JPH06118017A - Quality inspecting device - Google Patents

Quality inspecting device

Info

Publication number
JPH06118017A
JPH06118017A JP4263595A JP26359592A JPH06118017A JP H06118017 A JPH06118017 A JP H06118017A JP 4263595 A JP4263595 A JP 4263595A JP 26359592 A JP26359592 A JP 26359592A JP H06118017 A JPH06118017 A JP H06118017A
Authority
JP
Japan
Prior art keywords
color
signal
quality
image
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4263595A
Other languages
Japanese (ja)
Inventor
Masayuki Unno
雅幸 海野
Yoichi Sato
洋一 佐藤
Seiichi Kato
清一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP4263595A priority Critical patent/JPH06118017A/en
Publication of JPH06118017A publication Critical patent/JPH06118017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To precisely inspect the quality of a color-changing surface by quantizing a video signal to conduct differential processing in the color changing direction, the result vertically to the color changing direction, then performing Fourier transformation. CONSTITUTION:A film 10 is exposed to an illumination 11, and the transmitted light is picked up by a television camera 12 and quantized by an A/D converter 21 to form a digital image, which is then inputted to an image memory 22. On the basis of this image, the quality of a color transitional part on the surface is judged by a CPU 23 and transmitted from an output part 30 to the outside. To the image data, a spatial differential value in N-direction (color transitional direction) is determined, each signal in N-direction is integrated in M-direction, and the average density in M-direction is determined with a specified expression to form an one-dimensional signal. This signal is subjected to hamming window processing to remove the influence of edge, and a power spectrum is obtained by Fourier transformation. This power spectrum is inputted to a neural network to judge its rank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フィルム等の表面の色
変化状態の品質を検査する品質検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quality inspection device for inspecting the quality of the color change state of the surface of a film or the like.

【0002】[0002]

【従来の技術】従来、撮像領域を小領域に分割して近傍
領域との均一度を比較することによって均一な表面上に
発生するむらの有無を検査する方法がある(特開昭63-2
00278)。
2. Description of the Related Art Conventionally, there is a method of inspecting for unevenness occurring on a uniform surface by dividing an image pickup area into small areas and comparing the uniformity with neighboring areas (Japanese Patent Laid-Open No. 63-2.
00278).

【0003】[0003]

【発明が解決しようとする課題】然しながら、従来技術
には、下記、の問題点がある。 色変化するような均一性を有しない被検査体の状態を
検査することはできない。
However, the prior art has the following problems. It is not possible to inspect the state of the object to be inspected, which does not have uniformity such as color change.

【0004】単純なしきい値との比較だけでは、人間
の感覚に合致した微妙なランク判定ができない。
It is impossible to make a delicate rank determination that matches a human sense only by comparing with a simple threshold value.

【0005】本発明は、色変化する表面の品質状態を、
人間の感性に適合して高精度で確実に検査する品質検査
装置を提供することを目的とする。
The present invention determines the quality condition of a surface that changes color.
It is an object of the present invention to provide a quality inspection device that conforms to human sensitivity and inspects with high accuracy and certainty.

【0006】[0006]

【課題を解決するための手段】本発明は、被検査体の表
面を撮像してその色変化の品質状態をニューラルネット
ワークにて判定する品質検査装置であって、前記検査対
象からの映像信号を量子化して色変化方向に微分処理を
行ない、その垂直方向の各信号を色変化垂直方向に積分
し、これに対してフーリェ変換を行なうことにより、そ
のパワースペクトラムを求め、それらをニューラルネッ
トワークへの入力信号とするようにしたものである。
SUMMARY OF THE INVENTION The present invention is a quality inspection apparatus for imaging a surface of an object to be inspected and determining the quality state of the color change by a neural network, wherein a video signal from the inspection object is detected. Quantize and perform differential processing in the color change direction, integrate each signal in the vertical direction in the color change vertical direction, and perform Fourier transform on this to obtain its power spectrum, and to convert them to the neural network. The input signal is used.

【0007】然るに、本発明における「ニューラルネッ
トワーク」について説明すれば、下記(1) 〜(4) の如く
である。
However, the description of the "neural network" in the present invention is as follows (1) to (4).

【0008】(1)ニューラルネットワークは、その構造
から、図6(A)に示す階層的ネットワークと図6
(B)に示す相互結合ネットワークの2種に大別でき
る。本発明は、両ネットワークのいずれを用いて構成す
るものであっても良いが、階層的ネットワークは後述す
る如くの簡単な学習アルゴリズムが確立されているため
より有用である。
(1) The neural network has a structure similar to that of the hierarchical network shown in FIG.
It can be roughly classified into two types of mutual coupling networks shown in (B). The present invention may be configured by using either of both networks, but the hierarchical network is more useful because a simple learning algorithm as described later has been established.

