JPH06118303A - Real image type variable power finder optical system - Google Patents

Real image type variable power finder optical system

Info

Publication number
JPH06118303A
JPH06118303A JP28706592A JP28706592A JPH06118303A JP H06118303 A JPH06118303 A JP H06118303A JP 28706592 A JP28706592 A JP 28706592A JP 28706592 A JP28706592 A JP 28706592A JP H06118303 A JPH06118303 A JP H06118303A
Authority
JP
Japan
Prior art keywords
lens group
lens
moving
optical system
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28706592A
Other languages
Japanese (ja)
Other versions
JP3294341B2 (en
Inventor
Yuji Kamo
祐二 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP28706592A priority Critical patent/JP3294341B2/en
Publication of JPH06118303A publication Critical patent/JPH06118303A/en
Application granted granted Critical
Publication of JP3294341B2 publication Critical patent/JP3294341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Viewfinders (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To excellently compensate aberrations and to let an optical system meet the size reduction of a camera by making the movement quantity of a moving lens group on the pupil side of a reflection member smaller than the movement quantity of a moving lens group on the object side of the reflection member. CONSTITUTION:This finder optical system consists of the objective lens which is composed of three 1st, 2nd, and 3rd lens groups G1, G2, and G3 in order from the object side and varies the power by moving the 2nd and 3rd lens groups G2 and G3, and an ocular. In this lens constitution, the 2nd lens group functions mainly for power variation and the 3rd lens group functions for diopter correction. Namely, the movement quantity of the moving lens group on the pupil side of the reflection member is made smaller than the movement quantity of the moving lens group on the object side of the reflection member. Namely, B2T/B2W-B3T/B3W holds, where B2W is the power of the 2nd lens group at the wide-angle end, B2T the power of the 2nd lens group at the telephoto end, B3W the power of the 3rd lens group at the wide-angle end, and B3T the power of the 3rd lens group at the telephoto end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、実像式変倍ファインダ
ー光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a real image type variable magnification finder optical system.

【0002】[0002]

【従来の技術】カメラの厚さは、ファインダーの対物レ
ンズの第1レンズ群の第1面から反射部材の第1反射面
までの長さに依存している。そのためカメラの厚さを小
さくするためには、ファインダー光学系の対物レンズの
長さを短くする必要がある。しかし対物レンズの長さを
短くしようとするためには各レンズの屈折力を強くしな
ければならず、収差の発生が大になる。そこで図23に
示す特開平4−86733号公報に示すように移動レン
ズ群GとGの間に反射面Mを設けて光軸を折り曲げ
て対物レンズの長さを短くすることなくカメラの厚さを
小さくしたものがある。しかしこの従来例は、反射面を
1面しかとることが出来ず、対物レンズ系中にもう一つ
の反射面を設ける必要があり、コスト高になる。又カメ
ラの厚さは小さくなるが、カメラの大きさは必ずしも小
さくならない。
2. Description of the Related Art The thickness of a camera depends on the length from the first surface of the first lens group of the objective lens of the finder to the first reflecting surface of the reflecting member. Therefore, in order to reduce the thickness of the camera, it is necessary to shorten the length of the objective lens of the finder optical system. However, in order to reduce the length of the objective lens, it is necessary to increase the refracting power of each lens, which causes a large amount of aberration. Therefore, as shown in Japanese Unexamined Patent Publication No. 4-86733 shown in FIG. 23, a reflecting surface M is provided between the moving lens groups G 2 and G 3 to bend the optical axis to shorten the length of the objective lens and to reduce the length of the camera. Some have a smaller thickness. However, in this conventional example, only one reflecting surface can be formed, and it is necessary to provide another reflecting surface in the objective lens system, resulting in high cost. Further, although the thickness of the camera is reduced, the size of the camera is not necessarily reduced.

【0003】[0003]

【発明が解決しようとする課題】前記の従来例は、カメ
ラの厚さを小さくするために、移動レンズ群間に反射面
を設けて光軸を折り曲げるようにしたものである。しか
しこの従来例では反射面をレンズ群間で1面しか設ける
ことが出来ず、したがって光軸を90°しか曲げること
が出来ない。また光軸が直角に折れ曲がったあとに移動
レンズ群があり、このレンズ群の移動量の分だけカメラ
が縦方向又は横方向に大になり、その後にもう1枚反射
部材を設けねばならず、ファインダーの占める体積が大
になり、コンパクト化にとって好ましくない。また反射
部材をどのような構成にしても必ず移動レンズは互いに
直角に配置されるので、レンズを移動させるための駆動
機構が複雑になる。
In the above-mentioned conventional example, in order to reduce the thickness of the camera, a reflecting surface is provided between the moving lens groups to bend the optical axis. However, in this conventional example, only one reflecting surface can be provided between the lens groups, and therefore the optical axis can be bent only 90 °. In addition, there is a moving lens group after the optical axis is bent at a right angle, the camera becomes large in the vertical or horizontal direction by the amount of movement of this lens group, and then another reflection member must be provided. The viewfinder occupies a large volume, which is not preferable for compactness. In addition, since the moving lenses are always arranged at right angles to each other in any structure of the reflecting member, the driving mechanism for moving the lenses becomes complicated.

【0004】本発明の目的は、前記の欠点を解消するた
めのもので、3群構成の対物レンズを採用して収差が良
好に補正され、しかもカメラの小型化に対応し得る実像
式変倍光学系を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks by adopting a three-group objective lens to correct aberrations satisfactorily, and moreover, to realize miniaturization of a camera and real-image type variable magnification. It is to provide an optical system.

【0005】[0005]

【課題を解決するための手段】本発明の実像式変倍光学
系は、変倍系であって全体として正の屈折力を持つ対物
レンズと、正の屈折力を持つ接眼レンズとよりなり、前
記対物レンズが二つの移動レンズ群と、前記二つのレン
ズ群の間に少なくとも二つの反射面を有する反射部材を
有し、反射部材の物体側にある移動レンズ群の移動量よ
りも反射部材の瞳側にある移動レンズ群の移動量を小さ
くしたことを特徴としている。
A real image type variable power optical system of the present invention is a variable power system which comprises an objective lens having a positive refracting power as a whole and an eyepiece lens having a positive refracting power. The objective lens has two moving lens groups and a reflecting member having at least two reflecting surfaces between the two lens groups, and the moving amount of the moving lens group on the object side of the reflecting member is larger than that of the reflecting member. The feature is that the moving amount of the moving lens unit on the pupil side is reduced.

