JPH06116510A - Production of iridescent luster pigment - Google Patents

Production of iridescent luster pigment

Info

Publication number
JPH06116510A
JPH06116510A JP4267114A JP26711492A JPH06116510A JP H06116510 A JPH06116510 A JP H06116510A JP 4267114 A JP4267114 A JP 4267114A JP 26711492 A JP26711492 A JP 26711492A JP H06116510 A JPH06116510 A JP H06116510A
Authority
JP
Japan
Prior art keywords
flake
pearlescent pigment
substrate
titania
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4267114A
Other languages
Japanese (ja)
Other versions
JP3097349B2 (en
Inventor
Kazuhiro Doshita
堂下和宏
Toshiaki Mizuno
水野俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP04267114A priority Critical patent/JP3097349B2/en
Publication of JPH06116510A publication Critical patent/JPH06116510A/en
Application granted granted Critical
Publication of JP3097349B2 publication Critical patent/JP3097349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0021Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Surface Treatment Of Glass (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To easily and efficiently produce an iridescent luster pigment exhibiting bright reflective interference color. CONSTITUTION:An iridescent luster pigment is produced by coating a transparent flaky substrate with titania, zirconia or their mixture and heat-treating the coated product. In the above process, the transparent flaky substrate has a light transmittance of <=50% for at least a part of light of a wavelength range of 400-800nm and is produced from a solution containing a hydrolyzable and polycondensable organometallic compound and a substance causing the light absorption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真珠光沢顔料の製造方
法、特にチタニア、ジルコニア単独またはそれらの混合
物からなる金属酸化物微粒子をフレーク上に被覆した真
珠光沢顔料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a pearlescent pigment, and more particularly to a method for producing a pearlescent pigment having flake coated with metal oxide fine particles composed of titania, zirconia alone or a mixture thereof.

【0002】[0002]

【従来の技術】現在、真珠光沢顔料として、チタニア微
粒子の半透明層を雲母薄片上に形成したものが広く使用
されている。
2. Description of the Related Art At present, a pearlescent pigment having a semitransparent layer of fine titania particles formed on a mica flakes is widely used.

【0003】雲母薄片上へのチタニアの被覆方法とし
て、沸騰温度で硫酸酸性オキシ硫酸チタン溶液を加水分
解する方法(例えば、特公昭43−25644号)や、
四塩化チタンの加水分解法(例えば、特公昭49−38
24号)が一般に知られている。これらの方法では、水
酸化チタンを被覆した後、700〜1000℃で熱処理
し、安定で輝度の高いチタニア被覆層となす。
As a method of coating titania on the mica flakes, a method of hydrolyzing a sulfuric acid acid titanium oxysulfate solution at a boiling temperature (for example, Japanese Examined Patent Publication No. 43-25644),
Hydrolysis Method of Titanium Tetrachloride (For example, Japanese Patent Publication No. 49-38)
No. 24) is generally known. In these methods, after coating with titanium hydroxide, heat treatment is performed at 700 to 1000 ° C. to form a titania coating layer that is stable and has high brightness.

【0004】一方、本発明者らは、雲母薄片の代わりに
フレーク状ガラスを使用し真珠光沢顔料を製造すること
を提案した。雲母薄片の代わりにフレーク状ガラスを使
用することの利点は、フレーク状ガラスの表面平滑性の
良さにある。すなわち、フレーク状ガラスは雲母のよう
に表面凹凸が大きくなく、チタニア層を設けた場合、チ
タニア層内の多重反射が良好であり、色調がより美しい
と言う長所がある。
On the other hand, the present inventors have proposed to use flake-shaped glass instead of mica flakes to produce pearlescent pigments. The advantage of using glass flakes instead of mica flakes lies in the good surface smoothness of the glass flakes. That is, the glass flakes do not have large surface irregularities like mica, and when a titania layer is provided, multiple reflection in the titania layer is good, and the color tone is more beautiful.

【0005】これら雲母やフレーク状ガラスは何れも可
視光透過率が低くないので、チタニア被覆後のこれら顔
料を明るい背景に置いた場合、反射干渉色と透過干渉色
が混じって見えることになる。反射干渉色と透過干渉色
は、互いに相補的関係にあり、その混合色は白色であ
る。このように、明るい背景上に置かれたこの種の顔料
は、その特徴とする反射干渉色が現れにくくなるという
欠点を有している。
Since neither mica nor flake-shaped glass has a low visible light transmittance, when these pigments coated with titania are placed on a bright background, a reflection interference color and a transmission interference color appear to be mixed. The reflection interference color and the transmission interference color are complementary to each other, and the mixed color thereof is white. Thus, this type of pigment placed on a bright background has the disadvantage that its characteristic reflection interference color is less likely to appear.