【0009】(2)ネットワークの構造 階層的ネットワークは、図7に示す如く、入力層、中間
層、出力層からなる階層構造をとる。各層は1以上のユ
ニットから構成される。結合は、入力層→中間層→出力
層という前向きの結合だけで、各層内での結合はない。
(2) Network Structure As shown in FIG. 7, the hierarchical network has a hierarchical structure including an input layer, an intermediate layer, and an output layer. Each layer is composed of one or more units. The coupling is only forward coupling such as input layer → middle layer → output layer, and there is no coupling within each layer.

【0010】(3)ユニットの構造 ユニットは図8に示す如く脳のニューロンのモデル化で
あり構造は簡単である。他のユニットから入力を受け、
その総和をとり一定の規則(変換関数)で変換し、結果
を出力する。他のユニットとの結合には、それぞれ結合
の強さを表わす可変の重みを付ける。
(3) Structure of the unit The unit is a model of a brain neuron as shown in FIG. 8 and has a simple structure. Receive input from other units,
The sum is taken and converted by a certain rule (conversion function), and the result is output. A variable weight that represents the strength of the connection is attached to each of the connections with other units.

【0011】(4)学習(バックプロパゲーション) ネットワークの学習とは、実際の出力を目標値(望まし
い出力)に近づけることであり、一般的には図8に示し
た各ユニットの変換関数及び重みを変化させて学習を行
なう。
(4) Learning (Back Propagation) Learning a network is to bring an actual output close to a target value (desired output). Generally, the conversion function and weight of each unit shown in FIG. Is learned by changing.

【0012】また、学習のアルゴリズムとしては、例え
ば、Rumelhart, D.E.,McClelland,J.L. and the PDP Re
search Group, PARALLEL DISTRIBUTED PROCESSING, the
MIT Press, 1986.に記載されているバックプロパゲー
ションを用いることができる。
As a learning algorithm, for example, Rumelhart, DE, McClelland, JL and the PDP Re
search Group, PARALLEL DISTRIBUTED PROCESSING, the
Backpropagation described in MIT Press, 1986. can be used.

【0013】[0013]

【作用】被検査体の表面の色変化の品質状態をニューラ
ルネットワークにて判定するに際し、検査対象からの映
像信号を量子化して色変化方向に微分処理を行ない、そ
の垂直方向の各信号を色変化垂直方向に積分し、ニュー
ラルネットワークへの入力用データとして上述の積分結
果を用いるものであるから、色変化する表面の品質状態
を、人間の感性に適合して高精度で確実に検査すること
ができる。
When the quality state of the color change on the surface of the object to be inspected is judged by the neural network, the video signal from the inspection object is quantized and the differential processing is performed in the color change direction, and each signal in the vertical direction is colored. Since it integrates in the vertical direction of change and uses the above-mentioned integration result as input data to the neural network, it is necessary to accurately and accurately inspect the quality condition of the surface that changes color in conformity with human sensitivity. You can

【0014】[0014]

【実施例】図1は本発明の一実施例を示すブロック図、
図2は検査手順を示す流れ図、図3は微分時の注目画素
を説明する模式図、図4は微分オペレータの一例を示す
模式図、図5はハミングウィンドウ処理を示す模式図、
図6はニューラルネットワークを示す模式図、図7は階
層的なニューラルネットワークを示す模式図、図8はユ
ニットの構造を示す模式図である。
FIG. 1 is a block diagram showing an embodiment of the present invention,
2 is a flow chart showing an inspection procedure, FIG. 3 is a schematic diagram illustrating a target pixel at the time of differentiation, FIG. 4 is a schematic diagram showing an example of a differential operator, FIG. 5 is a schematic diagram showing Hamming window processing,
6 is a schematic diagram showing a neural network, FIG. 7 is a schematic diagram showing a hierarchical neural network, and FIG. 8 is a schematic diagram showing the structure of a unit.

【0015】図1は、合わせガラス用シェイデットフィ
ルムを検査する装置のブロック図である。このフィルム
は表面にきわめて微小な凹凸を有しているため半透明で
あり、また一部は着色されており、その色が一方向に徐
々に薄くなって無色になるという外観をなす。本発明で
はこの色推移部変化状態を検査するものである。
FIG. 1 is a block diagram of an apparatus for inspecting a shaded film for laminated glass. This film is semi-transparent because it has extremely minute irregularities on the surface, and is partially colored, and the color gradually becomes lighter in one direction and becomes colorless. In the present invention, the changing state of the color transition portion is inspected.

【0016】被検査体であるフィルム10に対し、下
方向から照明11を当て、その透過光をテレビカメラ1
2により撮像する。
Illumination 11 is applied from below to the film 10 which is the object to be inspected, and the transmitted light is transmitted to the television camera 1.
The image is captured by 2.

