JPH06117917A - Method and apparatus for measuring vibration response characteristic of machine vibration device - Google Patents

Method and apparatus for measuring vibration response characteristic of machine vibration device

Info

Publication number
JPH06117917A
JPH06117917A JP4287028A JP28702892A JPH06117917A JP H06117917 A JPH06117917 A JP H06117917A JP 4287028 A JP4287028 A JP 4287028A JP 28702892 A JP28702892 A JP 28702892A JP H06117917 A JPH06117917 A JP H06117917A
Authority
JP
Japan
Prior art keywords
vibration
function
test piece
measurement
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4287028A
Other languages
Japanese (ja)
Inventor
Takumi Yoshida
巧 吉田
Masaharu Ishiguro
正治 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP4287028A priority Critical patent/JPH06117917A/en
Publication of JPH06117917A publication Critical patent/JPH06117917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately measure the response characteristics corresponding to frequency effective for the analysis of the characteristics such as a resonance point or the like of an object to be tested being a machine vibration system to be measured. CONSTITUTION:A measuring device for the vibration response characteristics of a machine vibration system is equipped with the vibrator bonded to an object to be tested to forcibly vibrate the object, the sensor 7 mounted on the object to be tested to detect the vibration state of the object and an FFT function 10 of analyzing the measured value detected by the sensor 7. The operational processing using the FFT function 10 is executed at the phase pitch corresponding to predetermined frequency. A means for recording a measured phase pitch and a function of calculating the operation timing from the measured phase pitch and the predetermined frequency are provided and the operation processing using the FFT function 10 is executed in the operation timing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は機械装置の機械振動系振
動応答特性計測装置に係り,特に,計測対象機械振動系
の特性に対応して適切な計測速度で精度良く計測できる
機械振動系振動応答特性計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical vibration system vibration response characteristic measuring device of a mechanical device, and more particularly to a mechanical vibration system vibration capable of accurately measuring at an appropriate measuring speed corresponding to the characteristic of a mechanical vibration system to be measured. The present invention relates to a response characteristic measuring device.

【0002】[0002]

【従来の技術】各種機械装置,例えば,自動車の駆動軸
のように各種の振動状態と伝達特性を含む機械系の振動
動特性の計測には,対象機械に強制振動を与えるととも
に,この機械系の適切な箇所に装着したセンサによって
この機械(振動)系(以下機械振動系と記す)の振動を
計測し,計測結果を例えばFFTによって解析すること
により,この機械振動系の強制振動に対する応答特性を
得ている。即ち,従来機械振動系の振動特性を計測する
には,例えば,被測定機械系である供試体の所定位置に
ロードセルを装着したハンマーによって打撃を与えて供
試体所定箇所に設けた振動衝撃センサでその応答振動を
検知し,検知結果をFFTによって解析している。この
ようなFFTにおける演算実行のサンプリングピッチ,
即ち演算ピッチは,一般に,この計測対象機械振動系が
有する周波数帯域に対応して設定した所定の一定時間ピ
ッチで実行されている。また,特性の周波数を設定して
油圧モータ等によって駆動加振し,センサによる計測値
から上述と同様にFFTによって解析データを得てい
る。
2. Description of the Related Art For measuring the vibration dynamic characteristics of various mechanical devices, such as a drive shaft of an automobile, which includes various vibration states and transmission characteristics, forced vibration is applied to a target machine and By measuring the vibration of this mechanical (vibration) system (hereinafter referred to as the mechanical vibration system) with a sensor installed at an appropriate position of the machine, and analyzing the measurement results by, for example, FFT, the response characteristics to the forced vibration of this mechanical vibration system Is getting That is, to measure the vibration characteristics of a conventional mechanical vibration system, for example, a vibration impact sensor provided at a predetermined position of the test piece by hitting with a hammer equipped with a load cell at a predetermined position of the test object which is a mechanical system to be measured. The response vibration is detected and the detection result is analyzed by FFT. Sampling pitch for calculation execution in such FFT,
That is, the calculation pitch is generally executed at a predetermined fixed time pitch set corresponding to the frequency band of the mechanical vibration system to be measured. Further, a characteristic frequency is set, driving vibration is performed by a hydraulic motor or the like, and analysis data is obtained by FFT from the measured value by the sensor as in the above.

