JPH06118052A - Ion selective electrode - Google Patents

Ion selective electrode

Info

Publication number
JPH06118052A
JPH06118052A JP4264582A JP26458292A JPH06118052A JP H06118052 A JPH06118052 A JP H06118052A JP 4264582 A JP4264582 A JP 4264582A JP 26458292 A JP26458292 A JP 26458292A JP H06118052 A JPH06118052 A JP H06118052A
Authority
JP
Japan
Prior art keywords
ion
electrode
intermediate layer
polymer
selective electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4264582A
Other languages
Japanese (ja)
Inventor
Kotaro Yamashita
浩太郎 山下
Osamu Ozawa
理 小沢
Yuji Miyahara
裕二 宮原
Yoshio Watanabe
▲吉▼雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4264582A priority Critical patent/JPH06118052A/en
Publication of JPH06118052A publication Critical patent/JPH06118052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To provide an ion selective electrode capable of holding electrode performance for a long term by providing an intermediate layer between an ion sensitive film having a polymer material as a support film and an internal electrode arranged in a vessel having the ion sensitive film provided thereon. CONSTITUTION:In the center of an electrode vessel 1, an ion sensitive film 4 is fixed along a passage 4 for living body fluid. An intermediate layer 6 formed of a polymer ion conductor is put between the ion sensitive film 4 and an internal electrode 3 of silver/silver salt. The content of the polymer ion conductor is preferably 50-80wt.% from the viewpoint of workability. Since polyalkyl oxide is liquefied when polymerization degree is less than 400, and solidified with 1000 or more, the polymerization degree is preferably 1000 or more. From the view point of the strength as the intermediate layer, the thickness is preferably 1mum or more. Since no internal solution is present, an ion selective electrode excellent in long-term stability, improved in precision, and having high reliability can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体液中のイオン分析
に使用する上で好適なイオン選択性電極に関する。
FIELD OF THE INVENTION The present invention relates to an ion-selective electrode suitable for use in ion analysis in biological fluids.

【0002】[0002]

【従来の技術】イオン選択性電極は液中の特定のイオン
の濃度を選択的に定量できるという特徴があり、特定イ
オンの濃度モニタ,水質分析などの広い分野において使
用されてきた。特に、医療分野では血液や尿などの生体
液に含まれるイオン、例えば塩素イオン,カリウムイオ
ンなどの定量に応用されている。これは、生体液中の特
定のイオン濃度が生体の代謝反応と密接な関係にあるこ
とに基づいており、イオン濃度を測定することにより、
高血圧症状,腎疾患,神経障症害などの種々の診断を行
なうものである。
2. Description of the Related Art Ion-selective electrodes are characterized by being able to selectively quantify the concentration of specific ions in a liquid, and have been used in a wide range of fields such as concentration monitoring of specific ions and water quality analysis. Particularly, in the medical field, it is applied to the quantification of ions contained in biological fluids such as blood and urine, for example, chlorine ions and potassium ions. This is based on the fact that the specific ion concentration in the biological fluid is closely related to the metabolic reaction of the living body, and by measuring the ion concentration,
It makes various diagnoses of hypertension, renal disease, and neuropathic damage.

【0003】陰イオン選択性電極の場合には対象とする
陰イオンの活量aと陰イオン選択性電極が示す電位Eと
の間には以下の数1のように、活量aの対数と電位の変
化とが比例する関係が成立し、電位の測定値から目的と
するイオンの活量が簡単に計算できるからである。
In the case of an anion-selective electrode, the logarithm of the activity a is obtained between the activity a of the anion of interest and the potential E indicated by the anion-selective electrode as shown in the following mathematical formula 1. This is because the relationship proportional to the change in the potential is established, and the activity of the target ion can be easily calculated from the measured value of the potential.

