JPH06118107A - Production of electric field sensor - Google Patents

Production of electric field sensor

Info

Publication number
JPH06118107A
JPH06118107A JP29091892A JP29091892A JPH06118107A JP H06118107 A JPH06118107 A JP H06118107A JP 29091892 A JP29091892 A JP 29091892A JP 29091892 A JP29091892 A JP 29091892A JP H06118107 A JPH06118107 A JP H06118107A
Authority
JP
Japan
Prior art keywords
electric field
field sensor
polymer film
integrated circuit
functional film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29091892A
Other languages
Japanese (ja)
Other versions
JP2819488B2 (en
Inventor
Tadao Nagatsuma
忠夫 永妻
Michiyuki Amano
道之 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4290918A priority Critical patent/JP2819488B2/en
Publication of JPH06118107A publication Critical patent/JPH06118107A/en
Application granted granted Critical
Publication of JP2819488B2 publication Critical patent/JP2819488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the surface of an electric field sensor for testing an integrated circuit by electro-optical sampling uniform and clean and to detect the vertical electric field in the integrated circuit. CONSTITUTION:A polymer film 1 is formed on a silicon substrate 3 whose surface is treated with a silane coupling agent and a support material 2 is formed on the polymer film 1. High voltage is applied across the silicon substrate 3 and the support material 2 while the support material 2 is heated to temp. equal to or higher than the transition point of the polymer film 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、集積回路の回路試験
用の電界センサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electric field sensor for testing a circuit of an integrated circuit.

【0002】[0002]

【従来の技術】集積回路(IC)の評価および試験を非
接触で行う手段として、電気光学材料を電界測定のため
のセンサに用いる方法が知られている。すなわち、電界
によって複屈折率が変わるという材料の性質を利用する
もので、この材料にレーザ光を照射すると、電界の大き
さに応じて照射した光の直交する2つの方向の振動成分
の位相差、すなわち偏光状態が変化する。通常この偏光
変化は、ある適当な軸方向に設定された偏光板を通すこ
とによって、レーザ光の強度変化に変換できる。レーザ
光にパルス波を用いれば、時間的に変化する電界、すな
わちICの電極に電極に流れる電気信号の時間変化をパ
ルス幅に相当する分解能で測定でき、このことは電気光
学サンプリングと呼ばれている。中でも、図4に示すよ
うに、薄板状の電気光学材料5を被測定集積回路チップ
6に張り合わせて、その回路の金属配線7からの洩れ電
界をその材料に結合させ、この電界の強度変化に応じた
レーザ光8の反射光の偏光変化を検出する方法が最も汎
用的で簡便な方法である。
2. Description of the Related Art As a means for contactless evaluation and testing of an integrated circuit (IC), a method using an electro-optical material as a sensor for measuring an electric field is known. That is, it utilizes the property of a material that the birefringence changes depending on the electric field. When this material is irradiated with laser light, the phase difference between the vibration components in two orthogonal directions of the irradiated light depends on the magnitude of the electric field. That is, the polarization state changes. Usually, this polarization change can be converted into a laser light intensity change by passing through a polarizing plate set in a certain suitable axial direction. If a pulse wave is used for the laser light, a time-varying electric field, that is, a time-varying electric signal flowing through the electrodes of the IC can be measured with a resolution equivalent to the pulse width. This is called electro-optic sampling. There is. Above all, as shown in FIG. 4, a thin plate-shaped electro-optical material 5 is attached to an integrated circuit chip 6 to be measured, and a leakage electric field from the metal wiring 7 of the circuit is coupled to the material, so that a change in the strength of this electric field is caused. The most versatile and simple method is to detect the polarization change of the reflected light of the corresponding laser light 8.