【0003】[0003]

【発明が解決しようとする課題】ところで,上述した従
来のFFTによる解析における演算ピッチは対象機械振
動系の最高周波数または最低周波数に対応して設定さ
れ,従って計測時間に影響するFFTの演算時間が定ま
るので,短時間で精度の良い解析結果を得るのが困難で
あった。また,最低周波数によって演算ピッチを定める
と高周波成分の精度が落ち,最高周波数によって演算ピ
ッチを定めて計測時間を早めようとすると,低周波成分
の解析データ確定前に演算を打ち切る必要があった。本
発明は上記従来の問題点を解決して被測定機械振動系で
ある供試体に対して,共振点等その機械系特性解析に有
効な周波数に対応する応答特性を適切な速度で精度良く
計測できる機械振動系振動応答特性計測装置を得ること
を目的(課題)としている。
By the way, the operation pitch in the analysis by the above-mentioned conventional FFT is set corresponding to the highest frequency or the lowest frequency of the target machine vibration system, and therefore the operation time of the FFT which influences the measurement time. Since it is determined, it is difficult to obtain accurate analysis results in a short time. Further, if the calculation pitch is determined by the lowest frequency, the accuracy of the high frequency component deteriorates, and if the calculation pitch is determined by the highest frequency and the measurement time is shortened, it is necessary to terminate the calculation before the analysis data of the low frequency component is determined. The present invention solves the above conventional problems and accurately measures the response characteristic corresponding to a frequency, which is effective for mechanical system characteristic analysis such as a resonance point, at a proper speed with respect to a specimen that is a mechanical vibration system to be measured. The purpose (problem) is to obtain a mechanical vibration system vibration response characteristic measuring device.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明に基づく機械振動系振動応答特性計測方法にお
いては,供試体に結合し強制振動を与える加振機と,供
試体に装着してその振動状態を検知するセンサと,この
センサが検知した測定値を解析するFFT装置とを備え
た機械振動系振動応答特性計測手段において,所定周波
数に対応する位相ピッチで前記FFT装置における演算
処理を実行するようにした。また,本発明に基づく機械
振動系振動応答特性計測装置においては,計測位相ピッ
チを記録する手段と,この計測位相ピッチと所定周波数
とから演算タイミングを算出する機能とを設け,この演
算タイミングによってFFT機能による演算処理を実行
するようにした。また,供試体に加える強制振動の周波
数設定手段と,供試体に結合して設定周波数の強制振動
を与える加振機と,供試体の振動状態を検知するセンサ
と,このセンサが検知した測定値を解析するFFT装置
とを備えた機械振動系振動応答特性計測装置において,
計測位相ピッチを記録する手段と,この計測位相ピッチ
と強制加振周波数とから演算タイミングを算出する機能
とを設け,この演算タイミングでFFT機能による演算
処理を実行するようにした。
In order to solve the above-mentioned problems, in a mechanical vibration system vibration response characteristic measuring method according to the present invention, a vibration exciter that is coupled to a test piece to apply a forced vibration and is mounted on the test piece. In a mechanical vibration system vibration response characteristic measuring means including a sensor for detecting a vibration state of the FFT device and an FFT device for analyzing a measurement value detected by the sensor, arithmetic processing in the FFT device at a phase pitch corresponding to a predetermined frequency. To run. Further, the mechanical vibration system vibration response characteristic measuring device according to the present invention is provided with a means for recording the measurement phase pitch and a function for calculating the calculation timing from the measurement phase pitch and the predetermined frequency, and the FFT is performed by the calculation timing. The calculation processing by the function was executed. In addition, the frequency setting means of the forced vibration applied to the test piece, the shaker coupled to the test piece to give the forced vibration of the set frequency, the sensor for detecting the vibration state of the test piece, and the measured value detected by this sensor In a mechanical vibration system vibration response characteristic measuring device equipped with an FFT device for analyzing
A means for recording the measurement phase pitch and a function for calculating the calculation timing from the measurement phase pitch and the forced vibration frequency are provided, and the calculation processing by the FFT function is executed at this calculation timing.