【0017】A/D変換器21で例えば8ビット( 2
56階調)にて量子化し、M*N画素のデジタル画像を作
り、画像メモリ22に入力する。
In the A / D converter 21, for example, 8 bits (2
Quantization is performed with 56 gradations to create a digital image of M * N pixels, and the digital image is input to the image memory 22.

【0018】この入力された画像をもとにCPU23
により表面の色推移部の品質を判定し、出力部30から
外部に伝送する。品質判定までの流れを図2に示す。
Based on the input image, the CPU 23
The quality of the color transition portion on the surface is determined by and is transmitted from the output unit 30 to the outside. FIG. 2 shows the flow until quality judgment.

【0019】M*N画素の画像データに対して、N方
向(色推移方向に相当する)の空間的微分値(実際には
信号をデジタル化してあるので差分値となる)を求め
る。ここでは図3に示すような座標(i,j) における濃度
f(i,j)の微分値g(i,j)を座標(i,j) を中心とするn*3
の範囲のデータから計算する。即ち、例えばn=5と
し、図4に示すオペレータを用い、 g(i,j)=-f(i-2,j-1)-f(i-1,j-1)-f(i,j-1)-f(i+1,j-1)-
f(i+2,j-1) +f(i-2,j+1)+f(i-1,j+1)+f(i,j+1)+f(i+1,
j+1)+f(i+2,j+1) とする。
For the image data of M * N pixels, a spatial differential value in the N direction (corresponding to the color transition direction) (actually a signal is digitized and thus a difference value) is obtained. Here, the density at coordinates (i, j) as shown in Fig. 3
n * 3 with the differential value g (i, j) of f (i, j) centered on coordinates (i, j)
Calculated from data in the range. That is, for example, n = 5 and using the operator shown in FIG. 4, g (i, j) =-f (i-2, j-1) -f (i-1, j-1) -f (i, j-1) -f (i + 1, j-1)-
f (i + 2, j-1) + f (i-2, j + 1) + f (i-1, j + 1) + f (i, j + 1) + f (i + 1,
Let j + 1) + f (i + 2, j + 1).

【0020】N方向の各信号をM方向に積分する。こ
こではn=5としたので、
Each signal in the N direction is integrated in the M direction. Since n = 5 here,

【数1】 によって、M方向の平均濃度を求め、1次元の信号とす
る。
[Equation 1] Then, the average density in the M direction is calculated to obtain a one-dimensional signal.

【0021】上記1次元信号に、ハミングウィンドウ
処理(図5参照)を施し、エッジの影響を取り除いた後
に、フーリエ変換によりパワースペクトルを得る。ここ
でハミング窓関数は、
A Hamming window process (see FIG. 5) is applied to the one-dimensional signal to remove the influence of edges, and a power spectrum is obtained by Fourier transform. Where the Hamming window function is

【数2】 で定義される。[Equation 2] Is defined by

【0022】このパワースペクトルをニューラルネッ
トワークへ入力しそのランクを判定する。ニューラルネ
ットワークは3層の階層型ネットワークで(図7参
照)、入力層は上記パワースペクトルのポイント数に対
応するユニット数、出力層は判定するランク数と同一と
する。このネットワークは入力に対するランクに対応す
る出力ユニットが1、その他は0になるように予めバッ
クプロパゲーションで学習しておく。
This power spectrum is input to the neural network to determine its rank. The neural network is a three-layer hierarchical network (see FIG. 7), the input layer has the same number of units as the number of points of the power spectrum, and the output layer has the same number of ranks to be determined. This network is preliminarily learned by back propagation so that the output unit corresponding to the rank with respect to the input is 1, and the others are 0.

【0023】尚、本発明の実施において、表面の撮像に
はラインセンサを用いても同様な結果が得られることは
明らかである。また微分オペレータのnは任意であり、
その後の積分も必ずしも微分を行なった全範囲を用いる
必要はない。
In the practice of the present invention, it is obvious that the same result can be obtained even if a line sensor is used for imaging the surface. Also, n of the differential operator is arbitrary,
For the subsequent integration, it is not always necessary to use the full range of differentiation.

【0024】[0024]

【発明の効果】以上のように本発明によれば、色変化す
る表面の品質状態を、人間の感性に適合して高精度で確
実に検査することができる。
As described above, according to the present invention, it is possible to reliably and accurately inspect the quality condition of the surface where the color changes, in conformity with human sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図2は検査手順を示す流れ図である。FIG. 2 is a flow chart showing an inspection procedure.

【図3】図3は微分時の注目画素を説明する模式図であ
る。
FIG. 3 is a schematic diagram illustrating a target pixel at the time of differentiation.

【図4】図4は微分オペレータの一例を示す模式図であ
る。
FIG. 4 is a schematic diagram showing an example of a differential operator.

【図5】図5はハミングウィンドウ処理を示す模式図で
ある。
FIG. 5 is a schematic diagram showing a Hamming window process.