【0006】本発明の光学系は、例えば図1に示すよう
に物体側から順に、負,正,正の第1,第2,第3の三
つのレンズ群G,G,Gで構成され第2,第3の
レンズ群G,Gを移動させて変倍を行なう対物レン
ズと接眼レンズにて構成されている。尚図2は図1の斜
視図である。この光学系をカメラに組込むときは、第1
レンズ群Gの第1面から反射部材Dの第1反射面ま
での長さを確保しなければならず、これがカメラの厚さ
になる。そのためカメラの厚さを薄くするためには、三
つのレンズ群のうちの移動レンズ群(図1の第2,第3
レンズ群)間に反射部材を配置することにより、第1面
から反射面までの長さを短くすることが考えられる。し
かし移動レンズ群間に一つの反射面しか配置出来ない場
合、カメラの厚さは小さく出来るが、光学系をカメラ内
部にコンパクトに収納出来るとは限らない。本発明の
は、移動レンズ群間に二つの反射面を有するような反射
部材を配置したもので、このようにすれば、薄くて小型
なカメラを実現し得る。
The optical system of the present invention comprises, for example, as shown in FIG. 1, three lens groups G 1 , G 2 and G 3 of negative, positive and positive first, second and third in order from the object side. It is composed of an objective lens and an eyepiece lens which are configured to move the second and third lens groups G 2 and G 3 to change the magnification. 2 is a perspective view of FIG. When installing this optical system in a camera,
The length from the first surface of the lens group G 1 to the first reflecting surface of the reflecting member D 1 must be ensured, which is the thickness of the camera. Therefore, in order to reduce the thickness of the camera, in order to reduce the thickness of the camera, the movable lens group (the second and third lens groups in FIG.
It is possible to shorten the length from the first surface to the reflecting surface by disposing the reflecting member between the lens groups. However, if only one reflecting surface can be arranged between the moving lens groups, the thickness of the camera can be reduced, but the optical system cannot always be compactly housed inside the camera. According to the present invention, a reflecting member having two reflecting surfaces is arranged between the moving lens groups, and by doing so, a thin and compact camera can be realized.

【0007】ここで、従来のファインダー光学系の対物
レンズで負の第1レンズ群,正の第2レンズ群,正の第
3レンズ群よりなるレンズ系において、第2レンズ群と
第3レンズ群の間に反射面を2面設ける場合について考
える。まず第1レンズ群と第2レンズ群のみに着目する
と、これらは負の第1レンズ群と正の第2レンズ群とよ
りなる構成となり、バックフォーカスを長く出来るタイ
プのレンズ構成になる。したがって第2レンズ群の後に
反射部材を配置し、第3レンズ群により視度補正すれば
よいことがわかる。
Here, in the conventional objective lens of the finder optical system, the second lens group and the third lens group in the lens system including the negative first lens group, the positive second lens group, and the positive third lens group. Consider a case where two reflective surfaces are provided between the two. First, focusing on only the first lens group and the second lens group, these are configured by a negative first lens group and a positive second lens group, and a lens configuration of a type that can lengthen the back focus. Therefore, it is understood that it is sufficient to dispose the reflecting member after the second lens group and correct the diopter by the third lens group.

【0008】又このように移動レンズ群間に反射部材を
配置すると、第3レンズ群は、中間結像面の付近に配置
されることになる。したがって第3レンズ群に主として
変倍の役割を持たせるようにすると、このレンズ群の移
動量が大になり、中間結像面までの距離を大きくとらな
ければならず、カメラ内部にコンパクトにおさまらなく
なる。そのために反射部材の光路長も十分にとれなくな
る。したがって第2レンズ群に主として変倍の役割を持
たせ又第3レンズ群に視度補正の役割を与えることが好
ましい。つまり反射部材の物体側にある移動レンズ群の
方の移動量よりも反射部材の瞳側にある移動レンズ群の
移動量は小さくなる。
When the reflecting member is arranged between the movable lens groups in this way, the third lens group is arranged near the intermediate image forming plane. Therefore, if the third lens group is mainly made to have a function of zooming, the amount of movement of this lens group becomes large, and the distance to the intermediate image forming surface must be made large, so that it can be compactly housed inside the camera. Disappear. Therefore, the optical path length of the reflecting member cannot be sufficiently obtained. Therefore, it is preferable that the second lens group mainly has a variable power role and the third lens group has a diopter correction function. That is, the moving amount of the moving lens unit on the pupil side of the reflecting member is smaller than the moving amount of the moving lens unit on the object side of the reflecting member.

【0009】以上の内容を式にて示すと次の通りであ
る。
The above contents are shown by the formulas as follows.

【0010】β2T/β2W−β3T/β3W>0 ただし、β2Wは第2レンズ群のワイド端での倍率、β
2Tは第2レンズ群のテレ端での倍率、β3Wは第3レ
ンズ群のワイド端での倍率、β3Tは第3レンズ群のテ
レ端での倍率である。
Β 2T / β 2W −β 3T / β 3W > 0 where β 2W is the magnification at the wide end of the second lens group, β
2T is the magnification at the tele end of the second lens group, β 3W is the magnification at the wide end of the third lens group, and β 3T is the magnification at the tele end of the third lens group.

【0011】以上のように構成することにより、反射面
を2面持つ反射部材を移動レンズ群中に配置することが
出来る。
With the above structure, a reflecting member having two reflecting surfaces can be arranged in the moving lens group.

【0012】ここでこのレンズ構成の光学系をカメラ内
部に収納する時の配置を述べる。例えば反射部材にポロ
プリズムを用いる場合、カメラ内部で従来あいていた空
間(図24における斜線部分)を利用して反射部材を配
置することが出来、薄型に出来コンパクトにカメラ内に
収納し得る。また移動レンズ群の移動方向も撮影レンズ
の光軸と同じ方向であるため駆動機構も簡単に出来る。
しかし接眼レンズ系においてプリズムが物体側に移動す
るのでルーペレンズもカメラ内部に入り込むことにな
る。しかし接眼レンズのアイポイントを大にすればよ
い。又アイポイントを大に出来ない場合、図3,図4の
ようにすれば、アイポイントは同じままでカメラの厚さ
を薄くすることが可能である。更に反射部材にポロミラ
ーやダハミラーを使用しても同様の効果が得られる。
The arrangement when the optical system having this lens structure is housed inside the camera will now be described. For example, when a Porro prism is used for the reflecting member, the reflecting member can be arranged by utilizing the space (shaded portion in FIG. 24) which is conventionally open inside the camera, and it can be made thin and compactly housed in the camera. Further, since the moving direction of the moving lens group is the same as the optical axis of the taking lens, the driving mechanism can be simplified.
However, since the prism moves to the object side in the eyepiece system, the loupe lens also goes inside the camera. However, the eyepoint of the eyepiece should be increased. If the eyepoint cannot be made large, the thickness of the camera can be reduced while keeping the same eyepoint by performing the procedure shown in FIGS. Further, the same effect can be obtained by using a polo mirror or a roof mirror as the reflecting member.