【0005】[0005]

【作用】本発明は,上述のように所定の周波数に対応す
る位相ピッチまたは加振周波数に対応する位相ピッチで
FFT装置の演算処理を実行するようにしているので,
機械振動系の振動応答特性として希望する周波数に対応
する振動解析データは加振周波数が急激に変化しても短
時間で精度良く求めることができる。
According to the present invention, the arithmetic processing of the FFT apparatus is executed at the phase pitch corresponding to the predetermined frequency or the phase pitch corresponding to the excitation frequency as described above.
The vibration analysis data corresponding to the desired frequency as the vibration response characteristic of the mechanical vibration system can be accurately obtained in a short time even if the vibration frequency changes rapidly.

【0006】[0006]

【実施例】本発明に基づく機械振動系振動応答特性計測
方法を適用した機械振動系振動応答特性計測装置(以下
計測装置と略称する)の実施例を図を参照して詳細に説
明する。図1に本発明を適用した計測装置の1例を示
す。図1において1はこの計測装置の計測管理機能を示
していて,計測管理機能1に設定記録した計測条件また
は計測指令は計測加振信号作成機能2とFFT動作設定
機能9に入力している。計測加振信号作成機能2で作成
された所定周波数の加振信号によって加振機駆動機能3
は加振機4を駆動している。上述した計測管理機能1と
計測加振信号作成機能2とによって強制振動周波数設定
手段を構成している。加振機4は例えば回転軸5を介し
て供試負荷機構6に結合し,この回転軸5にはセンサ7
例えばトルクピックアップが結合され,このセンサ7の
検知信号は振動検出機能8に入力して所定の電気信号に
変換されFFT機能10に入力している。また,FFT
動作設定機能9は計測管理機能1から入力した信号に詳
細を後述する所定の処理を施してFFT機能10に入力
し,振動検出機能8から入力した振動信号を計測管理機
能1に設定された条件に従ってFFT機能10により解
析する。FFT機能10による解析結果は,解析結果処
理機能11によって所定の条件に従って記録され,また
出力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a mechanical vibration system vibration response characteristic measuring device (hereinafter abbreviated as a measuring device) to which a mechanical vibration system vibration response characteristic measuring method according to the present invention is applied will be described in detail with reference to the drawings. FIG. 1 shows an example of a measuring device to which the present invention is applied. In FIG. 1, reference numeral 1 denotes a measurement management function of this measurement apparatus, and the measurement conditions or measurement commands set and recorded in the measurement management function 1 are input to a measurement excitation signal generation function 2 and an FFT operation setting function 9. Exciter drive function 3 by the excitation signal of the predetermined frequency created by the measurement excitation signal creation function 2
Drives the shaker 4. The above-mentioned measurement management function 1 and measurement excitation signal generation function 2 constitute a forced vibration frequency setting means. The shaker 4 is connected to the test load mechanism 6 via, for example, a rotary shaft 5, and the rotary shaft 5 has a sensor 7
For example, a torque pickup is coupled, and the detection signal of the sensor 7 is input to the vibration detection function 8 and converted into a predetermined electric signal and input to the FFT function 10. Also, FFT
The operation setting function 9 performs predetermined processing, which will be described in detail later, on the signal input from the measurement management function 1, inputs the signal to the FFT function 10, and the vibration signal input from the vibration detection function 8 is set under the condition set in the measurement management function 1. According to the FFT function 10, the analysis is performed. The analysis result by the FFT function 10 is recorded and output according to a predetermined condition by the analysis result processing function 11.