【0004】[0004]

【数1】 E=E°+2.303(RT/ZF)loga …(数1) 数1においてRは気体定数、Tは絶対温度、Zはイオン
価、Fはファラデー定数、E°は系の標準電極電位であ
る。このようにイオン選択性電極を用いれば、電位を測
定するだけで広い濃度範囲でのイオンの定量が可能とな
る。
[Equation 1] E = E ° + 2.303 (RT / ZF) loga (Equation 1) In Equation 1, R is a gas constant, T is an absolute temperature, Z is an ionic valence, F is a Faraday constant, and E ° is a system. Standard electrode potential. By using the ion-selective electrode in this manner, it is possible to quantify ions in a wide concentration range simply by measuring the potential.

【0005】一般に、イオン選択性電極は図1に示すよ
うに電極容器1には内部溶液2を満たし、この内部溶液
2に銀/塩化銀の内部電極3を浸し、電極容器1の中央
には生体液の流路5に沿ってイオン感応膜4を固定して
ある。従来のイオン選択性電極では、イオン感応膜と内
部電極との導電をつかさどる内部溶液として支持電解質
を含む寒天ゲルが用いられている。
In general, an ion selective electrode is filled with an inner solution 2 in an electrode container 1 as shown in FIG. 1, and an inner electrode 3 of silver / silver chloride is dipped in the inner solution 2 so that the center of the electrode container 1 is The ion sensitive membrane 4 is fixed along the flow path 5 of the biological fluid. In the conventional ion-selective electrode, an agar gel containing a supporting electrolyte is used as an internal solution that controls conductivity between the ion-sensitive membrane and the internal electrode.

【0006】[0006]

【発明が解決しようとする課題】一般に、高分子支持膜
型イオン選択性電極は、イオン感応膜と内部電極と内部
溶液とこれらを収容する容器から構成される。内部溶液
には支持電解質を含む寒天ゲルが用いられるため容器か
らの液漏れの心配が少ない。しかし、従来技術を用いた
イオン電極では長期間の使用中に寒天ゲル内部の水分子
が徐々に気化するため、長期間にわたる安定性が低下す
る。
Generally, a polymer-supported membrane-type ion-selective electrode comprises an ion-sensitive membrane, an internal electrode, an internal solution, and a container for containing these. Since an agar gel containing a supporting electrolyte is used as the internal solution, there is little risk of liquid leakage from the container. However, in the ion electrode using the conventional technique, the water molecules inside the agar gel are gradually vaporized during long-term use, so that the long-term stability is reduced.

【0007】発明の目的は、実用的に使用する上で長期
的に電極性能が維持されるイオン選択性電極を提供する
ことにある。
An object of the present invention is to provide an ion-selective electrode whose electrode performance is maintained for a long term in practical use.

【0008】[0008]

【課題を解決するための手段】上記目的は、イオン感応
膜と内部電極と内部溶液とこれらを収容する容器から構
成されるイオン選択性電極において、内部溶液として無
機塩を含む高分子イオン導電体をイオン感応膜と内部電
極の中間層として用いることにより達成される。
The above object is to provide a polymer ion conductor containing an inorganic salt as an internal solution in an ion-selective electrode composed of an ion-sensitive membrane, an internal electrode, an internal solution and a container for containing these. Is used as an intermediate layer between the ion-sensitive film and the internal electrode.

【0009】本発明の中間層の主構成成分の一つは高分
子イオン導電体であり、特に限定されずに公知のものを
用いうる。本発明で好適に使用される高分子イオン導電
体を一般式で以下に示す。
One of the main constituent components of the intermediate layer of the present invention is a polymer ionic conductor, and known ones can be used without particular limitation. The polymer ionic conductor preferably used in the present invention is shown below by a general formula.

【0010】 ポリアルキルオキサイドPolyalkyl oxide

【0011】[0011]

【化1】 [Chemical 1]

【0012】nは1〜5の整数であり、重合度mは10
〜5,000,000までの値となる。ここでnが2又は
3の時、各々ポリエチレンオキサイド,ポリプロピレン
オキサイドとなる。
N is an integer of 1 to 5, and the degree of polymerization m is 10
The value is up to 5,000,000. Here, when n is 2 or 3, they are polyethylene oxide and polypropylene oxide, respectively.