【0013】図5,図6は、本発明のファインダー光学
系を示した模式図で、G,G,Gは夫々第1,第
2,第3レンズ群である。この図において移動レンズ群
である第2レンズ群Gと第3レンズ群Gの間の光路
長をとることが重要である。第1レンズ群Gと第2レ
ンズ群Gだけのレンズ系を考えた場合、中間結像面I
までの間に反射部材Pと第3レンズ群Gとが存在す
るためレンズ群G,Gよりなる系のバックフォーカ
スを大にしなければならない。そのためには次の条件
(1)を満足することが好ましい。 (1) 0.2<−f/f<1.5 ただしfは第1レンズ群Gの焦点距離、fは対物
レンズのワイド端における焦点距離である。
FIGS. 5 and 6 are schematic views showing the finder optical system of the present invention. G 1 , G 2 and G 3 are the first, second and third lens groups, respectively. In this figure, it is important to take the optical path length between the second lens group G 2 and the third lens group G 3 which are moving lens groups. Considering a lens system including only the first lens group G 1 and the second lens group G 2 , the intermediate image formation plane I
Since the reflecting member P 1 and the third lens group G 3 are present up to, the back focus of the system including the lens groups G 1 and G 2 must be large. For that purpose, it is preferable to satisfy the following condition (1). (1) 0.2 <−f W / f 1 <1.5 where f 1 is the focal length of the first lens group G 1 , and f W is the focal length at the wide end of the objective lens.

【0014】この条件(1)の下限を越えると反射部材
等を配置するに必要な光路長を確保出来ない。条件
(1)の上限を越えると前記の光路長は確保出来るが、
第1レンズ群Gの屈折力が強くなりすぎて収差が悪化
し補正が困難になる。
If the lower limit of the condition (1) is exceeded, the optical path length required for disposing the reflecting member P 1 and the like cannot be secured. If the upper limit of condition (1) is exceeded, the above optical path length can be secured,
The refracting power of the first lens group G 1 becomes too strong and the aberrations deteriorate, making correction difficult.

【0015】以上の説明では、第3レンズ群Gを正の
群として構成したが負のレンズ群としてもよい。第3レ
ンズ群Gは、光学系の視度調整の役割を有する。この
ように第3レンズ群Gを負の屈折力にした時は、視度
調整のためのこの第3レンズ群Gの移動は、図6のよ
うに正の屈折力の時(図5)の逆になる。
In the above description, the third lens group G 3 is configured as a positive lens group, but it may be a negative lens group. The third lens group G 3 has a role of adjusting the diopter of the optical system. When the third lens group G 3 has a negative refractive power as described above, the movement of the third lens group G 3 for diopter adjustment is performed when the third lens group G 3 has a positive refractive power (see FIG. 5). ) Is the opposite.

【0016】この第3レンズ群Gは、屈折力が正の場
合(f>0)は条件(2)を、又負の場合(f
0)は条件(3)を満足することが望ましい。 (2) 0.2<f/f<1.2 (3) 0.5<f/−f<1.5 ただしf,fは夫々第2レンズ群Gおよび第3レ
ンズ群Gの焦点距離である。
The third lens group G 3 satisfies the condition (2) when the refractive power is positive (f 3 > 0) and negative (f 3 <0).
It is desirable that 0) satisfy the condition (3). (2) 0.2 <f 2 / f 3 <1.2 (3) 0.5 <f 2 / -f 3 <1.5 However f 2, f 3 are each second lens group G 2 and the third It is the focal length of the lens group G 3 .

【0017】この条件(2)又は条件(3)の下限を越
えると第3レンズ群Gの屈折力が弱くなり反射部材の
光路長を保ったまま視度補正を行なうことが出来ない。
又条件(2)又は条件(3)の上限を越えると第3レン
ズ群Gの屈折力が強くなり収差補正上好ましくない。
If the lower limit of the condition (2) or the condition (3) is exceeded, the refracting power of the third lens group G 3 becomes weak, and diopter correction cannot be performed while maintaining the optical path length of the reflecting member.
Further, if the upper limit of the condition (2) or the condition (3) is exceeded, the refractive power of the third lens group G 3 becomes strong, which is not preferable for aberration correction.

【0018】又歪曲収差を補正するために第3レンズ群
に非球面を設けることが好ましい。反射部材には、
プリズムやミラーを用いることが考えられる。反射部材
としてプリズムを用いる場合、入射面や射出面にパワー
を持たせることが可能であるが、このパワーは正でも負
でもよい。又反射部材としてミラーを用いる場合は、ミ
ラーの物体側にレンズを配置してもよい。
Further, it is preferable to provide an aspherical surface in the third lens group G 3 in order to correct distortion. For the reflective member,
It is possible to use a prism or a mirror. When a prism is used as the reflecting member, it is possible to give power to the incident surface and the exit surface, but this power may be positive or negative. When a mirror is used as the reflecting member, the lens may be arranged on the object side of the mirror.

【0019】[0019]