【0007】上述した計測装置の働きを図2,図3を加
味して詳細に説明する。図2は本発明に基づく働きの各
要素動作を各機能ブロックによってブロック図状に示し
たもので,図3はフロー図状に示したものである。図1
に示した計測管理機能1の計測周波数作成機能1aで作
成された計測周波数Fを示す信号が演算タイミング作成
機能9aに入力している。また,計測管理機能1に予め
設定され記録された(記録機能は図示せず),計測する
振動波形を所定数に分割する位相ピッチである単位位相
角度Δθが上記演算タイミング作成機能9aと演算位相
角度算出機能9bに入力している。演算タイミング作成
機能9aと演算位相角度算出機能9bとは前述したFF
T動作設定機能9に設けられた機能である。演算タイミ
ング作成機能9aにおいては演算タイミングΔtを下記
(1)式に従って作成し,各演算タイミングΔtごとに
FFT機能に演算信号を出力する。 Δt=1/F(2π/Δθ)・・・・(1) また,演算タイミング作成機能9aはFFT機能の演算
1サイクル,即ち,この計測周波数Fに対応してFFT
機能の積分動作を制御する積分制御信号をFFT機能に
出力する。演算位相角度算出機能9bにおいては,単位
位相角度Δθを演算タイミングΔtごとに積算して演算
位相角度θを算出している。演算位相角度算出機能9b
において算出された演算位相角度θによってFFT機能
10に設けた記録機能(図示せず)に予め記録した三角
関数表から索引しサイン関数値作成機能12においてs
inθ,コサイン関数値作成機能13においてcosθ
を作成している。計測加振信号作成機能2で作成された
計測周波数Fの加振信号によって駆動される加振機4に
より強制加振された回転軸5の例えば,ねじれ振動がセ
ンサ7によって電気的な振動信号Sに変換される。この
振動信号Sはさらに振動検出機能8に入力してFFT機
能によって解析されるに適切な信号形態に変換される。
即ち,振動検出機能8に設けたサンプルホールド機能8
aにおいて,前記演算タイミング作成機能9aから入力
する演算タイミングに対応したタイミングで振動信号S
はサンプリングされ,また次のサンプリングまでの間サ
ンプル値がホールドされる。このサンプルホールド機能
8aにホールドされた振動信号Sは乗算機能14で前記
サイン関数値作成機能12で作成されたsinθに乗算
した後,積分機能15で演算タイミング作成機能9aか
ら入力される積分制御信号に従って積分される。積分機
能15で積分された結果であるSsに正規化機能16で
下記(2)式に示す演算処理がなされる。また,正規化
機能16には計測管理機能1に予め設定され記録された
(記録機能は図示せず)演算ピッチを示す単位位相角度
Δθが入力している。正規化機能16で演算処理された
結果aはベクトル加算機能20に入力して下記(4)式
に示す演算処理が行われる。また,サンプホールド機能
8aにホールドされた振動信号は乗算機能17で前記コ
サイン関数値作成機能13で作成されたcosθに乗算
した後,積分機能18で演算タイミング作成機能9aか
ら入力される積分制御信号に従って積分される。積分機
能18で積分された結果であるScに正規化機能19で
下記(3)式に示す演算処理がなされる。また,正規化
機能19には計測管理機能1に設定された演算ピッチを
示す単位位相角度Δθが入力している。正規化機能19
で演算処理された結果bはベクトル加算機能20に入力
して下記(4)式に示す演算処理が行われる。ベクトル
加算機能20における加算結果cは前述した解析結果処
理機能11に入力して所定の処理がなされ,出力され
る。 a=Ss×〔2/(2π/Δθ)〕・・・・(2) b=Sc×〔2/(2π/Δθ)〕・・・・(3) c=(a2+b21/2 ・・・・・・・・・・(4) 上述したサイン関数値作成機能12ないしベクトル加算
機能20は一般にFFT機能に構成されている要素機能
である。また,サイン関数値作成機能12,コサイン関
数値作成機能13は三角関数表から索引せず直接演算し
算出するようにしても良い。
The operation of the above-described measuring device will be described in detail with reference to FIGS. FIG. 2 is a block diagram showing each element operation of the function according to the present invention by each functional block, and FIG. 3 is a flow chart. Figure 1
The signal indicating the measurement frequency F created by the measurement frequency creation function 1a of the measurement management function 1 shown in 1 is input to the calculation timing creation function 9a. In addition, the unit phase angle Δθ, which is a phase pitch that is preset and recorded in the measurement management function 1 (recording function is not shown), which is a phase pitch for dividing the vibration waveform to be measured into a predetermined number, and the calculation timing generation function 9a and the calculation phase. It is input to the angle calculation function 9b. The calculation timing creation function 9a and the calculation phase angle calculation function 9b are the FFs described above.
This is a function provided in the T operation setting function 9. The calculation timing creating function 9a creates a calculation timing Δt according to the following equation (1), and outputs a calculation signal to the FFT function at each calculation timing Δt. Δt = 1 / F (2π / Δθ) (1) Further, the calculation timing creation function 9a is used for one calculation cycle of the FFT function, that is, the FFT corresponding to this measurement frequency F.
An integration control signal for controlling the integration operation of the function is output to the FFT function. The calculation phase angle calculation function 9b calculates the calculation phase angle θ by integrating the unit phase angle Δθ for each calculation timing Δt. Calculation phase angle calculation function 9b
In the sine function value creation function 12, an index is made from the trigonometric function table previously recorded in the recording function (not shown) provided in the FFT function 10 according to the calculated phase angle θ calculated in
in θ, cos θ in the cosine function value creation function 13
Are being created. For example, the torsional vibration of the rotating shaft 5 forcibly excited by the vibration exciter 4 driven by the vibration signal of the measurement frequency F generated by the measurement vibration signal generation function 2 causes the sensor 7 to generate an electric vibration signal S. Is converted to. The vibration signal S is further input to the vibration detection function 8 and converted into a signal form suitable for being analyzed by the FFT function.
That is, the sample hold function 8 provided in the vibration detection function 8
a, the vibration signal S is generated at the timing corresponding to the calculation timing input from the calculation timing generation function 9a.
Is sampled and the sample value is held until the next sampling. The vibration signal S held by the sample hold function 8a is multiplied by sin θ created by the sine function value creation function 12 by the multiplication function 14, and then integrated control signal input from the operation timing creation function 9a by the integration function 15. Is integrated according to. The Ss which is the result of integration by the integration function 15 is subjected to the arithmetic processing shown in the following equation (2) by the normalization function 16. Further, the normalization function 16 is input with a unit phase angle Δθ indicating a calculation pitch which is preset and recorded in the measurement management function 1 (the recording function is not shown). The result a calculated by the normalization function 16 is input to the vector addition function 20 and the calculation processing shown in the following equation (4) is performed. Further, the vibration signal held by the sump hold function 8a is multiplied by cos θ created by the cosine function value creation function 13 by the multiplication function 17, and then the integration control signal input from the operation timing creation function 9a by the integration function 18. Is integrated according to. The Sc, which is the result of integration by the integration function 18, is subjected to the arithmetic processing shown in the following equation (3) by the normalization function 19. Further, the normalization function 19 receives the unit phase angle Δθ indicating the calculation pitch set in the measurement management function 1. Normalization function 19
The result b, which has been subjected to the arithmetic processing in (4), is input to the vector addition function 20 and the arithmetic processing shown in the following equation (4) is performed. The addition result c in the vector addition function 20 is input to the above-mentioned analysis result processing function 11, subjected to predetermined processing, and output. a = Ss × [2 / (2π / Δθ)] ... (2) b = Sc × [2 / (2π / Δθ)] ... (3) c = (a 2 + b 2 ) 1 / 2 (4) The sine function value creation function 12 or the vector addition function 20 described above is an element function generally configured as an FFT function. Further, the sine function value creating function 12 and the cosine function value creating function 13 may be calculated by directly calculating from the trigonometric function table without indexing.