【0013】 オキシド鎖を持つ高分子化合物Polymer compound having an oxide chain

【0014】[0014]

【化2】 [Chemical 2]

【0015】但し、Rは水素原子またはアルキル基、重
合度lは100以上、nは1〜5の整数、重合度mは1
0〜5,000,000までの値となる。Rで示されるア
ルキル基の炭素数は限定されずいかなるものでも使用で
きるが、一般には炭素数1〜4のものが好適に使用され
る。
However, R is a hydrogen atom or an alkyl group, the degree of polymerization 1 is 100 or more, n is an integer of 1 to 5, and the degree of polymerization m is 1.
The value is from 0 to 5,000,000. The number of carbon atoms of the alkyl group represented by R is not limited and any one can be used, but generally, those having 1 to 4 carbon atoms are preferably used.

【0016】 カルボン酸塩を持つ高分子化合物Polymer Compound Having Carboxylate

【0017】[0017]

【化3】 [Chemical 3]

【0018】但し、Rは水素原子またはアルキル基、重
合度lは100以上の値となる。Rで示されるアルキル
基の炭素数は限定されずいかなるものでも使用できる
が、一般には炭素数1〜4のものが好適に使用される。
Xはアルカリ金属のカチオンである。ここで、Rが水素
原子またはメチル基の場合、各々ポリアクリル酸塩また
はポリメタクリル酸塩となる。
However, R is a hydrogen atom or an alkyl group, and the degree of polymerization 1 is 100 or more. The number of carbon atoms of the alkyl group represented by R is not limited and any one can be used, but generally, those having 1 to 4 carbon atoms are preferably used.
X is an alkali metal cation. Here, when R is a hydrogen atom or a methyl group, it becomes a polyacrylic acid salt or a polymethacrylic acid salt, respectively.

【0019】 スルホン酸塩を持つ高分子化合物Polymer Compound Having Sulfonate

【0020】[0020]

【化4】 [Chemical 4]

【0021】但し、Rは水素原子またはアルキル基、重
合度lは100以上の値となる。Rで示されるアルキル
基の炭素数は限定されずいかなるものでも使用できる
が、一般には炭素数1〜4のものが好適に使用される。
Xはアルカリ金属のカチオンである。ここで、Rが水素
原子の場合、ポリスチレンスルホン酸塩となる。
However, R is a hydrogen atom or an alkyl group, and the degree of polymerization 1 is 100 or more. The number of carbon atoms of the alkyl group represented by R is not limited and any one can be used, but generally, those having 1 to 4 carbon atoms are preferably used.
X is an alkali metal cation. Here, when R is a hydrogen atom, it becomes a polystyrene sulfonate.

【0022】 カルボン酸塩を持つ天然高分子化合物Natural polymer compound having carboxylate

【0023】[0023]

【化5】 [Chemical 5]

【0024】セルビオースのヒドロキシメチル基のヒド
ロキシル基をカルボン酸塩に置換したものである。Xは
アルカリ金属のカチオン、重合度nは1000〜100
00である。
The hydroxyl group of the hydroxymethyl group of cellobiose is replaced with a carboxylate. X is an alkali metal cation, and the degree of polymerization n is 1000 to 100.
00.

【0025】[0025]

【化6】 [Chemical 6]

【0026】マルトースのヒドロキシメチル基のヒドロ
キシル基をカルボン酸塩に置換したものである。Xはア
ルカリ金属のカチオン、重合度nは1000以下であ
る。
The hydroxyl group of the hydroxymethyl group of maltose is replaced with a carboxylate. X is an alkali metal cation, and the degree of polymerization n is 1000 or less.

【0027】[0027]

【作用】本発明におけるイオン感応膜と内部電極の間の
中間層は、アルカリ金属塩を含む高分子イオン導電体か
ら構成される。この高分子はアルカリ金属塩を解離させ
てイオン化し、高分子自身が構成する塩がイオン化する
ことで優れた導電性を示す。また、高分子のセグメント
運動に基づく導電性も示す。両物質とも水溶性であるた
め加工性にも優れており、従来の寒天ゲルのように水分
子を含んでいないため水分子の蒸発による電極性能の低
下が起こりにくい。
The intermediate layer between the ion sensitive film and the internal electrode in the present invention is composed of a polymer ion conductor containing an alkali metal salt. This polymer dissociates an alkali metal salt and ionizes it, and the salt that the polymer itself ionizes shows excellent conductivity. It also exhibits conductivity based on the segmental motion of the polymer. Since both substances are water-soluble, they have excellent processability, and unlike conventional agar gels, since they do not contain water molecules, the deterioration of electrode performance due to evaporation of water molecules does not easily occur.