【0006】[0006]

【発明が解決しようとする課題】この欠点を解決する方
法として、雲母上に被覆した二酸化チタンを還元し、低
酸化状態のチタニアとして黒色となし、さらにその上
に、二酸化チタンの被覆を行うことにより、反射干渉色
を強調することが行われている(例えば、鈴木 福二,
ニューセラミックス,No.1,79-84(1991).参照)。しか
し、この方法では、二酸化チタン被覆、還元操作、二酸
化チタン被覆と、操作が煩雑であり、工業的利用の観点
からは不利であると言う問題点があった。
As a method for solving this drawback, titanium dioxide coated on mica is reduced to form black as titanium oxide in a low oxidation state, and titanium dioxide is further coated thereon. Have been used to enhance reflection interference colors (for example, Fukuji Suzuki,
See New Ceramics, No. 1, 79-84 (1991).). However, this method has a problem in that the titanium dioxide coating, the reduction operation, and the titanium dioxide coating are complicated operations and are disadvantageous from the viewpoint of industrial use.

【0007】本発明は上記の従来技術に鑑み、鮮やかな
反射干渉色を有する真珠光沢顔料を簡単かつ効率的に製
造することのできる方法を提供するものである。
In view of the above-mentioned prior art, the present invention provides a method capable of easily and efficiently producing a pearlescent pigment having a vivid reflection interference color.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、チタ
ニアもしくはジルコニア単独またはそれらの混合物をフ
レーク状基材上に被覆し、熱処理して真珠光沢顔料を製
造する方法において、前記フレーク状基材として、加水
分解・重縮合可能な有機金属化合物および結果的に光吸
収の原因となる物質を含む溶液から製造した、400n
m〜800nmの波長範囲の少なくとも一部の光の透過
率が50%以下である材料を使用することを特徴とする
真珠光沢顔料の製造方法である。
That is, the present invention provides a method for producing a pearlescent pigment by coating a flake-shaped substrate with titania or zirconia alone or a mixture thereof, wherein the flake-shaped substrate is Prepared from a solution containing a hydrolyzable / polycondensable organometallic compound and a substance causing light absorption as a result, 400 n
A method for producing a pearlescent pigment, which comprises using a material having a light transmittance of 50% or less in at least a part of a wavelength range of m to 800 nm.

【0009】フレーク状基材は、加水分解・重縮合可能
な有機金属化合物を含む溶液から既に発明者らが提案し
た方法(特開平3−285838)によって製造するこ
とができる。
The flake-like substrate can be produced from a solution containing a hydrolyzable / polycondensable organometallic compound by the method already proposed by the inventors (Japanese Patent Laid-Open No. 3-285838).

【0010】すなわち、加水分解・重縮合可能な有機金
属化合物を含む溶液を基材上に塗布し、これを乾燥して
ゲル状膜を形成させた後、ゲル状膜が付着した基材から
ゲル状膜を剥離させ、焼結してフレーク状基材を製造す
る。
That is, a solution containing an organometallic compound capable of being hydrolyzed and polycondensed is applied onto a substrate, dried to form a gel-like film, and then the gel is removed from the substrate to which the gel-like film is attached. The flaky film is peeled off and sintered to produce a flake-shaped substrate.

【0011】本発明に用いる原料としての加水分解・重
縮合可能な有機金属化合物は、加水分解、脱水縮合を行
なうものであれば基本的にはどんな化合物でもよいが、
アルコキシル基を有する金属アルコキシドが好ましい。
更に具体的には、シリコン、チタン、アルミニウム、ジ
ルコニウム、リン、ホウ素等のメトキシド、エトキシ
ド、プロポキシド、ブトキシド等が、単体あるいは混合
体として用いられる。従って、本発明によって得られる
フレーク状基材の組成は、例えば純粋なシリカ、珪酸塩
系、チタン酸塩系、アルミン酸系、ジルコニウム酸塩
系、リン酸塩系、ホウ酸塩系の非晶質または結晶質のも
のである。
The hydrolyzable / polycondensable organometallic compound used as a raw material in the present invention may be basically any compound as long as it can be hydrolyzed and dehydrated and condensed.
Metal alkoxides having alkoxy groups are preferred.
More specifically, methoxides such as silicon, titanium, aluminum, zirconium, phosphorus and boron, ethoxides, propoxides, butoxides and the like are used alone or as a mixture. Therefore, the composition of the flake-like substrate obtained by the present invention is, for example, pure silica, silicate-based, titanate-based, aluminate-based, zirconate-based, phosphate-based, borate-based amorphous. Quality or crystalline.