【0003】近年、このような電気光学材料として、有
機非線形光学ポリマー(以後、ポールドポリマーと呼
ぶ)が、感度,擾乱,応答性などの点で注目され、活発
な研究が進められている。従来、このポールドポリマー
を用いた電界センサとしては、図5あるいは図6に示す
構造のものが代表的である(例えば、Electronics Lett
ers,Vol.27,No.11pp932-934,1991,Applied Physics Let
ters,Vol.59, No.10,pp.1159-1161 1991)。図5は、支
持材としてのフレキシブルなポリイミドフィルム9にポ
ールドポリマーを塗布してポリマー膜1を形成し、その
後、そのポリマー膜1のガラス転移点温度以上の環境温
度下で、電極4に挾んで高電場を印加することにより分
極処理することにより作成される。一方、図6では、ガ
ラス基板10上にポールドポリマーを塗布してポリマー
膜1を形成した後、その上に金属の薄膜電極4aを作
る。その後、ガラス転移点温度以上で、薄膜電極4a間
に電場を印加して同様に分極処理を行い、その後金属電
極をエッチングなどにより取り除く。上記のセンサは、
いずれもポリマー膜1側を集積回路に向けて張り付けて
使用される。
In recent years, as such an electro-optical material, an organic nonlinear optical polymer (hereinafter referred to as a poled polymer) has been attracting attention in terms of sensitivity, disturbance, responsiveness, etc., and active research has been advanced. Conventionally, as an electric field sensor using this poled polymer, one having a structure shown in FIG. 5 or 6 has been representative (for example, Electronics Lett.
ers, Vol.27, No.11pp932-934,1991, Applied Physics Let
ters, Vol.59, No.10, pp.1159-1161 1991). In FIG. 5, a poled polymer is applied to a flexible polyimide film 9 as a supporting material to form a polymer film 1, and then the electrode 4 is sandwiched under an environmental temperature higher than the glass transition temperature of the polymer film 1. It is created by polarization treatment by applying a high electric field. On the other hand, in FIG. 6, after the poled polymer is applied on the glass substrate 10 to form the polymer film 1, the metal thin film electrode 4a is formed thereon. Then, at the glass transition temperature or higher, an electric field is applied between the thin film electrodes 4a to similarly perform polarization treatment, and thereafter the metal electrode is removed by etching or the like. The sensor above
Both are used by sticking the polymer film 1 side toward the integrated circuit.

【0004】[0004]

【発明が解決しようとする課題】従来は、以上のように
なされていたので、以下のような問題点を有していた。
まず第1に、集積回路表面に張り合わされる側のセンサ
表面が、製造工程の段階において、汚れや凹凸などの損
傷を受け易いことである。図5の方法では、電極4で挾
んで電場を印加する際に、電極4の表面凹凸がポリマー
膜1の表面に転写されることがある。通常、電場を印加
する場合には、ポリマー膜の温度をガラス転移点以上に
上昇させるため、ポリマー膜はかなり柔らかい状態にあ
り、圧着された電極の表面の影響を受け易い。
The above-mentioned problems have been encountered in the prior art because of the above-mentioned problems.
First, the surface of the sensor that is attached to the surface of the integrated circuit is susceptible to damage such as dirt and irregularities during the manufacturing process. In the method of FIG. 5, when the electrode 4 is sandwiched and an electric field is applied, the surface irregularities of the electrode 4 may be transferred to the surface of the polymer film 1. Normally, when an electric field is applied, the temperature of the polymer film is raised above the glass transition point, so that the polymer film is in a fairly soft state and is easily affected by the surface of the pressure-bonded electrode.

【0005】また、図6の方法においては、より一般の
集積回路に適用するためには、分極処理後にウエットあ
るいはドライエッチングによって電極を取り除く必要が
あるが、完全に金属薄膜が除去できなかったり、ポリマ
ー表面がダメージを受けて凹凸を生じる可能性が高い。
このような凹凸があると、レーザ光を照射した場合に、
光が拡散され、反射光の光量が減少して感度が低下す
る。また、測定点によって、反射光の光量が変わるた
め、異なる測定点で得られたデータの比較が困難にな
る。更に、この凹凸によって、被測定集積回路とポリマ
ー膜との間隔が場所的に変化すると、ポリマー膜に結合
する信号電界の量が変化するため、上記同様に異なる測
定点で得られたデータの比較が困難になる。
Further, in the method of FIG. 6, in order to apply to a more general integrated circuit, it is necessary to remove the electrode by wet or dry etching after the polarization treatment, but the metal thin film cannot be completely removed, There is a high possibility that the polymer surface will be damaged and produce irregularities.
If there is such unevenness, when irradiated with laser light,
Light is diffused, the amount of reflected light is reduced, and the sensitivity is reduced. Further, since the amount of reflected light changes depending on the measurement point, it becomes difficult to compare data obtained at different measurement points. Furthermore, if the distance between the measured integrated circuit and the polymer film changes spatially due to this unevenness, the amount of the signal electric field that couples to the polymer film changes, so comparison of the data obtained at different measurement points as above. Becomes difficult.