【0028】[0028]

【実施例】図2は本発明が適用されるイオン選択性電極
の断面図を示す。電極容器1の中央には生体液の流路5
に沿ってイオン感応膜4を固定してある。イオン感応膜
4と銀/銀塩の内部電極3の間に高分子イオン導電体か
ら構成される中間層6を挟んである。高分子イオン導電
体は加工性の点から、含有量は50〜80重量%が適切
である。また、ポリアルキルオキサイドは重合度が40
0以下であると液体となり、1000以上になると固体
状になるので重合度は1000以上が好ましい。中間層
としての強度の点から厚さは1μm以上あることが望ま
しい。
FIG. 2 is a sectional view of an ion selective electrode to which the present invention is applied. In the center of the electrode container 1, there is a flow path 5 for biological fluid.
The ion-sensitive film 4 is fixed along with. An intermediate layer 6 made of a polymer ion conductor is sandwiched between the ion-sensitive film 4 and the silver / silver salt internal electrode 3. From the viewpoint of workability, the content of the polymer ion conductor is preferably 50 to 80% by weight. Further, the polyalkyl oxide has a degree of polymerization of 40.
When it is 0 or less, it becomes a liquid, and when it is 1000 or more, it becomes a solid state. Therefore, the polymerization degree is preferably 1000 or more. From the viewpoint of strength as the intermediate layer, the thickness is preferably 1 μm or more.

【0029】第1の実施例では、高分子イオン導電体と
してポリエチレンオキサイド(化7)を用いて中間層と
した。
In the first embodiment, polyethylene oxide (Chemical Formula 7) was used as the polymer ion conductor to form an intermediate layer.

【0030】[0030]

【化7】 [Chemical 7]

【0031】ナトリウムテトラフェニルボーレートを4
0重量%、ポリエチレンオキサイドを60重量%となる
ように秤量し、蒸留水10ml(ミリリットル)中で撹
拌しながら混合し、乾燥させることで中間層を調製し
た。内部電極には銀/銀テトラフェニルボーレート,イ
オン感応膜にはカリウムイオン感応膜を用いた。
4 sodium tetraphenylborate
An intermediate layer was prepared by weighing 0% by weight and 60% by weight of polyethylene oxide, mixing in 10 ml (ml) of distilled water with stirring, and drying. Silver / silver tetraphenylborate was used for the internal electrodes, and a potassium ion-sensitive film was used for the ion-sensitive film.

【0032】第2の実施例では、高分子イオン導電体と
してポリカルボキシエチレンオキサイド(化8)を用い
て中間層とした。内部電極には銀/銀テトラフェニルボ
ーレート,イオン感応膜にはカリウムイオン感応膜を用
いた。
In the second embodiment, polycarboxyethylene oxide (Chemical Formula 8) was used as the polymer ion conductor to form an intermediate layer. Silver / silver tetraphenylborate was used for the internal electrodes, and a potassium ion-sensitive film was used for the ion-sensitive film.

【0033】[0033]

【化8】 [Chemical 8]

【0034】ナトリウムテトラフェニルボーレートを4
0重量%、ポリカルボキシエチレンオキサイドを60重
量%となるように秤量し、蒸留水10ml中で撹拌しなが
ら混合し、乾燥させることで中間層を調製した。
Add sodium tetraphenylborate to 4
0% by weight and polycarboxyethylene oxide were weighed so as to be 60% by weight, mixed in 10 ml of distilled water with stirring, and dried to prepare an intermediate layer.