【0012】上記有機金属化合物を含む原料溶液の溶媒
は、実質的に上記有機金属化合物を溶解すれば基本的に
何でもよいが、メタノ−ル、エタノ−ル、プロパノ−
ル、ブタノ−ル等のアルコ−ル類が最も好ましい。この
溶媒の使用量は有機金属化合物と溶媒との合計量に対し
て容積比で0.1〜0.995、好ましくは0.2〜0.
9、更に好ましくは0.3〜0.85である。
The solvent of the raw material solution containing the above-mentioned organometallic compound may be basically any solvent as long as it substantially dissolves the above-mentioned organometallic compound, but methanol, ethanol or propanol is used.
Most preferred are alcohols such as alcohol and butanol. The amount of this solvent used is 0.1 to 0.995, preferably 0.2 to 0.995, in volume ratio with respect to the total amount of the organometallic compound and the solvent.
9, more preferably 0.3 to 0.85.

【0013】上記原料の有機金属化合物の加水分解には
水分が必要である。これは中性、酸性、塩基性の何れで
もよいが、加水分解を促進するためには、塩酸、硝酸、
硫酸等で酸性にした水を用いるのが好ましい。その使用
量は、有機金属化合物1モルに対して水1モル〜100
モルの範囲が好ましい。そして酸の使用量は有機金属化
合物に対してモル比で0.01〜2、好ましくは0.0
5〜1.5である。
Moisture is required for the hydrolysis of the above-mentioned raw material organometallic compound. It may be neutral, acidic or basic, but in order to accelerate hydrolysis, hydrochloric acid, nitric acid,
It is preferable to use water acidified with sulfuric acid or the like. The amount used is 1 mol to 100 mol of water with respect to 1 mol of the organometallic compound.
A molar range is preferred. The acid is used in a molar ratio of 0.01 to 2, preferably 0.0
It is 5 to 1.5.

【0014】本発明で使用する基板はステンレス、金、
銀のような金属、ガラスあるいはプラスチックなどの材
質で、表面が平滑なものを用いる。このような基板に、
上記有機金属化合物を含む液体を塗布し、0.06〜5
0μmの薄い液膜とする。この膜が乾燥すると収縮する
が、基板は収縮しないので、膜に亀裂が発生する。基材
からゲル状膜を剥離させた後、焼結してフレーク状ガラ
スを製造する。
The substrate used in the present invention is stainless steel, gold,
Use a material such as metal such as silver, glass, or plastic that has a smooth surface. On such a substrate,
Applying a liquid containing the above organometallic compound, 0.06-5
A thin liquid film of 0 μm is used. When this film dries, it shrinks, but the substrate does not shrink and cracks occur in the film. After peeling the gel film from the substrate, it is sintered to produce a glass flake.

【0015】本発明に用いる結果的に光吸収の原因とな
る物質は、前記フレーク状物質の可視光透過率を低くす
るものであり、炭化残留するような有機物、鉄等の金属
イオンまたはコロイドなどを挙げることができる。
The substance which causes light absorption as a result of use in the present invention is one which lowers the visible light transmittance of the flaky substance, such as an organic substance which remains carbonized, a metal ion such as iron or a colloid. Can be mentioned.

【0016】該有機物を炭化残留させる方法は、原料で
ある加水分解・重縮合可能な有機金属化合物中の有機基
を炭化させても良いし、積極的に原料溶液中に有機物質
を添加付与しても良い。前者有機金属化合物としては、
ジメチルジメトキシシラン、メチルトリエトキシシラ
ン、γ−グリシドキシプロピルトリメトキシシラン等の
アルコキシシランやシランカップリング剤などの使用
が、炭化に有効である。例えば上記のジメチルジメトキ
シシランおよびメチルトリエトキシシランは加水分解・
重縮合可能な有機金属化合物でもあり、かつ結果的に光
吸収の原因となる物質でもあるので兼用することができ
る。後者の有機物質は、有機色素、有機高分子化合物
等、炭素原子を分子中に有し原料溶液に可溶であるもの
なら、何でも使用できる。
As the method for carbonizing and leaving the organic matter, the organic group in the raw material, which can be hydrolyzed and polycondensed, may be carbonized, or the organic material is positively added and added to the raw material solution. May be. As the former organometallic compound,
The use of an alkoxysilane such as dimethyldimethoxysilane, methyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane or a silane coupling agent is effective for carbonization. For example, the above-mentioned dimethyldimethoxysilane and methyltriethoxysilane are hydrolyzed.
Since it is a polycondensable organometallic compound and also a substance which causes light absorption as a result, it can be used in common. Any of the latter organic substances can be used, such as organic dyes and organic polymer compounds, as long as they have carbon atoms in the molecule and are soluble in the raw material solution.