【実施例】次に本発明の実像式変倍ファインダー光学系
の各実施利を示す。 実施例1 r=∞ d=1.000 n=1.58423 ν=3 0.49 r=14.2831(非球面)d=D=15.5046 d=3.500 n=1.49241 ν =57.66 r=−19.1871(非球面)d=D=20.9674(非球面)d=17.000 n=1.49241 ν=57.66 r=∞ d=D=9.4249 d=2.000 n=1.49241 ν =57.66 r=57.7444 d=D=∞(視野枠) d=1.000 r10=∞ d10=25.000 n=1.49241 ν =57.66 r11=∞ d11=2.000 r12=17.8960 d12=3.400 n=1.49241 ν=57.66 r13=−22.9520(非球面)d13=20.000 r14=∞(アイポイント) 非球面係数 (第2面)P=1.0000,E=0.80634×10−4,F=−0.83 595×10−5 G=0.27053×10−6 (第4面)P=1.0000,E=0.16165×10−4,F=−0.13 098×10−6 G=0.22307×10−6 (第5面)P=1.0000,E=−0.18479×10−3,F=0.24 977×10−4 G=−0.10000×10−5 (第13面)P=1.0000,E=0.79267×10−4,F=.0.5 7040×10−6 G=0.68501×10−8 倍率 0.42 0.55 0.73 入射角2ω49.2° 35.7° 25.8° D 16.9313 12.6639 5.7
851 D 0.9934 5.2608 12.1
397 D 1.1646 2.4609 1.0
000 D 2.4963 1.2000 2.6
609 β2T/β2W−β3T/β3W=0.837,−f
/f=0.360,f/f=0.798 実施例2 r=−47.6349 d=1.000 n=1.58423 ν=30.49 r=11.3090 (非球面)d=D=8.5940 d=4.000 n=1.49241 ν =57.66 r=−13.8822(非球面)d=D=−157.1628 d=17.000 n=1.49241 ν=57.66 r=−34.8083 d=D=28.5534(非球面)d=2.000 n=1.49241 ν=57.66 r=−9.5875 d=D=∞(視野枠) d=1.000 r10=∞ d10=25.000 n=1.49241 ν =57.66 r11=∞ d11=2.000 r12=17.8960 d12=3.400 n=1.49241 ν=57.66 r13=−22.9520(非球面)d13=20.000 r14=∞(アイポイント) 非球面係数 (第2面)P=1.0000,E=0.37587×10−4,F=−0.40 688×10−5 G=0.17093×10−6 (第4面)P=10000,E=0.42798×10−3,F=−0.610 06×10−5 G=0.11478×10−6 (第7面)P=1.0000,E=0.52338×10−3,F=−0.40 706×10−4 G=−0.57707×10−6 (第13面)P=1.0000,E=0.79267×10−4,F=−0.5 7040×10−6 G=0.68501×10−8 倍率 0.42 0.55 0.73 入射角2ω48.6° 36.2° 25.7° D 10.2355 8.3014 3.705
5 D 1.2650 3.1991 7.795
0 D 1.0000 2.7483 1.587
3 D 2.7483 1.0000 2.161
0 β2T/β2W−β3T/β3W=0.670,−f
/f=0.567,f/f=0.772 実施例3 r=10.7826 d=1.000 n=1.58423 ν =30.49 r=5.7602(非球面)d=D=17.2727 d=3.500 n=1.49241 ν 2=57.66 r=−19.9917(非球面)d=D=22.7521(非球面)d=19.000 n=1.49241 ν=57.66 r=−9.2533 d=D=−6.5774(非球面)d=2.123 n=1.58423 ν4=30.49 r=−13.5892 d=D=∞(視野枠) d=1.000 r10=∞ d10=25.000 n=1.49241 ν =57.66 r11=∞ d11=2.000 r12=17.8960 d12=3.400 n=1.49241 ν=57.66 r13=−22.9520(非球面)d13=20.000 r14=∞(アイポイント) 非球面係数 (第2面)P=1.0000,E=−0.16113×10−3,F=0.24 383×10−5 G=−0.28437×10−6 (第4面)P=1.0000,E=−0.83801×10−4,F=0.29 452×10−5 G=−0.13869×10−6 (第5面)P=1.0000,E=−0.24666×10−3,F=0.15 700×10−5 G=−0.19113×10−6 (第7面)P=1.0000,E=−0.51080×10−3,F=0.11 222×10−3 G=−0.27077×10−5 (第13面)P=1.0000,E=0.79267×10−4,F=−0.5 7040×10−6 G=0.68501×10−8 倍率 0.42 0.55 0.73 入射角2ω 49.4° 36.7° 26.3° D 22.7509 18.0645 10.9
669 D 1.0000 5.6865 12.7
840 D 2.4443 1.3000 2.3
318 D 1.1876 2.3318 1.3
000 β2T/β2W−β3T/β3W=0.799,−f
/f=0.386,f/−f=0.790 実施例4 r=−11.3483 d=1.000 n=1.58423 ν=30.49 r=11.7092 (非球面)d=D=8.5448(非球面)d=2.223 n:1.49241 ν :57.66 r=−9.9778 d=D=57.1126 d=1.000 n=1.58423 ν =30.49 r=10.2677(非球面)d=D=6.2502 d=3.587 n=1.49241 ν =57.66 r=16.3419 d=0.500 r=5.3470(非球面)d=1.000 n=1.58423 ν =30.49 r10=4.9106 d10=D11=∞(視野枠) d11=1.000 r12=∞ d12=25.000 n=1.49241 ν =57.66 r13=∞ d13=2.000 r14=17.8960 d14=3.400 n=1.49241 ν=57.66 r15=−22.9520(非球面)d15=20.000 r16=∞(アイポイント) 非球面係数 (第2面)P=1.0000,E=−0.81563×10−3,F=0.28 444×10−4 G=−0.17376×10−6 (第3面)P=1.0000,E=−0.75454×10−3,F=−0.1 9287×10−5 G=0.13014×10−6 (第6面)P=1.0000,E=−0.88233×10−4,F=−0.2 0871×10−5 G=−0.86395×10−6 (第9面)P=1.0000,E=−0.14459×10−2,F=0.39 259×10−4 G=−0.34782×10−5 (第15面)P=1.0000,E=0.79267×10−4,F=−0.5 7040×10−6 G=0.68501×10−8 倍率 0.42 0.55 0.73 入射角2ω 50.6° 33.9° 23.9° D 12.3860 10.2228 6.7
329 D 1.0000 3.1633 6.6
531 D 19.0000 20.5484 19.8
291 D 5.0484 3.5000 4.2
193 β2T/β2W−β3T/β3W=0.607,−f
/f=0.908,f/f=0.557 実施例1は、図7に示す通りの構成で、対物レンズが負
の屈折力を持ち固定群である第1レンズ群Gと正の屈
折力を持ち移動群である第2レンズ群Gと、正の屈折
力を持つ(第2レンズ群Gの側が凸面となった)反射
部材であるプリズムPと、正の屈折力を持ち移動群で
ある第3レンズ群Gとよりなり、接眼レンズが反射部
材Pと正の屈折力を持ち固定群である第4レンズ群G
とよりなっている。この光学系で、対物レンズの第2
レンズ群Gと第3レンズ群Gとを光軸に添った方向
に移動させて変倍と視度補正とを行なっている。又プリ
ズムPの物体側の面を凸面にしてあるので、第3レン
ズ群Gへの入射角度がゆるくなり歪曲収差の発生が少
なくなっている。したがって第3レンズ群Gに非球面
を用いなくとも良好な性能になっている。
EXAMPLES The following are practical examples of the real image type variable magnification finder optical system of the present invention. Example 1 r 1 = ∞ d 1 = 1.000 n 1 = 1.58423 ν 1 = 3 0.49 r 2 = 14.2831 (aspherical surface) d 2 = D 1 r 3 = 15.55046 d 3 = 3.500 n 2 = 1.49241 ν 2 = 57.66 r 4 = -19.1871 ( aspherical) d 4 = D 2 r 5 = 20.9674 ( aspherical) d 5 = 17.000 n 3 = 1.49241 ν 3 = 57.66 r 6 = ∞ d 6 = D 3 r 7 = 9.4249 d 7 = 2.000 n 4 = 1.49241 ν 4 = 57.66 r 8 = 57.74444 d 8 = D 4 r 9 = ∞ (field frame) d 9 = 1.000 r 10 = ∞ d 10 = 25.000 n 5 = 1.49241 ν 5 = 57.66 r 11 = ∞ d 11 = 2.000 r 12 = 17.8960 d 12 = 3.400 n 6 = .49241 ν 6 = 57.66 r 13 = -22.9520 ( aspherical) d 13 = 20.000 r 14 = ∞ ( eye point) aspheric coefficient (second surface) P = 1.0000, E = 0 80634 × 10 −4 , F = −0.83 595 × 10 −5 G = 0.27053 × 10 −6 (4th surface) P = 1.0000, E = 0.16165 × 10 −4 , F = −0.13 098 × 10 −6 G = 0.22307 × 10 −6 (fifth surface) P = 1.0000, E = −0.18479 × 10 −3 , F = 0.24 977 × 10 −4 G = −0.10000 × 10 −5 (thirteenth surface) P = 1.0000, E = 0.79267 × 10 −4 , F =. 0.5 7040 × 10 −6 G = 0.68501 × 10 −8 Magnification 0.42 0.55 0.73 Incident angle 2ω 49.2 ° 35.7 ° 25.8 ° D 1 16.9313 12.66639.5 .7
851 D 2 0.9934 5.2608 12.1
397 D 3 1.1646 2.4609 1.0
000 D 4 2.4963 1.2000 2.6
609 β 2T / β 2W −β 3T / β 3W = 0.837, −f W