【0035】第3の実施例では、高分子イオン導電体と
してポリアクリル酸ナトリウム(化9)を用いて中間層
とした。内部電極には銀/銀テトラフェニルボーレー
ト,イオン感応膜にはカリウムイオン感応膜を用いた。
In the third embodiment, sodium polyacrylate (Chemical Formula 9) was used as the polymer ion conductor to form an intermediate layer. Silver / silver tetraphenylborate was used for the internal electrodes, and a potassium ion-sensitive film was used for the ion-sensitive film.

【0036】[0036]

【化9】 [Chemical 9]

【0037】ナトリウムテトラフェニルボーレートを4
0重量%、ポリアクリル酸ナトリウムを60重量%とな
るように秤量し、蒸留水10ml中で撹拌しながら混合
し、乾燥させることで中間層を調製した。
4 sodium tetraphenylborate
0% by weight and sodium polyacrylate were weighed so as to be 60% by weight, mixed in 10 ml of distilled water with stirring, and dried to prepare an intermediate layer.

【0038】第4の実施例では、高分子イオン導電体と
してポリスチレンスルホン酸ナトリウム(化10)を用
いて中間層とした。内部電極には銀/銀テトラフェニル
ボーレート,イオン感応膜にはカリウムイオン感応膜を
用いた。
In the fourth embodiment, sodium polystyrene sulfonate (Chemical Formula 10) was used as the polymer ion conductor to form an intermediate layer. Silver / silver tetraphenylborate was used for the internal electrodes, and a potassium ion-sensitive film was used for the ion-sensitive film.

【0039】[0039]

【化10】 [Chemical 10]

【0040】ナトリウムテトラフェニルボーレートを4
0重量%、ポリスチレンスルホン酸ナトリウムを60重
量%となるように秤量し、蒸留水10ml中で撹拌しなが
ら混合し、乾燥させることで中間層を調製した。
4 sodium tetraphenylborate
An intermediate layer was prepared by weighing 0 wt% and sodium polystyrene sulfonate so as to be 60 wt%, mixing in 10 ml of distilled water with stirring, and drying.

【0041】第5の実施例では、高分子イオン導電体と
して天然高分子化合物であるセルビオースのヒドロキシ
メチル基のヒドロキシル基をカルボン酸塩に置換した化
合物(化11)を用いて中間層とした。内部電極には銀
/銀テトラフェニルボーレート,イオン感応膜にはカリ
ウムイオン感応膜を用いた。
In the fifth example, a compound (Chemical Formula 11) in which the hydroxyl group of the hydroxymethyl group of cellobiose, which is a natural polymer compound, was replaced with a carboxylate was used as the polymer ion conductor to form the intermediate layer. Silver / silver tetraphenylborate was used for the internal electrodes, and a potassium ion-sensitive film was used for the ion-sensitive film.

【0042】[0042]

【化11】 [Chemical 11]

【0043】ナトリウムテトラフェニルボーレートを4
0重量%、(化11)を60重量%となるように秤量
し、蒸留水10ml中で撹拌しながら混合し、乾燥させる
ことで中間層を調製した。
4 sodium tetraphenylborate
An intermediate layer was prepared by weighing 0% by weight and (Chemical Formula 11) so as to be 60% by weight, mixing in 10 ml of distilled water with stirring, and drying.

【0044】第6の実施例では、高分子イオン導電体と
して天然高分子化合物であるマルトースのヒドロキシメ
チル基のヒドロキシル基をカルボン酸塩に置換した化合
物(化12)を用いて中間層とした。内部電極には銀/
銀テトラフェニルボーレート,イオン感応膜にはカリウ
ムイオン感応膜を用いた。
In the sixth embodiment, a compound (Chemical Formula 12) in which the hydroxyl group of the hydroxymethyl group of maltose, which is a natural polymer compound, was replaced with a carboxylate was used as the polymer ion conductor to form the intermediate layer. Silver /
Silver tetraphenylborate, a potassium ion sensitive film was used as the ion sensitive film.

【0045】[0045]

【化12】 [Chemical 12]

【0046】ナトリウムテトラフェニルボーレートを4
0重量%、(化12)を60重量%となるように秤量
し、蒸留水10ml中で撹拌しながら混合し、乾燥させる
ことで中間層を調製した。
4 sodium tetraphenylborate
An intermediate layer was prepared by weighing 0 wt% and (Chemical Formula 12) to 60 wt%, mixing in 10 ml of distilled water with stirring, and drying.