【0017】結果的に光吸収の原因となる物質の添加量
は加水分解・重縮合可能な有機金属化合物に対して、通
常は0.1〜30重量%である。この添加量が0.1重
量%未満では鮮やかな反射干渉色を有する真珠光沢顔料
が得られない。またこの添加量が30重量%を越えても
真珠光沢顔料の反射干渉色の鮮やかさは、もはや向上せ
ず、添加物ぼ無駄となる。
As a result, the amount of the substance causing light absorption is usually 0.1 to 30% by weight based on the amount of the organometallic compound capable of being hydrolyzed and polycondensed. If the amount added is less than 0.1% by weight, a pearlescent pigment having a vivid reflection interference color cannot be obtained. Even if the amount added exceeds 30% by weight, the vividness of the reflection interference color of the pearlescent pigment is no longer improved, and the additive is wasted.

【0018】これら原料溶液を、基材上に塗布し、乾燥
して基材から剥離させた後、熱処理する。この熱処理を
還元性雰囲気中で行えば、容易に有機物が炭素分として
フレーク中に残留する。熱処理温度は特に限定されない
が、フレーク状基材の強度を考慮すれば、600〜12
00℃の範囲で熱処理するのが好ましい。
These raw material solutions are applied on a substrate, dried and peeled from the substrate, and then heat treated. If this heat treatment is performed in a reducing atmosphere, organic substances easily remain in the flakes as carbon. The heat treatment temperature is not particularly limited, but if the strength of the flake-like substrate is taken into consideration, it is 600-12.
It is preferable to perform heat treatment in the range of 00 ° C.

【0019】得られるフレーク状ガラス基材は400n
m〜800nmの波長範囲の少なくとも一部の光の透過
率が50%以下であることが鮮やかな反射干渉色を有す
る真珠光沢顔料を得るために必要である。この光の透過
率は、チタニアもしくはジルコニア単独またはそれらの
混合物を被覆する前のフレーク状基材を、市販のアクリ
ル樹脂中に、濃度が5重量%となるように分散させ、厚
みが2mmの窓ガラス板上に約100μmの厚みで塗布
・乾燥させ、分光光度計で透過率を測定した値で定義す
る。この透過率は好ましくは30%以下である。この透
過率は小さければ小さい程効果が高いが、透過率が3%
以下では、さらに効果が高くなることはない。従って通
常は3%より高い透過率のものを使用する。また使用す
るフレーク状ガラス基材の寸法については、厚さは、通
常0.05μm〜5μmである。5μmより厚いと、自
由表面の膜部分と基材付近の膜部分との乾燥速度の差が
大きくなりすぎ、得られるフレーク状ガラスに、基板に
水平な方向の膜間剥離が発生するようになる。このよう
な膜間剥離が発生すると、得られるフレーク状ガラスの
膜厚の分布が 広くなり製品としての 品質が悪くなる。
逆に0.05μmより薄いと、基板と膜との付着性が大
きくなりすぎ、膜が基板から剥離しなくなり、フレーク
状とはならない。また本発明によって製造されるフレー
ク状ガラスの直径は通常10μm〜数mmであり、その
アスペクト比は少なくとも5、好ましくは少なくとも1
0である。
The flake-shaped glass substrate obtained is 400 n
It is necessary that at least a part of the light transmittance in the wavelength range of m to 800 nm is 50% or less in order to obtain a pearlescent pigment having a bright reflection interference color. Regarding the light transmittance, a flake-shaped substrate before coating with titania or zirconia alone or a mixture thereof was dispersed in a commercially available acrylic resin so that the concentration was 5% by weight, and a window having a thickness of 2 mm was used. It is defined as the value obtained by coating and drying on a glass plate to a thickness of about 100 μm and measuring the transmittance with a spectrophotometer. This transmittance is preferably 30% or less. The smaller this transmittance is, the higher the effect is, but the transmittance is 3%.
In the following, the effect will not be further enhanced. Therefore, a material having a transmittance higher than 3% is usually used. Regarding the size of the flake-shaped glass substrate used, the thickness is usually 0.05 μm to 5 μm. If it is thicker than 5 μm, the difference in the drying rate between the film portion on the free surface and the film portion near the substrate becomes too large, and the resulting flaky glass will be peeled between the films in the horizontal direction on the substrate. . When such peeling between films occurs, the film thickness distribution of the obtained glass flakes becomes wide, and the quality as a product deteriorates.
On the other hand, when the thickness is less than 0.05 μm, the adhesion between the substrate and the film becomes too large, and the film does not peel off from the substrate, and the flakes are not formed. The diameter of the glass flakes produced by the present invention is usually 10 μm to several mm, and the aspect ratio thereof is at least 5, preferably at least 1.
It is 0.