【0006】第2の問題点として、図6に示すように高
電圧を印加する方法では、電極近傍ではポリマー膜表面
に垂直に分極処理がされ、電極間ではポリマー膜と平行
に分極処理がなされ、分極方向の場所的な不均一が生じ
ることが挙げられる。すなわち、電極近傍のポリマー膜
は、集積回路内の電界で集積回路基板と垂直な縦電界を
検出し、一方、電極間の領域は横電界を検出することに
なる。一般の集積回路の測定では、空間分解能を得るた
めに、縦方向の電界のみを検出することが不可欠であ
り、図6の方法による製造では、製造したセンサ領域の
一部しか使えない。
As a second problem, in the method of applying a high voltage as shown in FIG. 6, polarization treatment is performed perpendicularly to the polymer film surface in the vicinity of the electrodes, and between the electrodes is performed in parallel with the polymer film. The local non-uniformity of the polarization direction may occur. That is, the polymer film near the electrodes detects a vertical electric field perpendicular to the integrated circuit substrate by the electric field in the integrated circuit, while the area between the electrodes detects a lateral electric field. In the measurement of a general integrated circuit, it is indispensable to detect only the electric field in the vertical direction in order to obtain the spatial resolution, and in the manufacturing by the method of FIG. 6, only a part of the manufactured sensor region can be used.

【0007】この発明は、以上のような問題点を解消す
るためになされたものであり、電気光学サンプリングに
よる集積回路の回路試験用の電界センサにおいて、その
表面が凹凸がなく清浄で、集積回路内の縦電界を検出す
ることができるようにすることを目的とする。
The present invention has been made in order to solve the above problems, and in an electric field sensor for circuit testing of an integrated circuit by electro-optical sampling, its surface is clean without unevenness, and the integrated circuit is clean. The purpose is to be able to detect the longitudinal electric field inside.

【0008】[0008]

【課題を解決するための手段】この発明は、2次非線形
性能が大きい有機高分子材料を含む機能膜を導電性を有
し表面が平らな基板上に形成する工程と、機能膜上にこ
の機能膜を膜として保持するための支持材を形成する工
程と、機能膜と支持材が形成された基板を機能膜のガラ
ス転移点以上の温度に加熱し、支持材と基板の間に高い
直流電圧を印加して、機能膜を垂直方向に分極処理する
工程とを有することを特徴とする。また、機能膜をこの
機能膜が剥がれ易くなるような処理を表面に施した基板
上に形成することを特徴とする。
According to the present invention, there is provided a process of forming a functional film containing an organic polymer material having a large second-order nonlinear performance on a substrate having conductivity and a flat surface, and a step of forming the functional film on the functional film. The step of forming a supporting material for holding the functional film as a film, and heating the substrate on which the functional film and the supporting material are formed to a temperature not lower than the glass transition point of the functional film, and applying a high direct current between the supporting material and the substrate. A step of applying a voltage to polarize the functional film in the vertical direction. Further, it is characterized in that the functional film is formed on a substrate whose surface is treated so that the functional film is easily peeled off.

【0009】[0009]

【作用】被測定対象と接する面が清浄で平坦な状態のま
ま、電界センサを製造できる。
The electric field sensor can be manufactured while the surface in contact with the object to be measured is clean and flat.

【0010】[0010]

【実施例】以下、この発明の1実施例を図を参照して説
明する。図1から図3は、この発明の実施例を示す説明
図である。図において、1は以下の化1に示す有機非線
形光学材料であるアゾ化合物を高分子材料であるアクリ
ル酸エステル系樹脂に分散,結合させ合成した、以下の
化2に示す材料からなるポリマー膜、2はアクリル樹脂
からなる支持材、3はシランカップリング材で表面処理
したシリコン基板、4は高電圧を印加する金属の板から
なる電極板である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 to 3 are explanatory views showing an embodiment of the present invention. In the figure, 1 is a polymer film made of the material shown in the following chemical formula 2 synthesized by dispersing and binding the azo compound which is the organic nonlinear optical material shown in the following chemical formula 1 to an acrylic ester resin which is a polymer material, Reference numeral 2 is a support material made of acrylic resin, 3 is a silicon substrate surface-treated with a silane coupling material, and 4 is an electrode plate made of a metal plate to which a high voltage is applied.