/ F 1 = 0.360, f 2 / f 3 = 0.798 Example 2 r 1 = -47.6349 d 1 = 1.000 n 1 = 1.58423 ν 1 = 30.49 r 2 = 11. 3090 (aspherical surface) d 2 = D 1 r 3 = 8.5940 d 3 = 4.00 n 2 = 1.49421 ν 2 = 57.66 r 4 = −13.8822 (aspherical surface) d 4 = D 2 r 5 = -157.1628 d 5 = 17.000 n 3 = 1.49421 ν 3 = 57.66 r 6 = −34.8083 d 6 = D 3 r 7 = 28.5534 (aspherical surface) d 7 = 2.000 n 4 = 1.49241 ν 4 = 57.66 r 8 = -9.5875 d 8 = D 4 r 9 = ∞ ( field frame) d 9 = 1.000 r 10 = ∞ d 10 = 25. 000 n 5 = 1.49241 ν 5 = 57.66 r 1 = ∞ d 11 = 2.000 r 12 = 17.8960 d 12 = 3.400 n 6 = 1.49241 ν 6 = 57.66 r 13 = -22.9520 ( aspherical) d 13 = 20.000 r 14 = ∞ (eye point) Aspherical surface coefficient (second surface) P = 1.0000, E = 0.37587 × 10 −4 , F = −0.40 688 × 10 −5 G = 0.17093 × 10 − 6 (4th surface) P = 10000, E = 0.42798 × 10 −3 , F = −0.610 06 × 10 −5 G = 0.11478 × 10 −6 (7th surface) P = 1.0000 , E = 0.52338 × 10 −3 , F = −0.40 706 × 10 −4 G = −0.57707 × 10 −6 (13th surface) P = 1.0000, E = 0.79267 × 10 -4, F = -0.5 7040 × 10 -6 G = 0.68 01 × 10 -8 magnification 0.42 0.55 0.73 incident angle 2ω48.6 ° 36.2 ° 25.7 ° D 1 10.2355 8.3014 3.705
5 D 2 1.2650 3.1991 7.795
0 D 3 1.0000 2.7483 1.587
3 D 4 2.7481 1.0000 2.161
0 β 2T / β 2W −β 3T / β 3W = 0.670, −f W
/ F 1 = 0.567, f 2 / f 3 = 0.772 Example 3 r 1 = 1.7826 d 1 = 1.000 n 1 = 1.58423 ν 1 = 30.49 r 2 = 5.7602 (Aspherical surface) d 2 = D 1 r 3 = 17.2727 d 3 = 3.500 n 2 = 1.49241 ν 2 = 57.66 r 4 = −19.99917 (aspherical surface) d 4 = D 2 r 5 = 22.7521 (aspherical) d 5 = 19.000 n 3 = 1.49241 ν 3 = 57.66 r 6 = -9.2533 d 6 = D 3 r 7 = -6.5774 ( aspherical) d 7 = 2.123 n 4 = 1.58423 ν 4 = 30.49 r 8 = -13.5892 d 8 = D 4 r 9 = ∞ (field frame) d 9 = 1.000 r 10 = ∞ d 10 = 25.000 n 5 = 1.49241 ν 5 = 57.66 r 1 1 = ∞ d 11 = 2.000 r 12 = 17.8960 d 12 = 3.400 n 6 = 1.49241 ν 6 = 57.66 r 13 = -22.9520 (aspherical surface) d 13 = 20.000 r 14 = ∞ (eye point) Aspherical surface coefficient (second surface) P = 1.0000, E = −0.16113 × 10 −3 , F = 0.244 383 × 10 −5 G = −0.28437 × 10 −6 (fourth surface) P = 1.0000, E = −0.83801 × 10 −4 , F = 0.29 452 × 10 −5 G = −0.13869 × 10 −6 (fifth surface) P = 1.0000, E = −0.24666 × 10 −3 , F = 0.15 700 × 10 −5 G = −0.19113 × 10 −6 (7th surface) P = 1.0000, E = −0.51080 × 10 −3 , F = 0.11 222 × 10 −3 G = −0 27077 × 10 −5 (thirteenth surface) P = 1.0000, E = 0.79267 × 10 −4 , F = −0.5 7040 × 10 −6 G = 0.68501 × 10 −8 magnification 0. 42 0.55 0.73 Incident angle 2ω 49.4 ° 36.7 ° 26.3 ° D 1 22.7509 18.0645 10.9
669 D 2 1.0000 5.68665 12.7
840 D 3 2.4443 1.3000 2.3
318 D 4 1.1876 2.3318 1.3
000 β 2T / β 2W −β 3T / β 3W = 0.799, −f W
/ F 1 = 0.386, f 2 / −f 3 = 0.790 Example 4 r 1 = -11.3483 d 1 = 1.000 n 1 = 1.58423 ν 1 = 30.49 r 2 = 11 .7092 (aspherical surface) d 2 = D 1 r 3 = 8.5448 (aspherical surface) d 3 = 2.223 n 2 : 1.49421 ν 2 : 57.66 r 4 = −9.9778 d 4 = D 2 r 5 = 57.1126 d 5 = 1.000 n 3 = 1.58423 ν 3 = 30.49 r 6 = 10.2677 (aspherical surface) d 6 = D 3 r 7 = 6.2502 d 7 = 3 .587 n 4 = 1.49241 ν 4 = 57.66 r 8 = 16.3419 d 8 = 0.500 r 9 = 5.3470 ( aspherical) d 9 = 1.000 n 5 = 1.58423 ν 5 = 30.49 r 10 = 4.9106 d 10 = D r 11 = ∞ (field frame) d 11 = 1.000 r 12 = ∞ d 12 = 25.000 n 6 = 1.49241 ν 6 = 57.66 r 13 = ∞ d 13 = 2.000 r 14 = 17 .8960 d 14 = 3.400 n 7 = 1.49241 ν 7 = 57.66 r 15 = -22.9520 ( aspherical) d 15 = 20.000 r 16 = ∞ ( eye point) aspherical coefficients (first 2nd surface) P = 1.0000, E = -0.81563 × 10 −3 , F = 0.28 444 × 10 −4 G = −0.17376 × 10 −6 (third surface) P = 1.0000 , E = −0.75454 × 10 −3 , F = −0.1 9287 × 10 −5 G = 0.13014 × 10 −6 (sixth surface) P = 1.0000, E = −0.88233 × 10 -4, F = -0.2 0871 × 10 -5 G = 0.86395 × 10 -6 (ninth surface) P = 1.0000, E = -0.14459 × 10 -2, F = 0.39 259 × 10 -4 G = -0.34782 × 10 -5 ( Fifteenth surface) P = 1.0000, E = 0.79267 × 10 −4 , F = −0.5 7040 × 10 −6 G = 0.68501 × 10 −8 Magnification 0.42 0.55 0.73 Incident angle 2ω 50.6 ° 33.9 ° 23.9 ° D 1 12.3860 10.2228 6.7
329 D 2 1.0000 3.1633 6.6
531 D 3 19.0000 20.5484 19.8
291 D 4 5.0484 3.5000 4.2
193 β 2T / β 2W −β 3T / β 3W = 0.607, −f W
/ F 1 = 0.908, f 2 / f 3 = 0.557 The first embodiment has a configuration as shown in FIG. 7, and the objective lens has a negative refracting power and is a fixed first lens group G 1 A second lens group G 2 which has a positive refractive power and is a moving group, and a prism P 1 which is a reflecting member having a positive refractive power (the second lens group G 2 has a convex surface) and a positive lens The third lens group G 3 is a moving group having a refractive power, and the eyepiece lens is a reflecting lens P 2 and the fourth lens group G is a fixed group having a positive refractive power.
It consists of four . With this optical system, the second objective lens
The lens group G 2 and the third lens group G 3 are moved in a direction along the optical axis to perform zooming and diopter correction. Further, since the object-side surface of the prism P 1 is a convex surface, the angle of incidence on the third lens group G 3 is gentle and distortion is less likely to occur. Therefore, good performance is obtained without using an aspherical surface for the third lens group G 3 .