【0020】このようにして得られた、可視光透過率の
低いフレーク状基材上に、既知の方法でチタニアもしく
はジルコニア単独またはそれらの混合物を被覆し、鮮や
かな反射干渉色を有する真珠光沢顔料を簡単に製造する
ことができる。被覆するチタニアもしくはジルコニア単
独またはそれらの混合物の厚みを50〜200nmの範
囲で制御することによって、銀色、黄金色、赤色、赤紫
色、青色、緑色などの真珠光沢が得られる。
The thus obtained flaky base material having a low visible light transmittance is coated with titania or zirconia alone or a mixture thereof by a known method to give a pearlescent pigment having a vivid reflection interference color. Can be easily manufactured. By controlling the thickness of the titania or zirconia to be coated alone or a mixture thereof in the range of 50 to 200 nm, pearl luster such as silver, golden, red, magenta, blue and green can be obtained.

【0021】[0021]

【実施例】以下に実施例を示す。EXAMPLES Examples will be shown below.

【0022】実施例−1 市販のシリコンテトラエトキシド、エタノール、水を、
体積比で1:2:1の割合で混合し、さらに市販の有機
色素であるメチレンブルーを、前記混合溶液に対し0.
1重量%となるように添加し、室温で約24時間攪拌を
行なった。
Example 1 Commercially available silicon tetraethoxide, ethanol, water,
The mixture was mixed at a volume ratio of 1: 2: 1, and a commercially available organic dye, methylene blue, was added to the mixed solution in an amount of 0.
It was added so as to be 1% by weight and stirred at room temperature for about 24 hours.

【0023】表面を研磨した、20cm×20cmで厚
さ1mmのステンレス板を基材として用意しておき、先
に調製した溶液を、ディップコーティングによってステ
ンレス板基材上に成膜し、20℃、60%RHの大気中
に5分間放置した。その後これを120℃オーブンに入
れて2分間乾燥し、基材から剥離した青色のゲル膜をナ
イロンブラシで集めた。この青色は原料の中に混入した
メチレンブルーから由来するものである。
A stainless steel plate having a surface of 20 cm × 20 cm and a thickness of 1 mm is prepared as a base material, and the solution prepared above is formed into a film on the stainless steel plate base material by dip coating. It was left for 5 minutes in the atmosphere of 60% RH. Then, this was put in an oven at 120 ° C. and dried for 2 minutes, and the blue gel film peeled from the substrate was collected with a nylon brush. This blue color is derived from methylene blue mixed in the raw material.

【0024】集めた青色ゲル膜を坩堝に入れて、これ
を、さらに還元剤として炭素片を入れた大きな坩堝内に
置き、蓋をして1000℃で2時間熱処理し、フレーク
状褐色シリカガラスを得た。その寸法は平均厚みが約
0.5μmで平均粒径が約85μmであった。この褐色
の着色はゲル膜中のメチレンブルーが分解し炭素成分が
還元されて炭素がシリカ中に分散していることによるも
のである。
The collected blue gel film was put into a crucible, and this was placed in a large crucible containing carbon pieces as a reducing agent. The lid was capped and heat-treated at 1000 ° C. for 2 hours to remove flaky brown silica glass. Obtained. The dimensions were such that the average thickness was about 0.5 μm and the average particle size was about 85 μm. This brown coloring is due to the fact that methylene blue in the gel film is decomposed, the carbon component is reduced, and carbon is dispersed in silica.