【0011】[0011]

【化1】 [Chemical 1]

【0012】[0012]

【化2】 [Chemical 2]

【0013】前述の有機非線形光学材料としては化1に
示すようなアゾ化合物に限るものではなく、メチルニト
ロアミン(MNA)など2次光非線形性能が大きい材料
なら良い。
The above-mentioned organic nonlinear optical material is not limited to the azo compound shown in Chemical formula 1, but any material having a large second-order optical nonlinear performance such as methylnitroamine (MNA) may be used.

【0014】つぎに、電界センサの製造方法を説明す
る。まず、図1に示すように、シリコン基板3上にポリ
マー膜1を膜厚20μm程度,支持材2を膜厚20〜3
0μm程度、それぞれスピンコート法で一様に塗布する
ことにより形成する。次に、図2に示すように、ポリマ
ー膜1と支持材2との膜が形成されたシリコン基板3を
電極板4で挾み、これらをポリマー膜1のガラス転移点
温度以上である120〜150℃に加熱し、電極4に2
000Vの直流電圧を印加して、ポリマー膜1の分極処
理を行う。この直流電圧はポリマー膜1の膜厚1μm当
たり50〜100Vに相当する。分極処理は、直流電圧
を印加した後、電圧を印加したままの状態で、加熱を停
止し室温下に放置して室温とすることで分極状態を凍結
させて終了とする。最後に、分極処理を終了したポリマ
ー膜1と基材2を、シリコン基板3から剥して電界セン
サとする。
Next, a method of manufacturing the electric field sensor will be described. First, as shown in FIG. 1, a polymer film 1 having a thickness of about 20 μm and a support material 2 having a thickness of 20 to 3 are formed on a silicon substrate 3.
It is formed by uniformly applying a spin coat method to a thickness of about 0 μm. Next, as shown in FIG. 2, the silicon substrate 3 on which the film of the polymer film 1 and the support material 2 is formed is sandwiched by the electrode plates 4, and these are heated to a temperature not lower than the glass transition point of the polymer film 120. Heat to 150 ° C and apply 2 to electrode 4.
The polymer film 1 is polarized by applying a DC voltage of 000V. This DC voltage corresponds to 50 to 100 V per 1 μm of the thickness of the polymer film 1. The polarization process is terminated by freezing the polarization state by applying a DC voltage and then stopping the heating and leaving it at room temperature while keeping the voltage applied. Finally, the polymer film 1 and the base material 2 that have been polarized are peeled from the silicon substrate 3 to form an electric field sensor.

【0015】この電界センサを適当な大きさにカットし
て、被測定対象である集積回路チップ上に張り付け、こ
の上よりレーザ光を照射することにより、その集積回路
チップの評価および試験を行う。レーザ光は、集積回路
チップの測定したい配線電極上にスポット照射する。垂
直方向に分極処理がされているポリマー膜は、集積回路
チップの電極による縦方向の電界の変化に対して敏感に
複屈折率が変化するので、この複屈折率が変化した状態
を、照射したレーザ光の反射した光の偏光変化を検出す
ることにより、集積回路チップ内の電気信号の評価,試
験が可能となる。この電界センサを集積回路チップへ張
り付ける方法としては、例えば、紫外線硬化樹脂をポリ
マー膜表面に塗布し、これを集積回路チップ上に載置
し、この上をガラスなどで抑えながら位置決めをし、そ
の後ガラスを介して紫外線を照射して紫外線硬化樹脂を
硬化させて固定する。
The electric field sensor is cut into an appropriate size, attached to an integrated circuit chip to be measured, and irradiated with laser light to evaluate and test the integrated circuit chip. The laser light is spot-irradiated on the wiring electrode to be measured of the integrated circuit chip. The birefringence of the vertically polarized polymer film is sensitive to changes in the vertical electric field due to the electrodes of the integrated circuit chip. By detecting the polarization change of the reflected light of the laser light, it is possible to evaluate and test the electric signal in the integrated circuit chip. As a method of sticking this electric field sensor to the integrated circuit chip, for example, an ultraviolet curable resin is applied to the surface of the polymer film, and this is placed on the integrated circuit chip, and positioning is performed while holding the top with glass or the like. Then, ultraviolet rays are radiated through the glass to cure and fix the ultraviolet curable resin.