【0008】図2に示したブロック図と,図1に示した
ブロック図との対応,および各機能ブロックは前述した
ように本発明を説明するために便宜的に記したものであ
って,各機能を分担する回路はこの振動解析システムを
構成する回路条件に従って分散または総合させるように
しても良い。例えば,図2に示したすべての機能をFF
T装置に含ませるようにしても良い。また,すべての要
素機能それぞれをハードウエアによって構成しても,専
用装置として構成されたFFT機能およびアナログ信号
以外の各演算処理等を含めて上位の振動解析システムに
備えられたコンピュータによって処理実行をさせるよう
にしても良いし,FFT機能も含めて上位の振動解析シ
ステムに備えられたコンピュータによって処理実行をさ
せるようにしても良い。また図2に示した解析機能を解
析処理専用のコンピュータによって処理実行させるよう
にしても良い。コンピュータ処理の場合は図2に示した
各要素機能はソフト処理に対応して適切な機能を有する
ようにプログラムを構成することは当然である。例え
ば,積分機能15はアナログ回路によるような連続的に
積分動作を行うものではなく,サンプリング処理結果を
逐次積和するようにする。なお,上述の機能をコンピュ
ータによって実行した場合のフローを図3に示す。
Correspondence between the block diagram shown in FIG. 2 and the block diagram shown in FIG. 1 and each functional block are described for convenience of explanation of the present invention as described above. The circuits that share the functions may be distributed or integrated according to the circuit conditions that constitute the vibration analysis system. For example, all the functions shown in FIG.
It may be included in the T device. Even if all the elemental functions are configured by hardware, the FFT function configured as a dedicated device and each processing other than the analog signal can be executed by the computer provided in the upper vibration analysis system. Alternatively, the computer including the FFT function may be used to execute the process including the FFT function. Further, the analysis function shown in FIG. 2 may be executed by a computer dedicated to analysis processing. In the case of computer processing, it is natural that the program is configured so that each element function shown in FIG. 2 has an appropriate function corresponding to software processing. For example, the integration function 15 does not perform the integration operation continuously as in an analog circuit, but sequentially adds up the sampling processing results. A flow when the above-mentioned functions are executed by a computer is shown in FIG.