【0025】このフレーク状褐色シリカガラスを、市販
のアクリル樹脂中に、濃度が5重量%となるように分散
させ、これを厚みが2mmの窓ガラス板上に約100μ
mの厚みで塗布・乾燥させ、分光光度計で透過率を測定
したところ、450nm光の透過率は8%であり、肉眼
で観察すると薄い褐色を呈していた。
This flake-shaped brown silica glass was dispersed in a commercially available acrylic resin to a concentration of 5% by weight, and this was dispersed on a window glass plate having a thickness of 2 mm to about 100 μm.
When it was applied and dried at a thickness of m and the transmittance was measured with a spectrophotometer, the transmittance for 450 nm light was 8%, and it was a pale brown color when observed with the naked eye.

【0026】先のフレーク状褐色シリカガラス15gを
100mlの水に分散させ、80℃に保った。ここに、
12gの二酸化チタンに相当するオキシ硫酸チタン水溶
液100gと、50gの50%硫酸をゆっくり加えた。
これを約1時間半加熱沸騰させた。この加熱沸騰により
フレーク状褐色シリカガラスの表面に徐々に水酸化チタ
ンが反応生成するが、加熱沸騰の途中で時々スラリーを
1滴取り、これを黒地の背景上に置き、チタニア層起因
の干渉色を観察した。この色が赤橙色になったところ
で、沸騰を止めた。スラリーを濾過し、水で洗浄して硫
酸を除去、乾燥して、水酸化チタン被覆フレーク状褐色
シリカガラスを得た。
15 g of the above flake-shaped brown silica glass was dispersed in 100 ml of water and kept at 80.degree. here,
100 g of titanium oxysulfate aqueous solution corresponding to 12 g of titanium dioxide and 50 g of 50% sulfuric acid were slowly added.
This was heated and boiled for about one and a half hours. Titanium hydroxide is gradually generated on the surface of flaky brown silica glass by this heating boiling, but one drop of slurry is sometimes taken during the heating boiling and placed on a black background, and the interference color caused by the titania layer is generated. Was observed. When this color turned reddish orange, the boiling was stopped. The slurry was filtered, washed with water to remove sulfuric acid, and dried to obtain a titanium hydroxide-coated flaky brown silica glass.

【0027】得られた水酸化チタン被覆フレークを、1
000℃で1時間熱処理した。この熱処理により被覆層
の水酸化チタンがチタニアに変化した。被覆されたチタ
ニアの厚みは約85nmであった。最終的に得られたこ
の真珠光沢顔料を、アクリル樹脂に約5%となるように
分散させ、予め白色塗料を塗布乾燥させた金属基板上に
約50μmの厚みに塗布して乾燥させた。肉眼で見ると
この時の真珠光沢顔料の反射色は、チタニア層に起因す
る反射干渉色が強調されて、鮮やかな黄金色であった。
The obtained titanium hydroxide-coated flakes were mixed with 1
It heat-processed at 000 degreeC for 1 hour. This heat treatment changed the titanium hydroxide in the coating layer to titania. The thickness of the coated titania was about 85 nm. The pearlescent pigment finally obtained was dispersed in an acrylic resin so that the concentration was about 5%, and the pearlescent pigment was applied and dried to a thickness of about 50 μm on a metal substrate on which a white paint was previously applied and dried. When viewed with the naked eye, the reflection color of the pearlescent pigment at this time was a vivid golden color, with the reflection interference color caused by the titania layer being emphasized.

【0028】実施例−2 有機色素の代わりに、塩化第二鉄を濃度が1重量%とな
るように添加した他は、実施例−1と同様にして、鉄含
有フレークを製造した。フレークは、茶褐色であり、実
施例−1記載の方法で400〜600nm光に対する透
過率を測定したところ、10〜25%であった。実施例
−1記載と同じ方法で、約130nm厚みのチタニア被
覆を行い、青色の反射干渉色を有する真珠光沢顔料を得
た。
Example-2 Iron-containing flakes were produced in the same manner as in Example-1 except that ferric chloride was added so as to have a concentration of 1% by weight instead of the organic dye. The flakes were dark brown, and the transmittance for light of 400 to 600 nm was measured by the method described in Example-1 to find that it was 10 to 25%. By the same method as described in Example-1, a titania coating having a thickness of about 130 nm was performed to obtain a pearlescent pigment having a blue reflection interference color.

