくなる。そして高温下において電解コン
デンサの内圧が上昇するのを抑制できる。
In order to improve this point, conventionally, butyloctanedioic acid or a salt thereof is used as a solute in an electrolytic solution (Japanese Patent Publication No. 60-13293), or 5,6-decanedicarboxylic acid or a salt thereof is used as a solute. It has been published (Japanese Patent Publication No. 63-15738). These solutes are dibasic acids and the like, and the esterification reaction becomes very slow. Therefore, less water is generated in the electrified liquid. And it can suppress that the internal pressure of an electrolytic capacitor rises at high temperature.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの二塩
基酸等を溶質とする電解液は、火花発生電圧が低くな
り、このため高温下において電解コンデンサの寿命があ
まり延びず、信頼性を向上し難い欠点がある。
However, the electrolytic solution containing such a dibasic acid as a solute has a low spark generation voltage, so that the life of the electrolytic capacitor does not extend so much at high temperature and reliability is improved. There is a difficult drawback.

【0005】本発明の目的は、以上の欠点を改良し、火
花発生電圧を高くでき、高温下で電解コンデンサの寿命
を長くでき、かつその信頼性を向上できる電解コンデン
サ用電解液を提供するものである。
An object of the present invention is to provide an electrolytic solution for an electrolytic capacitor, which is capable of improving the above-mentioned drawbacks, increasing the spark generation voltage, prolonging the life of the electrolytic capacitor at high temperatures, and improving its reliability. Is.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目的を
達成するために、多価アルコールを主成分とする溶媒
に、3、6−エンドメチレン− Δ4−テトラヒドロフタ
ル酸またはその塩のうち少なくともどちらか一方を溶解
することを特徴とする電解コンデンサ用電解液を提供す
るものである。
In order to achieve the above-mentioned object, the present invention provides a solvent containing a polyhydric alcohol as a main component with 3,6-endomethylene-Δ 4 -tetrahydrophthalic acid or a salt thereof. The present invention provides an electrolytic solution for an electrolytic capacitor, characterized in that at least one of them is dissolved.

【0007】多価アルコールとしてはエチレングリコー
ル等を用いる。
Ethylene glycol or the like is used as the polyhydric alcohol.

【0008】3、6−エンドメチレン− Δ4−テトラヒ
ドロフタル酸(以下化合物Aと略す)の構造式は次式の
通りである。
The structural formula of 3,6-endomethylene-Δ 4 -tetrahydrophthalic acid (hereinafter abbreviated as compound A) is as follows.

【0009】[0009]

【化1】 [Chemical 1]

【0010】[0010]

【実施例】以下、本発明を実施例に基づいて説明する。
溶媒にはエチレングリコール等を用いる。そしてこの溶
媒に化合物Aやその塩を溶解する。なお、溶質として、
化合物Aの他に、ブチルオクタン二酸やその塩、アゼラ
イン酸やその塩、セバシン酸やその塩、P−ニトロ安息
香酸やその塩を合わせて用いてもよい。
EXAMPLES The present invention will be described below based on examples.
Ethylene glycol or the like is used as the solvent. Then, the compound A and its salt are dissolved in this solvent. As a solute,
In addition to the compound A, butyloctanedioic acid or a salt thereof, azelaic acid or a salt thereof, sebacic acid or a salt thereof, P-nitrobenzoic acid or a salt thereof may be used together.

【0012】次に、実施例と従来例とにつき、組成を変
えて、温度30℃のときの比抵抗及び温度85℃のとき
の火花電圧を測定した。また、合わせて、これ等の電解
液をアルミ電極の化成電圧680V、容量100μFの
アルミ電解コンデンサの素子に含浸し、この素子の耐圧
を測定した。測定結果を表1に示した。
Next, the compositions of the example and the conventional example were changed, and the specific resistance at a temperature of 30 ° C. and the spark voltage at a temperature of 85 ° C. were measured. In addition, together, these electrolytic solutions were impregnated into an element of an aluminum electrolytic capacitor having an aluminum electrode formation voltage of 680 V and a capacity of 100 μF, and the withstand voltage of this element was measured. The measurement results are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】この表1から明かな通り、実施例1〜実施
例5によれば、従来例1及び従来例2に比較して、比抵
抗が約22〜94%に低下し、火花電圧が約1.1〜
1.12倍高くなる。また、素子耐圧も、前者は、従来
例2に比較すれば約1.06〜1.09倍になる。
As is clear from Table 1, according to Examples 1 to 5, the specific resistance was reduced to about 22 to 94% and the spark voltage was about to be lower than those of Conventional Example 1 and Conventional Example 2. 1.1-
1.12 times higher. In addition, the element breakdown voltage of the former is about 1.06 to 1.09 times that of the conventional example 2.

【0015】また、表1に示した電解液を含浸した、定
格400V、270μFのアルミ電解コンデンサにつ
き、初期特性と高温負荷試験後の特性を測定し、表2に
示した。高温負荷試験は、試料に定格電圧を印加して、
温度125℃の雰囲気中に2000時間放置して行う。
そして試料数は各々10個とする。測定値は平均値とす
る。
The initial characteristics and the characteristics after the high temperature load test were measured for the aluminum electrolytic capacitors rated at 400 V and 270 μF impregnated with the electrolytic solution shown in Table 1, and shown in Table 2. In the high temperature load test, applying the rated voltage to the sample,
It is performed by leaving it in an atmosphere at a temperature of 125 ° C. for 2000 hours.
The number of samples is 10, respectively. The measured value shall be the average value.