【0047】次に、本発明に基づく実施例の効果につい
て説明する。ここで、本発明との対応のために従来例を
示す。従来例は寒天50重量%,支持電解質20重量
%,水30重量%である。
Next, the effect of the embodiment according to the present invention will be described. Here, a conventional example will be shown to correspond to the present invention. The conventional example is 50% by weight of agar, 20% by weight of supporting electrolyte, and 30% by weight of water.

【0048】図3は本発明の第1,第2の実施例のイオ
ン選択性電極と上述の従来例について、100mmol の
塩化カリウム水溶液測定での電極電位の経時変化を調べ
た結果を示す。図3において(a),(b)及び(c)
はそれぞれ本発明に基づく第1の実施例,第2の実施例
及び従来例の結果を示している。従来例に基づくイオン
選択性電極は電極電位の低下が著しいが、本発明に基づ
く実施例によるイオン選択性電極では電極電位の低下が
ほとんど見られない。これは、イオン感応膜と内部電極
との間の中間層の導電作用が非常に安定に維持されてい
ることを示している。
FIG. 3 shows the results of investigating the changes with time of the electrode potential in the 100 mMol potassium chloride aqueous solution measurement for the ion selective electrodes of the first and second embodiments of the present invention and the above-mentioned conventional example. In FIG. 3, (a), (b) and (c)
Shows the results of the first example, the second example and the conventional example based on the present invention, respectively. The ion-selective electrode based on the conventional example shows a marked decrease in the electrode potential, but the ion-selective electrodes according to the examples according to the present invention show almost no decrease in the electrode potential. This indicates that the conductive action of the intermediate layer between the ion sensitive film and the internal electrode is maintained very stable.

【0049】図4は本発明の第3,第4の実施例のイオ
ン選択性電極と上述の従来例について、100mmol の
塩化カリウム水溶液測定におけるスロープ感度の経時変
化を調べた結果を示す。図4において(a),(b)及
び(c)はそれぞれ本発明に基づく第3の実施例,第4
の実施例及び従来例の結果を示している。従来例に基づ
くイオン選択性電極はスロープ感度が不安定で比較的短
時間で感度が低下するのに対し、本発明に基づく実施例
によるイオン選択性電極のスロープ感度は従来例に比べ
て安定で長期間にわたり高い値を維持した。
FIG. 4 shows the results of investigating the changes over time in the slope sensitivity of the ion selective electrodes of the third and fourth embodiments of the present invention and the above-mentioned conventional example in the measurement of a 100 mMol potassium chloride aqueous solution. In FIG. 4, (a), (b) and (c) are respectively a third embodiment and a fourth embodiment according to the present invention.
The results of the example and the conventional example are shown. The slope sensitivity of the ion-selective electrode based on the conventional example is unstable and the sensitivity decreases in a relatively short time, whereas the slope sensitivity of the ion-selective electrode according to the embodiment of the present invention is more stable than that of the conventional example. The high value was maintained for a long time.

【0050】図5は本発明の第5,第6の実施例のイオ
ン選択性電極と上述の従来例について、100mmol の
塩化カリウム水溶液測定における電極電位のドリフトを
調べた結果を示す。図5において(a),(b)及び
(c)はそれぞれ本発明に基づく第5の実施例,第6の
実施例及び従来例の結果を示している。従来例に基づく
イオン選択性電極では電極電位がやや不安定でドリフト
が大きいのに対し、本発明に基づく実施例によるイオン
選択性電極のドリフトは従来例に比べて長期間にわたり
高安定性を示した。
FIG. 5 shows the results of examining the electrode potential drift in the measurement of 100 mMol potassium chloride aqueous solution for the ion selective electrodes of the fifth and sixth embodiments of the present invention and the above-mentioned conventional example. In FIG. 5, (a), (b) and (c) show the results of the fifth, sixth and conventional examples according to the present invention, respectively. In the ion-selective electrode based on the conventional example, the electrode potential is slightly unstable and the drift is large, whereas the drift of the ion-selective electrode according to the example according to the present invention shows high stability for a long period of time as compared with the conventional example. It was

【0051】このように本発明に基づくイオン選択性電
極は従来例に比較して電極性能が長期間持続するという
特徴をもつため、実用的なイオン選択性電極が得られ
る。
As described above, the ion-selective electrode according to the present invention is characterized in that the electrode performance lasts for a long period of time as compared with the conventional example, so that a practical ion-selective electrode can be obtained.