【0020】この実施例1の光学系では、第1レンズ群
の像側の面r、第2レンズ群Gの眼側の面
、プリズムPの凸面r、第4レンズ群Gの眼
側の面r13が非球面である。
In the optical system of Example 1, the image-side surface r 2 of the first lens group G 1 , the eye-side surface r 4 of the second lens group G 2 , the convex surface r 5 of the prism P 1 , and the fourth surface The surface r 13 on the eye side of the lens group G 4 is an aspherical surface.

【0021】実施例2は、図8に示す構成で、実施例1
と同様の構成である。反射部材であるプリズムPの物
体側の面は物体側に凹の面である。この場合、プリズム
内部では全反射の条件を満足しないので、プリズムには
アルミニュウムを蒸着する等が好ましい。また第3レン
ズ群Gは両凸レンズである。
The second embodiment has the configuration shown in FIG.
It has the same configuration as. The object-side surface of the prism P 1 which is a reflecting member is a surface concave to the object side. In this case, since the condition of total reflection is not satisfied inside the prism, it is preferable to vapor-deposit aluminum on the prism. The third lens group G 3 is a biconvex lens.

【0022】この実施例では、面r,r,r,r
13が非球面である。
In this embodiment, the surfaces r 2 , r 4 , r 7 , r
13 is an aspherical surface.

【0023】実施例3は、図9に示す構成で、負の屈折
力を持ち固定群である第1レンズ群Gと、正の屈折力
を持ち移動群である第2レンズ群Gと、正の屈折力を
持つ(物体側の面が凸面)反射部材であるプリズムP
と、負の屈折力を持ち移動群である第3レンズ群G
よりなる対物レンズと、反射部材Pと正の屈折力を持
ち固定群である第4レンズ群Gとからなる接眼レンズ
からなる。ここで第2レンズ群Gと第3レンズ群G
とを移動させて、変倍と視度補正とを行なっている。
The third embodiment has the configuration shown in FIG. 9, and includes a first lens group G 1 which is a fixed lens group having a negative refractive power, and a second lens group G 2 which is a movable lens group having a positive refractive power. , P 1 which is a reflecting member having a positive refractive power (the surface on the object side is a convex surface)
And an objective lens composed of a third lens group G 3 having a negative refractive power and being a moving group, and an eyepiece composed of a reflecting member P 2 and a fourth lens group G 4 having a positive refractive power and being a fixed group. It consists of a lens. Here, the second lens group G 2 and the third lens group G 3
And are moved to perform zooming and diopter correction.

【0024】第3レンズ群Gが負の屈折力を持ちその
物体側に正の屈折力を持つ反射部材が配置されているの
でプリズム内部では大部分の光線が全反射の条件を満足
する。
Since the third lens group G 3 has a negative refracting power and a reflecting member having a positive refracting power is arranged on the object side, most of the light rays satisfy the condition of total reflection inside the prism.

【0025】この実施例3も面r,r,r,r
13が非球面である。
In the third embodiment, the surfaces r 2 , r 4 , r 5 , r
13 is an aspherical surface.