【0029】実施例−3 市販のシリコンテトラエトキシド、ジメチルジエトキシ
シラン、エタノール、水を、体積比で0.7:0.3:
2:1の割合で混合し、室温で約24時間攪拌を行なっ
た。
Example 3 Commercially available silicon tetraethoxide, dimethyldiethoxysilane, ethanol and water in a volume ratio of 0.7: 0.3:
The mixture was mixed at a ratio of 2: 1 and stirred at room temperature for about 24 hours.

【0030】この溶液を用い、実施例−1と同じ方法で
フレーク状褐色シリカガラスを作製した。この褐色の着
色はジメチルジエトキシシランが分解して還元されて生
成された炭素微粒子によるものである。このフレークの
550nm光に対する透過率は、約10%であった。
Using this solution, flaky brown silica glass was prepared in the same manner as in Example-1. This brown coloring is due to the carbon fine particles produced by the decomposition and reduction of dimethyldiethoxysilane. The transmittance of this flake for 550 nm light was about 10%.

【0031】実施例−1記載の方法で約120nm厚み
のチタニア層被覆を行い、赤紫色の反射干渉色を有する
真珠光沢顔料を得た。
A titania layer having a thickness of about 120 nm was coated by the method described in Example 1 to obtain a pearlescent pigment having a red-purple reflection interference color.

【0032】比較例−1 実施例−1記載の青色ゲルフレークを、そのまま空気中
で1000℃で熱処理して、透明なフレーク状シリカガ
ラスを得た。実施例1の場合とは違い、ゲル膜中のメチ
レンブルーは還元炭化されずに酸化分解するため着色は
生じない。
Comparative Example-1 The blue gel flakes described in Example-1 were heat-treated as they were in the air at 1000 ° C. to obtain transparent flake silica glass. Unlike in the case of Example 1, the methylene blue in the gel film is not reduced and carbonized but is oxidized and decomposed, so that coloring does not occur.

【0033】実施例−1記載の方法で、400nmから
800nmの範囲の光に対する透過率を測定したとこ
ろ、この範囲で90〜95%であった。
When the transmittance for light in the range of 400 nm to 800 nm was measured by the method described in Example-1, it was 90 to 95% in this range.

【0034】さらに実施例−1記載の方法で、約85n
m厚みのチタニア被覆を行ない、得られた真珠光沢顔料
を、アクリル樹脂に約5%となるように分散させ、白色
基板上に塗布した。この時の真珠光沢顔料の反射色は、
弱い黄色の混じった白色であった。この弱い黄色の着色
は反射干渉色に起因するものである。白色基板上にある
チタニア被覆シリカガラスフレークを、基板上方から見
た場合、フレークを透過してくる光は一度フレーク中を
通過して白色基板上で反射した光である。この光の強度
は、フレーク表面で直接反射する光の強度よりも弱い。
同じことが反射干渉光と透過干渉光強度にも言え、若干
強い反射干渉色が、補色である透過干渉色によって白色
化されなかった部分が弱い色として観察されるのであ
る。
Further, according to the method described in Example-1, about 85n
A m-thick titania coating was carried out, and the obtained pearlescent pigment was dispersed in an acrylic resin so as to be about 5% and applied onto a white substrate. The reflection color of the pearlescent pigment at this time is
It was a white color with a slight yellow color. This weak yellow coloring is due to the reflection interference color. When the titania-coated silica glass flakes on the white substrate are viewed from above the substrate, the light transmitted through the flakes is the light that once passed through the flakes and reflected on the white substrate. The intensity of this light is weaker than the intensity of the light reflected directly on the flake surface.
The same applies to the intensity of the reflected interference light and the intensity of the transmitted interference light, and a slightly strong reflected interference color is observed as a weak color in a portion that is not whitened by the complementary transmitted interference color.

【0035】比較例−2 フレーク状基材として、フレーク状褐色シリカガラスの
代わりに市販の白雲母を用いた他は、実施例−1と同様
に約85nm厚みのチタニア被覆を行い、真珠光沢顔料
を作製した。この顔料は、白色基板上に置いた時、反射
干渉色が弱くなり、淡黄白色となった。また使用した白
雲母の400nmから800nmの範囲の光の透過率は
85〜95%であった。
Comparative Example-2 A pearlescent pigment was prepared by performing titania coating having a thickness of about 85 nm as in Example-1 except that commercially available muscovite was used as the flake-shaped substrate instead of the flake-shaped brown silica glass. Was produced. When this pigment was placed on a white substrate, the reflection interference color was weakened, and it became pale yellowish white. The muscovite used had a light transmittance of 85 to 95% in the range of 400 to 800 nm.