【0016】[0016]

【表2】 [Table 2]

【0017】表2から明らかな通り、初期特性におい
て、実施例1〜実施例5の電解液を用いた No.1〜5
は、従来例1及び従来例2を用いたNo.6及び7に比較
して、tanδが約30.8%〜93.3%に低下し、漏
れ電流が約17.1%〜84.6%に低下している。そ
して高温負荷試験を行っても No.1〜5はケースが膨ら
んだり安全弁が作動する等の不良を生じなかった。これ
に対して、No.6及び7 は安全弁が各々10個及び3個
づつ作動した。また、No.1〜5は、No.7に比較して、
容量変化率が約9.6〜16.2%に、tanδ が約4
8.2〜57.1%にそして漏れ電流が約40〜50%
に各々低下している。
As is clear from Table 2, No. 1 to 5 using the electrolytic solutions of Examples 1 to 5 in the initial characteristics
In comparison with Nos. 6 and 7 using Conventional Example 1 and Conventional Example 2, tan δ is reduced to about 30.8% to 93.3%, and leakage current is about 17.1% to 84.6. It has fallen to%. Even when the high temperature load test was performed, No. 1 to 5 did not cause defects such as the case swelling and the safety valve operating. In contrast, Nos. 6 and 7 had 10 and 3 safety valves, respectively. In addition, No. 1 to 5 are compared to No. 7,
The capacity change rate is about 9.6 to 16.2% and tan δ is about 4
8.2-57.1% and leakage current about 40-50%
To each of them.

【0018】[0018]

【発明の効果】以上の通り、本発明によれば、化合物A
を溶解しているために、火花発生電圧が高くかつ比抵抗
が低く、電解コンデンサの tanδ及び漏れ電流を低下で
き、これに高温度の雰囲気中において高電圧を印加して
も、ケースが膨らんだり安全弁が作動したりするのを抑
制でき、容量変化やtanδ、漏れ電流等の各特性を安定
にして動作できる電解コンデンサ用電解液が得られる。
As described above, according to the present invention, compound A
The high spark generation voltage and low specific resistance can reduce the tan δ and leakage current of the electrolytic capacitor, and the case swells even when a high voltage is applied in a high temperature atmosphere. It is possible to obtain an electrolytic solution for an electrolytic capacitor which can suppress the operation of the safety valve and can operate with stable characteristics such as capacity change, tan δ, and leakage current.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多価アルコールを主な溶媒とする電解コ
ンデンサ用電解液において、3、6−エンドメチレン−
Δ4−テトラヒドロフタル酸またはその塩のうちの少な
くともどちらか一方を溶解することを特徴とする電解コ
ンデンサ用電解液。
1. An electrolytic solution for an electrolytic capacitor containing a polyhydric alcohol as a main solvent, wherein 3,6-endmethylene-
An electrolytic solution for an electrolytic capacitor, wherein at least one of Δ 4 -tetrahydrophthalic acid or a salt thereof is dissolved.
JP28951392A 1992-10-02 1992-10-02 Electrolytic solution for electrolytic capacitor Pending JPH06120085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28951392A JPH06120085A (en) 1992-10-02 1992-10-02 Electrolytic solution for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28951392A JPH06120085A (en) 1992-10-02 1992-10-02 Electrolytic solution for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH06120085A true JPH06120085A (en) 1994-04-28

Family

ID=17744244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28951392A Pending JPH06120085A (en) 1992-10-02 1992-10-02 Electrolytic solution for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH06120085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176102A (en) * 2010-02-24 2011-09-08 Tomiyama Pure Chemical Industries Ltd Driving electrolyte of aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176102A (en) * 2010-02-24 2011-09-08 Tomiyama Pure Chemical Industries Ltd Driving electrolyte of aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPH06120085A (en) Electrolytic solution for electrolytic capacitor
JPH06120084A (en) Electrolytic solution for electrolytic capacitor
JPH0473922A (en) Electrolyte for electrolytic capacitor
JP3748942B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH07122462A (en) Electrolyte for electrolytic capacitor
JP3248267B2 (en) Electrolyte for electrolytic capacitors
KR960013531B1 (en) Electrolytic liquid of the electrolytic condenser
JPH06151252A (en) Electrolyte for electrolytic capacitor
JPH09115782A (en) Electrolyte for driving electrolytic capacitor
JPH07249547A (en) Driving electrolyte of electrolytic capacitor
US4911854A (en) Electrolyte for an electrolytic condenser
KR970008556B1 (en) Electrolyte of aluminium electrolytic condenser
JPH07118432B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH05308039A (en) Electrolyte for electrolytic capacitor
KR970008557B1 (en) Electrolyte of aluminium electrolytic condenser
JPH06151251A (en) Electrolyte for electrolytic capacitor
JPH0969471A (en) Capacitor electrolyte for electrolytic solution
JPH09115781A (en) Electrolyte for driving electrolytic capacitor
JPH08203786A (en) Electrolytic solution for electrolytic capacitor driving
JPS6265406A (en) Electrolyte for driving aluminum electrolytic condenser
JPH06120083A (en) Electrolytic solution for electrolytic capacitor
JPS629617A (en) Electrolytic liquid for driving electrolytic capacitor
JPH0693418B2 (en) Electrolytic solution for electrolytic capacitors
JPH0410513A (en) Electrolyte for electrolytic capacitor
JPH07245246A (en) Drive electrolyte of electrolytic capacitor