【0026】実施例4は、図10に示す構成で、負の屈
折力を持ち固定群である第1レンズ群Gと、正の屈折
力を持ち移動群である第2レンズ群Gと、負の屈折力
を持ち固定群である第3レンズ群Gと、二つの反射面
をもつ反射部材Pのミラーと、正の第1レンズと負の
第2レンズの2枚のレンズからなり全体として正の屈折
力を持つ移動群である第4レンズ群Gとよりなる対物
レンズと、反射部材Pと正の屈折力を持ち固定群であ
る第5レンズ群Gの接眼レンズとからなる。この実施
例4は、第1、第2レンズ群の後に反射部材を配置する
に必要な光路長をとれないので、第2レンズ群Gの次
に負の屈折力を持つ固定群Gを配置して大きな光路長
をとるようにしている。尚図10およびデーターには反
射部材Pは示していないが、図やデーターよりわかる
ように第3レンズ群Gと第4レンズ群Gの間は二つ
のミラーを配置するのに必要な間隔になっている。
The fourth embodiment has the configuration shown in FIG. 10, and includes a first lens group G 1 which is a fixed lens group having a negative refractive power, and a second lens group G 2 which is a movable lens group having a positive refractive power. , A third lens group G 3 which is a fixed group having a negative refracting power, a mirror of a reflecting member P 1 having two reflecting surfaces, and two lenses of a positive first lens and a negative second lens. In other words, the objective lens including the fourth lens group G 4 which is a moving group having a positive refracting power as a whole, and the eyepiece of the reflecting member P 2 and the fifth lens group G 5 which has a positive refracting power and is a fixed group. Consists of. In Example 4, the optical path length required for disposing the reflecting member after the first and second lens groups cannot be taken, so that the second lens group G 2 is followed by the fixed group G 3 having a negative refractive power. They are arranged so as to have a large optical path length. Although the reflecting member P 1 is not shown in FIG. 10 and the data, it is necessary to dispose two mirrors between the third lens group G 3 and the fourth lens group G 4 as can be seen from the figures and the data. The intervals are.

【0027】上記の各実施例で用いる非球面の形状は、
光軸方向をx光軸と垂直な方向をyとした時次のように
表わされる。
The shape of the aspherical surface used in each of the above embodiments is
When the direction of the optical axis is x and the direction perpendicular to the optical axis is y, it is expressed as follows.

【0028】ただしCは非球面の面頂の曲率、Pは円錐
定数、E、F、Gは非球面係数である。
Here, C is the curvature of the apex of the aspherical surface, P is the conic constant, and E, F, and G are aspherical surface coefficients.

【0029】[0029]

【発明の効果】本発明は、対物レンズの移動レンズ群間
に二つの反射面を有する反射部材を配置することにより
薄く小型のカメラに配置し得てしかも移動レンズ群の駆
動機構を簡単になし得て、又光学性能も良好な実像式変
倍ファインダー光学系になし得たものである。
The present invention can be arranged in a thin and compact camera by arranging a reflecting member having two reflecting surfaces between the moving lens groups of the objective lens, and a driving mechanism for the moving lens groups can be easily formed. In addition, a real image type variable magnification viewfinder optical system having good optical performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のファインダー光学系の構成を示す図FIG. 1 is a diagram showing a configuration of a finder optical system of the present invention.

【図2】図1の光学系の斜視図FIG. 2 is a perspective view of the optical system shown in FIG.

【図3】本発明のファインダー光学系の他の構成を示す
FIG. 3 is a diagram showing another configuration of the finder optical system of the present invention.

【図4】図3の光学系の斜視図FIG. 4 is a perspective view of the optical system of FIG.

【図5】本発明のファインダー光学系の構成を模式的に
示した図
FIG. 5 is a diagram schematically showing a configuration of a finder optical system of the present invention.

【図6】本発明のファインダー光学系の他の構成を模式
的に示した図
FIG. 6 is a diagram schematically showing another configuration of the finder optical system of the present invention.

【図7】本発明の実施例1の構成を示す図FIG. 7 is a diagram showing a configuration of a first embodiment of the present invention.

【図8】本発明の実施例2の構成を示す図FIG. 8 is a diagram showing a configuration of a second embodiment of the present invention.

【図9】本発明の実施例3の構成を示す図FIG. 9 is a diagram showing a configuration of a third embodiment of the present invention.

【図10】本発明の実施例4の構成を示す図FIG. 10 is a diagram showing a configuration of a fourth embodiment of the present invention.

【図11】実施例1の広角端における収差曲線図FIG. 11 is an aberration curve diagram of Example 1 at the wide-angle end.

【図12】実施例1の中間焦点距離における収差曲線図FIG. 12 is a diagram of aberration curves at the intermediate focal length of Example 1.

【図13】実施例1の望遠端における収差曲線図FIG. 13 is an aberration curve diagram for Example 1 at the telephoto end.

【図14】実施例2の広角端における収差曲線図FIG. 14 is an aberration curve diagram of Example 2 at the wide-angle end.

【図15】実施例2の中間焦点距離における収差曲線図FIG. 15 is an aberration curve diagram for Example 2 at the intermediate focal length.

【図16】実施例2の望遠端における収差曲線図FIG. 16 is an aberration curve diagram for Example 2 at the telephoto end.

【図17】実施例3の広角端における収差曲線図FIG. 17 is an aberration curve diagram of Example 3 at the wide-angle end.

【図18】実施例3の中間焦点距離における収差曲線図FIG. 18 is an aberration curve diagram for Example 3 at the intermediate focal length.

【図19】実施例3の望遠端における収差曲線図19 is an aberration curve diagram for Example 3 at the telephoto end. FIG.

【図20】実施例4の広角端における収差曲線図FIG. 20 is an aberration curve diagram for Example 4 at the wide-angle end.

【図21】実施例4の中間焦点距離における収差曲線図FIG. 21 is an aberration curve diagram for Example 4 at the intermediate focal length.

【図22】実施例4の望遠端における収差曲線図FIG. 22 is an aberration curve diagram for Example 4 at the telephoto end.

【図23】従来のファインダー光学系の構成を示す図FIG. 23 is a diagram showing a configuration of a conventional finder optical system.

【図24】他の従来のファインダー光学系の構成を示す
FIG. 24 is a diagram showing the configuration of another conventional finder optical system.

【図25】図24に示す従来例の斜視図FIG. 25 is a perspective view of the conventional example shown in FIG.

【図26】他の従来のファインダー光学系の構成を示す
FIG. 26 is a diagram showing the configuration of another conventional finder optical system.

【図27】図26に示す従来例の斜視図27 is a perspective view of the conventional example shown in FIG.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月26日[Submission date] May 26, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【請求項2】前記瞳側にある移動レンズ群が中間結像面
近傍に位置することを特徴とする請求項1の実像式変倍
ファインダー光学系。
2. The real image type variable power viewfinder optical system according to claim 1, wherein the movable lens group on the pupil side is located in the vicinity of an intermediate image forming plane.