【0016】なお、上記実施例では分極処理のために印
加する直流電圧を電極板4により印加したが、これに限
るものではなく、シリコン基板3の代わりに、平滑なガ
ラス基板に薄い金属膜を蒸着したものの上に、ポリマー
膜と支持材を形成し、この支持材の上に蒸着により金属
膜を形成して、これらを電極としても良い。これによ
り、電圧を印加する電極と支持材がより密着し、ポリマ
ー膜により均一に、かつ効果的に電場が印加できるよう
になり、感度の向上が期待でき、その感度を均一にする
ことができる。支持材の上に蒸着した電極は、分極処理
の後にエッチングにより取り除けば良い。図6に示した
従来例のように、非線形光学材料であるポリマー膜の表
面に電極を形成する場合に比較して、電極の残存やエッ
チングによる支持材表面のダメージは、測定上大きな問
題にはならない。
Although the DC voltage applied for the polarization treatment is applied by the electrode plate 4 in the above embodiment, the present invention is not limited to this, and instead of the silicon substrate 3, a thin glass film is formed on a smooth glass substrate. A polymer film and a support material may be formed on the vapor-deposited material, and a metal film may be formed on the support material by vapor deposition to use these as electrodes. As a result, the electrode to which a voltage is applied and the support material are in closer contact with each other, and the electric field can be more uniformly and effectively applied to the polymer film, and the sensitivity can be expected to be improved and the sensitivity can be made uniform. . The electrode deposited on the support material may be removed by etching after the polarization treatment. Compared to the case where an electrode is formed on the surface of a polymer film which is a non-linear optical material as in the conventional example shown in FIG. 6, the remaining electrode or the damage to the surface of the support material due to etching is not a major problem in measurement. I won't.

【0017】また、分極処理をした後、支持材の上に接
着剤でプラスチックやガラスなどの固い透明基板を張り
付け、電界センサを基板より剥してもよい。柔らかい電
界センサが固い透明基板に支持されていることで、電界
センサの取扱いが容易になり、被測定対象である集積回
路チップに電界センサを張り付ける作業が容易になる。
また、このように固い透明基板で電界センサを支持する
ことで、電界センサを集積回路チップに固定するとき
に、接着剤を使用せずに、光学用のオイル(イマージョ
ンオイルなど)を介して集積回路チップにおくだけで、
電界センサのポリマー膜表面と集積回路チップの回路面
とに均一な微小間隔を設けることが可能である。
After the polarization treatment, a solid transparent substrate such as plastic or glass may be attached to the support material with an adhesive and the electric field sensor may be peeled off from the substrate. Since the soft electric field sensor is supported by the hard transparent substrate, the electric field sensor can be easily handled, and the work of attaching the electric field sensor to the integrated circuit chip that is the object to be measured becomes easy.
In addition, by supporting the electric field sensor with such a solid transparent substrate, when fixing the electric field sensor to the integrated circuit chip, it is possible to integrate the electric field sensor through an optical oil (such as immersion oil) without using an adhesive. Just put it on the circuit chip,
It is possible to provide a uniform minute gap between the polymer film surface of the electric field sensor and the circuit surface of the integrated circuit chip.