【0052】[0052]

【発明の効果】本発明によれば、イオン電極としての特
性である正確性が向上するため、長期間の使用が可能と
なる。
According to the present invention, the accuracy as a characteristic of an ion electrode is improved, so that it can be used for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のイオン選択性電極の断面図。FIG. 1 is a cross-sectional view of a conventional ion selective electrode.

【図2】本発明の一実施例のイオン選択性電極の断面
図。
FIG. 2 is a cross-sectional view of an ion selective electrode according to an embodiment of the present invention.

【図3】本発明の実施例のイオン選択性電極と従来例に
ついて、100mmol の塩化カリウム水溶液測定での電
極電位の経時変化の特性図。
FIG. 3 is a characteristic diagram of changes with time in electrode potential in the measurement of 100 mMol potassium chloride aqueous solution for the ion-selective electrode of the example of the present invention and the conventional example.

【図4】本発明の実施例のイオン選択性電極と従来例に
ついて、100mmol の塩化カリウム水溶液測定でのス
ロープ感度の経時変化の特性図。
FIG. 4 is a characteristic diagram showing changes with time in slope sensitivity in the measurement of 100 mMol potassium chloride aqueous solution for the ion-selective electrode of the example of the present invention and the conventional example.

【図5】本発明の実施例のイオン選択性電極と従来例に
ついて、100mmol の塩化カリウム水溶液測定での電
極電位のドリフトの経時変化の特性図。
FIG. 5 is a characteristic diagram of changes with time of the drift of the electrode potential in the measurement of a 100 mMol potassium chloride aqueous solution for the ion-selective electrode of the example of the present invention and the conventional example.

【符号の説明】[Explanation of symbols]

1…電極収容容器、2…内部溶液、3…内部電極、4…
感応膜、5…試料流路、6…中間層。
1 ... Electrode container, 2 ... Internal solution, 3 ... Internal electrode, 4 ...
Sensitive membrane, 5 ... Sample flow path, 6 ... Intermediate layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 ▲吉▼雄 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Watanabe ▲ Yoshi ▼ Yu ▼ 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】高分子物質を支持膜とするイオン感応膜
と、前記イオン感応膜を設けた容器内に配置された内部
電極との間に中間層を設けたことを特徴とするイオン選
択性電極。
1. Ion selectivity, characterized in that an intermediate layer is provided between an ion-sensitive film having a polymeric material as a supporting film and an internal electrode arranged in a container provided with the ion-sensitive film. electrode.
【請求項2】請求項1において、前記中間層が高分子イ
オン導電体であるイオン選択性電極。
2. The ion selective electrode according to claim 1, wherein the intermediate layer is a polymer ion conductor.
【請求項3】請求項2において、前記高分子イオン導電
体の重合度が10〜5,000,000 であるイオン選択性電
極。
3. The ion selective electrode according to claim 2, wherein the polymer ionic conductor has a degree of polymerization of 10 to 5,000,000.
【請求項4】請求項3において、前記高分子イオン導電
体中に無機塩を分散させるイオン選択性電極。
4. The ion selective electrode according to claim 3, wherein an inorganic salt is dispersed in the polymer ion conductor.
【請求項5】請求項4において、前記無機塩にアルカリ
金属塩を用いるイオン選択性電極。
5. The ion selective electrode according to claim 4, wherein an alkali metal salt is used as the inorganic salt.
【請求項6】請求項5において、前記高分子イオン導電
体を50〜80重量%、前記無機塩を20〜50重量%
含有するイオン選択性電極。
6. The polymer ion conductor according to claim 5, wherein the polymer ion conductor is 50 to 80 wt%, and the inorganic salt is 20 to 50 wt%.
Ion-selective electrode containing.
【請求項7】請求項6において、前記中間層は1μm以
上の薄膜であるイオン選択性電極。
7. The ion selective electrode according to claim 6, wherein the intermediate layer is a thin film having a thickness of 1 μm or more.
JP4264582A 1992-10-02 1992-10-02 Ion selective electrode Pending JPH06118052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4264582A JPH06118052A (en) 1992-10-02 1992-10-02 Ion selective electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4264582A JPH06118052A (en) 1992-10-02 1992-10-02 Ion selective electrode