【0009】図2に示したΔtをΔθから算出する演算
処理はこの解析に設定する周波数が固定されていれば,
最初に演算されれば,次に周波数が変化されるまで演算
する必要がないことは当然である。またこのような演算
処理は解析処理用コンピュータの空時間を使用して実行
でき,所定の周波数に対応して1サイクルの演算時間が
設定されるので,必要な精度の解析処理が短時間で実行
できる。
In the arithmetic processing for calculating Δt from Δθ shown in FIG. 2, if the frequency set for this analysis is fixed,
Of course, if the calculation is performed first, it is not necessary to calculate until the frequency is changed next. In addition, such calculation processing can be executed by using the idle time of the analysis processing computer, and since the calculation time of one cycle is set corresponding to the predetermined frequency, the analysis processing with the required accuracy can be executed in a short time. it can.

【0010】上述の説明は本発明に基づく実施例におけ
る基本構成と基本実施方法について説明したものであっ
て,計測対象はどのような振動形態を呈する機械構造で
あってもよい。従って,加振機やセンサがどのような構
造種類のものに対しても適用することは可能である。ま
た,計測処理のための機能要素の構成は,本発明の技術
思想を用いれば図2に示した以外に構成しても良いし,
図3に示した概要フローの順序も適宜変更しても良く,
本発明を適用する演算処理はFFT機能によって行うよ
うに説明したがFFT機能に準ずるその他の解析手法に
対しても適用できることは当然である。
The above description is for the basic structure and the basic method in the embodiment according to the present invention, and the measuring object may be a mechanical structure exhibiting any vibration form. Therefore, it can be applied to any type of vibration exciter or sensor. Further, the configuration of functional elements for measurement processing may be configured other than that shown in FIG. 2 if the technical idea of the present invention is used.
The order of the outline flow shown in FIG. 3 may be changed as appropriate.
The arithmetic processing to which the present invention is applied has been described as being performed by the FFT function, but it is needless to say that the present invention can be applied to other analysis methods based on the FFT function.

【0011】[0011]

【発明の効果】本発明は上述したように構成したので,
下記に記すような優れた効果を有する。 計測周波数を所定数で分割する位相ピッチで解析処理
がなされるので,計測する周波数に関係なく所望精度の
解析処理が最適速度で実行できる。 複雑な振動形態を有する機械構造体の振動特性も,速
やかに,かつ精度良く,希望する周波数に対応する応答
振動状況を計測することができる。 供試負荷機構に特定の周波数で加振する場合はその加
振周波数に対応する応答データを速やかに,かつ精度良
く,計測することができる。 本発明に基づく計測装置によると,簡単な構成で上述
の優れた効果を得ることができる。
Since the present invention is configured as described above,
It has excellent effects as described below. Since the analysis process is performed with the phase pitch that divides the measurement frequency by a predetermined number, the analysis process with desired accuracy can be executed at the optimum speed regardless of the measured frequency. With regard to the vibration characteristics of a mechanical structure having a complicated vibration form, it is possible to quickly and accurately measure the response vibration situation corresponding to a desired frequency. When the test load mechanism is vibrated at a specific frequency, the response data corresponding to the vibration frequency can be measured quickly and accurately. According to the measuring device based on the present invention, the above-mentioned excellent effects can be obtained with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した機械振動系振動応答特性計測
装置の1例を示す概要ブロック図である。
FIG. 1 is a schematic block diagram showing an example of a mechanical vibration system vibration response characteristic measuring device to which the present invention is applied.