【0018】[0018]

【発明の効果】以上説明したように、この発明では平滑
で清浄な表面を有し、全ての領域で縦方向の電界を検出
することが可能な、電気光学サンプリングによる集積回
路試験用の電界センサが得られる。従って、電界センサ
の膜表面における光の散乱がなくなり、測定対象回路と
の密着性が良くなって回路の電極の電界がこの電界セン
サに効率よく結合するようになるので、感度が向上する
という効果がある。更に、空間的に一様な感度が得られ
るので、異なる測定点での測定結果の比較が可能とな
る。
As described above, according to the present invention, the electric field sensor for integrated circuit testing by electro-optical sampling, which has a smooth and clean surface and can detect the electric field in the vertical direction in all regions. Is obtained. Therefore, the scattering of light on the film surface of the electric field sensor is eliminated, the adhesiveness with the circuit to be measured is improved, and the electric field of the electrode of the circuit is efficiently coupled to this electric field sensor, so that the sensitivity is improved. There is. Further, since the spatially uniform sensitivity is obtained, it is possible to compare the measurement results at different measurement points.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の1実施例である製造方法の工程途中
の製品の断面を示す断面図である。
FIG. 1 is a cross-sectional view showing a cross section of a product in the process of a manufacturing method according to an embodiment of the present invention.

【図2】図1に続く、この発明の1実施例である製造方
法の工程途中の製品の断面を示す断面図である。
FIG. 2 is a cross-sectional view showing the cross section of the product in the process of the manufacturing method which is one embodiment of the present invention, following FIG.

【図3】図2に続く、この発明の1実施例である製造方
法の工程途中の製品の断面を示す断面図である。
FIG. 3 is a cross-sectional view showing the cross section of the product which is in the process of being manufactured, which is one embodiment of the present invention, following FIG. 2;

【図4】電界センサによる集積回路の金属配線上の電気
信号の試験状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a test state of an electric signal on a metal wiring of an integrated circuit by an electric field sensor.

【図5】従来の電界センサの製造途中の状態を示す断面
図である。
FIG. 5 is a cross-sectional view showing a state in the middle of manufacturing a conventional electric field sensor.

【図6】従来の電界センサの製造途中の状態を示す断面
図である。
FIG. 6 is a cross-sectional view showing a state in the process of manufacturing a conventional electric field sensor.

【符号の説明】[Explanation of symbols]

1 ポリマー膜 2 支持材 3 シリコン基板 4 電極 1 polymer film 2 support 3 silicon substrate 4 electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2次非線形性能が大きい有機高分子材料
を含む機能膜を導電性を有し表面が平らな基板上に形成
する工程と、 前記機能膜上にこの機能膜を膜として保持するための透
明な支持材を形成する工程と、 前記機能膜と支持材が形成された基板を前記機能膜のガ
ラス転移点以上の温度に加熱し、前記支持材と基板の間
に高い直流電圧を印加して、前記機能膜を垂直方向に分
極処理する工程とを有することを特徴とする電界センサ
の製造方法。
1. A step of forming a functional film containing an organic polymer material having a large second-order nonlinear performance on a substrate having conductivity and a flat surface, and holding the functional film as a film on the functional film. A step of forming a transparent support material for, the substrate on which the functional film and the support material is formed is heated to a temperature not lower than the glass transition point of the functional film, and a high DC voltage is applied between the support material and the substrate. And a step of vertically polarizing the functional film.
【請求項2】 請求項1記載の電界センサの製造方法に
おいて、 前記機能膜をこの機能膜が剥がれ易くなるような処理を
表面に施した前記基板上に形成する工程を有することを
特徴とする電界センサの製造方法。
2. The method for manufacturing an electric field sensor according to claim 1, further comprising the step of forming the functional film on the substrate whose surface is subjected to a treatment for facilitating peeling of the functional film. Manufacturing method of electric field sensor.
JP4290918A 1992-10-06 1992-10-06 Method for manufacturing electric field sensor Expired - Lifetime JP2819488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290918A JP2819488B2 (en) 1992-10-06 1992-10-06 Method for manufacturing electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290918A JP2819488B2 (en) 1992-10-06 1992-10-06 Method for manufacturing electric field sensor

Publications (2)

Publication Number Publication Date
JPH06118107A true JPH06118107A (en) 1994-04-28
JP2819488B2 JP2819488B2 (en) 1998-10-30

Family

ID=17762199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290918A Expired - Lifetime JP2819488B2 (en) 1992-10-06 1992-10-06 Method for manufacturing electric field sensor

Country Status (1)