【図6】図6はニューラルネットワークを示す模式図で
ある。
FIG. 6 is a schematic diagram showing a neural network.

【図7】図7は階層的なニューラルネットワークを示す
模式図である。
FIG. 7 is a schematic diagram showing a hierarchical neural network.

【図8】図8はユニットの構造を示す模式図である。FIG. 8 is a schematic diagram showing a structure of a unit.

【符号の説明】[Explanation of symbols]

10 フィルム(被検査体) 11 照明 12 テレビカメラ 21 A/D変換器 22 画像メモリ 23 CPU 30 出力部 10 film (inspection object) 11 illumination 12 TV camera 21 A / D converter 22 image memory 23 CPU 30 output unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検査体の表面を撮像してその色変化の
品質状態をニューラルネットワークにて判定する品質検
査装置であって、 前記検査対象からの映像信号を量子化して色変化方向に
微分処理を行ない、その垂直方向の各信号を色変化垂直
方向に積分し、 これに対してフーリェ変換を行なうことにより、そのパ
ワースペクトラムを求め、 それらをニューラルネットワークへの入力信号とするこ
とを特徴とする品質検査装置。
1. A quality inspection apparatus for imaging a surface of an object to be inspected and determining the quality state of the color change by a neural network, wherein the video signal from the inspection object is quantized and differentiated in the color change direction. It is characterized in that processing is performed, each signal in the vertical direction is integrated in the color change vertical direction, and the Fourier spectrum is applied to this to obtain the power spectrum, and these are used as input signals to the neural network. Quality inspection equipment.
JP4263595A 1992-10-01 1992-10-01 Quality inspecting device Pending JPH06118017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263595A JPH06118017A (en) 1992-10-01 1992-10-01 Quality inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263595A JPH06118017A (en) 1992-10-01 1992-10-01 Quality inspecting device

Publications (1)

Publication Number Publication Date
JPH06118017A true JPH06118017A (en) 1994-04-28

Family

ID=17391732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263595A Pending JPH06118017A (en) 1992-10-01 1992-10-01 Quality inspecting device

Country Status (1)

Country Link
JP (1) JPH06118017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034259A1 (en) * 1995-04-26 1996-10-31 Advantest Corporation Apparatus for chromatic vision measurement
JP2008090609A (en) * 2006-10-02 2008-04-17 Ricoh Co Ltd Quality inspection image, image evaluation method, image evaluation device, computer program and recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034259A1 (en) * 1995-04-26 1996-10-31 Advantest Corporation Apparatus for chromatic vision measurement
US5917541A (en) * 1995-04-26 1999-06-29 Advantest Corporation Color sense measuring device
JP2008090609A (en) * 2006-10-02 2008-04-17 Ricoh Co Ltd Quality inspection image, image evaluation method, image evaluation device, computer program and recording medium
JP4724085B2 (en) * 2006-10-02 2011-07-13 株式会社リコー Image evaluation method, image evaluation apparatus, computer program, and recording medium

Similar Documents

Publication Publication Date Title
KR101688458B1 (en) Image inspection apparatus for manufactured articles using deep neural network training method and image inspection method of manufactured articles thereby
US6603877B1 (en) Method of and apparatus for optical imaging inspection of multi-material objects and the like
JPH09275272A (en) Soldering check device and method taking advantage of relative neuron network
KR950026191A (en) method of inspection
CN117474772A (en) Dynamic enhancement system for online teaching picture data
JPH06118017A (en) Quality inspecting device
JPH06118016A (en) Quality inspecting device
JPH1096696A (en) Method and apparatus for inspecting irregularity in object
JPH06118018A (en) Quality inspecting device
JPH09264856A (en) Article appearance inspection device
JPH06118020A (en) Quality inspecting device
JPH06118019A (en) Quality inspecting device
JPH06273346A (en) Soldered state inspection equipment
DE102020201379A1 (en) CONTOUR RECOGNITION DEVICE, CONTOUR RECOGNITION SYSTEM AND CONTOUR RECOGNITION METHOD
Tai-Shan et al. The method of intelligent inspection of product quality based on computer vision
JP3012295B2 (en) Image processing apparatus and method
JPH06235625A (en) Inspecting apparatus for flaw
JPH04299785A (en) Color unevenness inspecting device
Bilal Machine learning-based evaluation of the damage using images on concrete infrastructure structures
JPH04295747A (en) Solder-shape inspecting method
JP3173690B2 (en) Visual inspection device by neural network
JPH06201338A (en) Outer appearance state inspection
JP3109237B2 (en) Line segment constituent pixel extraction method and line segment judgment method in image
CN118237778A (en) Ultra-fast laser micro-welding quality monitoring system and monitoring method for brittle materials
JP3022627B2 (en) Defect inspection equipment