【図2】図1に示した機械振動系振動応答特性計測装置
における本発明の動作を説明する要素機能構成の1例を
示す概要ブロック図である。
FIG. 2 is a schematic block diagram showing an example of an elemental functional configuration for explaining the operation of the present invention in the mechanical vibration system vibration response characteristic measuring apparatus shown in FIG.

【図3】図2に示した概要ブロック図の機能をコンピュ
ータによって実行した場合を説明する概要フロー図であ
る。
FIG. 3 is a schematic flowchart illustrating a case where a computer executes the functions of the schematic block diagram shown in FIG.

【符号の説明】[Explanation of symbols]

1:計測管理機能 2:計測加振信号作成機能 3:加振機駆動機能 4:加振機 5:回転軸 6:供試負荷機構 7:センサ− 8:振動検出機能 9:FFT動作設定機能 10:FFT機能 1: Measurement management function 2: Measurement excitation signal creation function 3: Exciter drive function 4: Exciter 5: Rotation axis 6: Test load mechanism 7: Sensor-8: Vibration detection function 9: FFT operation setting function 10: FFT function

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 供試体に結合し強制振動を与える加振機
と,供試体に装着し当該供試体の振動状態を検知するセ
ンサと,該センサが検知した測定値を解析するFFT機
能とを備えた機械振動系振動応答特性計測手段におい
て,計測周波数に対応する波形1サイクルを分割する位
相所定ピッチで前記FFT機能における演算処理を実行
するようにしたことを特徴とする機械振動系振動応答特
性計測方法。
1. A vibration exciter that is coupled to a test piece to apply a forced vibration, a sensor that is attached to the test piece to detect a vibration state of the test piece, and an FFT function that analyzes a measurement value detected by the sensor. In the mechanical vibration system vibration response characteristic measuring means, the mechanical vibration system vibration response characteristic is characterized in that the arithmetic processing in the FFT function is executed at a phase predetermined pitch for dividing one cycle of the waveform corresponding to the measurement frequency. Measuring method.
【請求項2】 供試体に結合し強制振動を与える加振機
と,供試体に装着し当該供試体の振動状態を検知するセ
ンサと,該センサが検知した測定値を解析するFFT機
能とを備えた機械振動系振動応答特性計測装置におい
て,計測振動波形1サイクルを所定数に分割する位相ピ
ッチを記録する手段と,この位相ピッチと所定の計測周
波数とから演算タイミングを算出する機能とを備え,該
演算タイミングによって前記FFT機能における演算処
理を実行するようにしたことを特徴とする機械振動系振
動応答特性計測装置。
2. A vibration exciter coupled to a test piece for giving a forced vibration, a sensor mounted on the test piece to detect a vibration state of the test piece, and an FFT function for analyzing a measurement value detected by the sensor. A mechanical vibration system vibration response characteristic measuring device provided with means for recording a phase pitch for dividing one cycle of a measured vibration waveform into a predetermined number, and a function for calculating a calculation timing from the phase pitch and a predetermined measurement frequency. The mechanical vibration system vibration response characteristic measuring device is characterized in that the arithmetic processing in the FFT function is executed at the arithmetic timing.
【請求項3】 供試体に加える強制振動の周波数設定手
段と,供試体に結合し前記設定周波数の強制振動を与え
る加振機と,供試体に装着し当該供試体の振動状態を検
知するセンサと,このセンサが検知した測定値を解析す
るFFT機能とを備えた機械振動系振動応答特性計測装
置において,計測振動波形1サイクルを所定数に分割す
る計測位相ピッチを記録する手段と,この計測位相ピッ
チと前記強制振動周波数とから演算タイミングを算出す
る機能とを備え,この演算タイミングによって前記FF
T機能における演算処理を実行するようにしたことを特
徴とする機械振動系振動応答特性計測装置。
3. A frequency setting means for forced vibration applied to a test piece, a vibration exciter coupled to the test piece for giving forced vibration of the set frequency, and a sensor mounted on the test piece to detect a vibration state of the test piece. And a mechanical vibration system vibration response characteristic measuring device having an FFT function for analyzing a measurement value detected by this sensor, a means for recording a measurement phase pitch for dividing one cycle of a measurement vibration waveform into a predetermined number, and this measurement The FF is provided with a function of calculating a calculation timing from the phase pitch and the forced vibration frequency.
A mechanical vibration system vibration response characteristic measuring device characterized by executing arithmetic processing in the T function.
JP4287028A 1992-10-02 1992-10-02 Method and apparatus for measuring vibration response characteristic of machine vibration device Pending JPH06117917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4287028A JPH06117917A (en) 1992-10-02 1992-10-02 Method and apparatus for measuring vibration response characteristic of machine vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4287028A JPH06117917A (en) 1992-10-02 1992-10-02 Method and apparatus for measuring vibration response characteristic of machine vibration device