Country Link
JP (1) JP2819488B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418067C1 (en) * 1994-05-24 1996-01-25 Fraunhofer Ges Forschung Process for the preparation of metal hydroxides and / or metal oxide hydroxides
CN103675481A (en) * 2013-10-18 2014-03-26 中国科学院电子学研究所 Piezoelectric cantilever beam type mini electric field sensor
CN113063995A (en) * 2021-03-16 2021-07-02 中国海洋大学 Carbon-based conductive polymer film underwater electric field sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165614A (en) * 1987-11-16 1989-06-29 Hoechst Celanese Corp Acrylic copolymer showing non-linear optical response
JPH02113210A (en) * 1988-09-08 1990-04-25 Baale & Sutoraudo Ltd Integrated optical circuit part
JPH03194521A (en) * 1989-11-27 1991-08-26 Dow Chem Co:The Nonlinear optical material
JPH047525A (en) * 1990-04-26 1992-01-10 Sumitomo Electric Ind Ltd Production of nonlinear high-polymer material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165614A (en) * 1987-11-16 1989-06-29 Hoechst Celanese Corp Acrylic copolymer showing non-linear optical response
JPH02113210A (en) * 1988-09-08 1990-04-25 Baale & Sutoraudo Ltd Integrated optical circuit part
JPH03194521A (en) * 1989-11-27 1991-08-26 Dow Chem Co:The Nonlinear optical material
JPH047525A (en) * 1990-04-26 1992-01-10 Sumitomo Electric Ind Ltd Production of nonlinear high-polymer material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418067C1 (en) * 1994-05-24 1996-01-25 Fraunhofer Ges Forschung Process for the preparation of metal hydroxides and / or metal oxide hydroxides
CN103675481A (en) * 2013-10-18 2014-03-26 中国科学院电子学研究所 Piezoelectric cantilever beam type mini electric field sensor
CN113063995A (en) * 2021-03-16 2021-07-02 中国海洋大学 Carbon-based conductive polymer film underwater electric field sensor
CN113063995B (en) * 2021-03-16 2022-12-16 中国海洋大学 Carbon-based conductive polymer film underwater electric field sensor

Also Published As

Publication number Publication date
JP2819488B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
Zeng et al. Nanoscale ferroelectric characterization with heterodyne megasonic piezoresponse force microscopy
JPH06118107A (en) Production of electric field sensor
Kalluri et al. Simple two‐slit interference electro‐optic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films
JPH0854425A (en) Electro-optical sensor device
KR20110066052A (en) Method of fabricating alignment layer of liquid crystal display device and testing thereof
JP6667001B2 (en) Apparatus and method for measuring small displacement
JP2685425B2 (en) Liquid crystal element evaluation method
Cao et al. Electric Poling of 4-(Dimethylamino)-4 ‘-nitrostilbene in Poly (methyl methacrylate) Studied by Polarized Absorption Spectroscopy
US5750981A (en) Non-contact electro-optic detection of photovoltages created in a semiconductor by a probe beam
Tatsuura et al. Electro‐optic polymer waveguide fabricated using electric‐field‐assisted chemical vapor deposition
JP2596865B2 (en) Electric field sensor for circuit testing
Torres-Zúñiga et al. Monitoring molecular orientational order in NLO push–pull based polymeric films via photoacoustic measurements
Ziari et al. Novel electro-optic measurement technique for coplanar electrode-poled polymers
Kozanecka-Szmigiel et al. Electro-optic activity of an azopolymer achieved via poling with the aid of silicon nitride insulating layer
JPH01316632A (en) Device and method for evaluating mechanical property of thin film
KR20010083905A (en) Improving multi-chip module testability using poled-polymer interlayer dielectrics
KR100877216B1 (en) X-ray Detection Liquid Crystal Device and Method for Manufacturing the Same
JP2883593B2 (en) Liquid crystal device evaluation device
JPH1010047A (en) Method of analyzing interface
Kima et al. Electrically aligned photo-polymer films for liquid crystal alignment
JP2000009528A (en) Method and device for measuring distribution of interference wave in ultrasonic tank
Tang et al. Novel poling and electro-optic measurement methods of cladded nonlinear-optical polymer films
Yankelevich et al. Reflection-mode polymeric interference modulators
Mechtel et al. The development of poled polyimide dielectric layers for simultaneous testing and light guiding applications in MCM-Ds
JPH04264746A (en) Circuit-testing method for integrated circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070828

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080828

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090828

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100828

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100828

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110828

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130828

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 15