【手続補正書】[Procedure amendment]

【提出日】平成5年8月12日[Submission date] August 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】この実施例1の光学系では、第1レンズ群
眼側の面r、第2レンズ群Gの眼側の面
、プリズムPの凸面r、第4レンズ群Gの眼
側の面r13が非球面である。
[0020] In the optical system of the first embodiment, the surface r 2 of the first lens group G 1 of the eye-side, second lens group G 2 of the eye-side surface r 4, the convex surface r 5 of the prism P 1, 4 The surface r 13 on the eye side of the lens group G 4 is an aspherical surface.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】実施例4は、図10に示す構成で、負の屈
折力を持ち固定群である第1レンズ群Gと、正の屈折
力を持ち移動群である第2レンズ群Gと、負の屈折力
を持ち固定群である第3レンズ群Gと、二つの反射面
をもつ反射部材Pのミラーと、正の第1レンズと負の
第2レンズの2枚のレンズからなり全体として正の屈折
力を持つ移動群である第4レンズ群Gとよりなる対物
レンズと、反射部材Pと正の屈折力を持ち固定群であ
る第5レンズ群Gの接眼レンズとからなる。この実施
例4は、第1、第2レンズ群の後に反射部材を配置する
に必要な光路長をとれないので、第2レンズ群Gの次
に負の屈折力を持つ固定群Gを配置して大きな光路長
をとるようにしている。尚図10およびデーターには反
射部材Pは示していないが、図やデーターよりわかる
ように第3レンズ群Gと第4レンズ群Gの間は二つ
反射面を持つミラーを配置するのに必要な間隔になっ
ている。
The fourth embodiment has the configuration shown in FIG. 10, and includes a first lens group G 1 which is a fixed lens group having a negative refractive power, and a second lens group G 2 which is a movable lens group having a positive refractive power. , A third lens group G 3 which is a fixed group having a negative refracting power, a mirror of a reflecting member P 1 having two reflecting surfaces, and two lenses of a positive first lens and a negative second lens. In other words, the objective lens including the fourth lens group G 4 which is a moving group having a positive refracting power as a whole, and the eyepiece of the reflecting member P 2 and the fifth lens group G 5 which has a positive refracting power and is a fixed group. Consists of. In Example 4, the optical path length required for disposing the reflecting member after the first and second lens groups cannot be taken, so that the second lens group G 2 is followed by the fixed group G 3 having a negative refractive power. They are arranged so as to have a large optical path length. Although the reflecting member P 1 is not shown in FIG. 10 and data, a mirror having two reflecting surfaces is arranged between the third lens group G 3 and the fourth lens group G 4 as can be seen from the figures and data. It has the necessary interval.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】変倍系であって全体として正の屈折力を持
つ対物レンズと、正の屈折力を持つ接眼レンズとよりな
り、前記の対物レンズが二つの移動レンズ群を有し、前
記の二つの移動レンズ群の間に反射面を少なくとも2面
有している反射部材が配置され、前記反射部材の物体側
にある移動レンズ群の移動量よりも前記反射部材の瞳側
にある移動レンズ群の移動量を小さくしたことを特徴と
する実像式変倍ファインダー光学系。
1. A variable power system comprising an objective lens having a positive refracting power as a whole and an eyepiece lens having a positive refracting power, said objective lens having two moving lens groups, A reflecting member having at least two reflecting surfaces is disposed between the two moving lens groups, and the moving amount on the pupil side of the reflecting member is greater than the moving amount of the moving lens group on the object side of the reflecting member. A real-image variable-magnification viewfinder optical system characterized by reducing the amount of lens group movement.
【請求項2】前記瞳側にある移動レンズ群が中間結像面
近傍に位置することを特徴とする請求項1の実像式変倍
ファインダー光学系。
2. The real image type variable power viewfinder optical system according to claim 1, wherein the movable lens group on the pupil side is located in the vicinity of an intermediate image forming plane.
JP28706592A 1992-10-02 1992-10-02 Real image type zoom finder optical system Expired - Fee Related JP3294341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28706592A JP3294341B2 (en) 1992-10-02 1992-10-02 Real image type zoom finder optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28706592A JP3294341B2 (en) 1992-10-02 1992-10-02 Real image type zoom finder optical system

Publications (2)

Publication Number Publication Date
JPH06118303A true JPH06118303A (en) 1994-04-28
JP3294341B2 JP3294341B2 (en) 2002-06-24

Family

ID=17712602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28706592A Expired - Fee Related JP3294341B2 (en) 1992-10-02 1992-10-02 Real image type zoom finder optical system

Country Status (1)

Country Link
JP (1) JP3294341B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701199A (en) * 1995-06-01 1997-12-23 Olympus Optical Co., Ltd. Real image mode variable magnification finder optical system
US5815312A (en) * 1995-03-14 1998-09-29 Azusa Patent Office Real image type finder
US5920427A (en) * 1995-03-03 1999-07-06 Olympus Optical Co., Ltd. Keplerian variable magnification finder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920427A (en) * 1995-03-03 1999-07-06 Olympus Optical Co., Ltd. Keplerian variable magnification finder
US5815312A (en) * 1995-03-14 1998-09-29 Azusa Patent Office Real image type finder
US5701199A (en) * 1995-06-01 1997-12-23 Olympus Optical Co., Ltd. Real image mode variable magnification finder optical system

Also Published As

Publication number Publication date
JP3294341B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
JP3365780B2 (en) Real image type zoom finder optical system
US6671103B2 (en) Zoom lens and optical apparatus using the same
JP3035830B2 (en) Zoom lens
JP3822268B2 (en) Zoom lens
US4992809A (en) Zoom finder system
JP2596755B2 (en) Focusing system with two focal length switching type lens system
JP3387524B2 (en) Variable magnification finder optical system
JPH075361A (en) Zoom lens
JP3064337B2 (en) Real image type variable magnification finder optical system
JPH08327907A (en) Zoom lens
JPS6361641B2 (en)
JP2008083125A (en) Zoom lens and imaging apparatus using the same
CN118519260A (en) Optical system and optical apparatus
JP4444625B2 (en) Zoom lens and imaging apparatus having the same
JP4630581B2 (en) Zoom lens and imaging apparatus having the same
JPH09197276A (en) Superwide angle variable power finder
JP3506796B2 (en) Real image type zoom finder
JP3288436B2 (en) Real image type zoom finder
JP2533779B2 (en) Zoom lens
JPH0854562A (en) Variable power finder
JPH08327901A (en) Variable-magnification finder
JP2014048312A (en) Image capturing device
JPH0784184A (en) Real image type variable power finder optical system
JP2958124B2 (en) Real image type variable magnification finder optical system
JPH09159917A (en) Rear focus type zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020319

LAPS Cancellation because of no payment of annual fees