Publications (1)

Publication Number Publication Date
JPH06117917A true JPH06117917A (en) 1994-04-28

Family

ID=17712113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4287028A Pending JPH06117917A (en) 1992-10-02 1992-10-02 Method and apparatus for measuring vibration response characteristic of machine vibration device

Country Status (1)

Country Link
JP (1) JPH06117917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004498A (en) * 2015-07-09 2015-10-28 西安理工大学 Vibration fault diagnosis method of hydroelectric generating set
CN106324490A (en) * 2016-08-03 2017-01-11 国网天津市电力公司 Voltage transformer on-load tap-changer mechanical fault diagnosis method
CN113654798A (en) * 2021-08-18 2021-11-16 西人马(深圳)科技有限责任公司 Fault diagnosis method and device and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004498A (en) * 2015-07-09 2015-10-28 西安理工大学 Vibration fault diagnosis method of hydroelectric generating set
CN106324490A (en) * 2016-08-03 2017-01-11 国网天津市电力公司 Voltage transformer on-load tap-changer mechanical fault diagnosis method
CN113654798A (en) * 2021-08-18 2021-11-16 西人马(深圳)科技有限责任公司 Fault diagnosis method and device and electronic equipment

Similar Documents

Publication Publication Date Title
JP4273560B2 (en) Motor control device
CN107014480A (en) Linear motor displacement amplitude detection method and detection means
JP5237042B2 (en) Vibration speed sensor calibration method and apparatus
JPH11118591A (en) Vibration analysis method and device of enclosure of disk device
KR100378591B1 (en) Driveline vibration analyzer
JPH06117917A (en) Method and apparatus for measuring vibration response characteristic of machine vibration device
JP2001165089A (en) Contactless blade vibration measuring device
US6253620B1 (en) Device and method for measuring dynamic torsional characteristics of a damper assembly
JP4692705B2 (en) Test method for viscoelastic materials
WO2013135138A1 (en) Method for measuring mechanical resonance frequency by using servo driver
JP3129406B2 (en) Wing vibration measurement device
EP0304287A2 (en) Method of reducing lateral force variation of tire
JPH0798263A (en) Vibration control method of vibration-response-characteristic tester of mechanical vibration system and vibration-response-characteristic tester using method thereof
JPH036459A (en) Method for detecting number of rotations
JP3025978B2 (en) Engine performance recording method and apparatus in engine test apparatus
KR100203178B1 (en) Torsional vibration measuring device of crank shaft
JP3055788B2 (en) Vibration characteristic analysis method and device
JPH0798262A (en) Twist vibration tester
US6959688B2 (en) Method for monitoring engine order forcing frequency
WO2023209846A1 (en) Input/output device and steering measurement device
JPH0222521A (en) Detector for abnormal vibration of rotary machine
JPH07270229A (en) Rotary machine test device
JPS60122327A (en) Investigating method of load-dependent oscillation of rotary machine
JPH07260564A (en) Abnormality diagnostic device for rotary equipment and method thereof
JPH05157657A (en) Mechanical vibration system response characteristic test device