Publications (1)

Publication Number Publication Date
JPH06118052A true JPH06118052A (en) 1994-04-28

Family

ID=17405298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4264582A Pending JPH06118052A (en) 1992-10-02 1992-10-02 Ion selective electrode

Country Status (1)

Country Link
JP (1) JPH06118052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631130A2 (en) * 1993-06-25 1994-12-28 Hitachi, Ltd. Solid-state ion sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631130A2 (en) * 1993-06-25 1994-12-28 Hitachi, Ltd. Solid-state ion sensor
EP0631130A3 (en) * 1993-06-25 1996-12-11 Hitachi Ltd Solid-state ion sensor.

Similar Documents

Publication Publication Date Title
Arnold et al. Ion-selective electrodes
JP2546786Y2 (en) Graphite-based solid-state polymer membrane ion-selective electrode
US10871464B2 (en) Ion-selective electrode, method of manufacture thereof, and cartridge
Morigi et al. Sulfate-selective electrodes based on hydrotalcites
Matysik et al. Application of Zeolite‐Polydimethylsiloxane Electrodes to Potentiometric Studies of Cationic Species
Zamani et al. Fabrication of an iron (III) PVC-membrane sensor based on bis-benzilthiocarbohydrazide as a selective sensing material
Nägele et al. Influence of lipophilic inert electrolytes on the selectivity of polymer membrane electrodes
US5376254A (en) Potentiometric electrochemical device for qualitative and quantitative analysis
Sakur et al. Novel drug selective sensors for simultaneous potentiometric determination of both ciprofloxacin and metronidazole in pure form and pharmaceutical formulations
Chen et al. Fluorous-phase ion-selective pH electrodes: electrode body and ionophore optimization for measurements in the physiological pH range
JP3625448B2 (en) Ion sensor and biochemical automatic analyzer using the same
Ashassi-Sorkhabi et al. Activity coefficient modeling of ionic liquids in water based on ion selective electrode potential measurements
JPH06118052A (en) Ion selective electrode
Diniz et al. Salinity measurements with polyaniline matrix coated wire electrodes
Sakur et al. Novel drug selective polystyrene membrane for simultaneous potentiometric determination of ciprofloxacin and tinidazole in pure form and pharmaceutical formulations
CA2319987C (en) Polymeric compositions for ion-selective electrodes
Abd Jaber et al. SYNTHESIS OF THE NEW NAPROXEN SELECTIVE ELECTRODE BASED ON IMPRINTED POLYMER USING DIFFERENT MONOMERS AND ITS DETERMINATION AT PHARMACEUTICAL PREPARATION: SYNTHESIS OF THE NEW NAPROXEN SELECTIVE ELECTRODE BASED ON IMPRINTED POLYMER USING DIFFERENT MONOMERS AND ITS DETERMINATION AT PHARMACEUTICAL PREPARATION
Kolytcheva et al. Influence of the organic matrix on the properties of membrane coated ion sensor field-effect transistors
JPS63277962A (en) Lithium and sodium ion concentration ratio determination method
EP0316380A1 (en) Electrochemical sensor with solid phase electrolyte.
Ekmekçi et al. A new selenite selective membrane electrode and its application
JPH045347B2 (en)
Khaled et al. Novel metformin carbon paste and PVC electrodes
Ekmekçi et al. Selenite-selective membrane electrodes based on ion exchangers and application to anodic slime
Lemke et al. Coated film electrodes