【0036】実施例−4 予め、尿素を加えてpHを2.7に調節した水溶液30
0mlに、15gの二酸化ジルコニウムに相当する硫酸
ジルコニウムを溶解させた。ここに実施例−1記載のフ
レーク状褐色シリカガラスを15g加え、90℃に加熱
し、よく攪伴しながら約2時間この温度に保った。その
後、スラリーを濾過し水で洗浄、乾燥した。これを80
0℃で1時間処理した。ジルコニア層の厚みは約100
nmであった。
Example 4 Aqueous solution 30 in which pH was previously adjusted to 2.7 by adding urea.
Zirconium sulfate corresponding to 15 g of zirconium dioxide was dissolved in 0 ml. To this, 15 g of the flaky brown silica glass described in Example-1 was added, heated to 90 ° C., and kept at this temperature for about 2 hours while stirring well. Then, the slurry was filtered, washed with water and dried. 80 this
It was treated at 0 ° C. for 1 hour. The thickness of the zirconia layer is about 100
was nm.

【0037】実施例−1と同様に白色基板上で観察して
も反射干渉色は薄れず、鮮やかな黄金色が観察された。
Even when observed on a white substrate in the same manner as in Example 1, the reflection interference color did not fade and a bright golden color was observed.

【0038】実施例−5 市販のメチルトリエトキシシラン、エタノール、および
0.1N塩酸をそれぞれ体積比で1:1.8:0.8の
割合で混合し、50℃で約24時間攪伴を行った。実施
例−1と同様の方法でフレーク状ゲルを得、窒素気体
中、1000℃で1時間熱処理してフレーク状褐色シリ
カガラスを得た。このフレークの厚みは約0.7μmで
あった。この褐色の着色は、ゲル膜中の有機残基である
メチル基が分解して生じた炭素がフレーク中に均一に分
散していることに起因している。実施例−1記載の方法
で800nm光に対する透過率を測定したところ、約3
0%であった。
Example 5 Commercially available methyltriethoxysilane, ethanol, and 0.1N hydrochloric acid were mixed at a volume ratio of 1: 1.8: 0.8, and stirred at 50 ° C. for about 24 hours. went. Flake-like gel was obtained by the same method as in Example-1 and heat-treated at 1000 ° C. for 1 hour in nitrogen gas to obtain flake-like brown silica glass. The thickness of this flake was about 0.7 μm. This brown coloring is due to the fact that the carbon generated by the decomposition of the methyl group, which is an organic residue in the gel film, is uniformly dispersed in the flakes. When the transmittance for 800 nm light was measured by the method described in Example-1, it was about 3
It was 0%.

【0039】実施例−1記載と同じ方法で約160nm
厚みのチタニア被覆を行い、白色背景上でも薄れない鮮
やかな緑色の反射干渉色を有する真珠光沢顔料を得た。
In the same manner as described in Example-1, about 160 nm
A thick pearlescent pigment having a vibrant green reflection interference color that does not fade even on a white background was obtained by performing a thick titania coating.

【0040】[0040]

【発明の効果】本発明は、チタニア、ジルコニア単独ま
たはそれらの混合物を、400nm以上800nm以下
の範囲の光のうち少なくとも一部の可視光の透過率が5
0%以下であるフレーク状物質上に被覆する方法におい
て、有機金属化合物を含む溶液から直接製造した可視光
透過率の低いフレーク状物質を、基材として用いた。こ
のことにより、鮮やかな反射干渉色を持つ真珠光沢顔料
を簡単に、効率よく得ることができる。
INDUSTRIAL APPLICABILITY According to the present invention, titania, zirconia alone or a mixture thereof has a visible light transmittance of 5 at least in the light in the range of 400 nm to 800 nm.
In the method of coating on 0% or less of a flake substance, a flake substance having a low visible light transmittance produced directly from a solution containing an organometallic compound was used as a substrate. This makes it possible to easily and efficiently obtain a pearlescent pigment having a vivid reflection interference color.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタニアもしくはジルコニア単独または
それらの混合物をフレーク状基材上に被覆し、熱処理し
て真珠光沢顔料を製造する方法において、前記フレーク
状基材として、加水分解・重縮合可能な有機金属化合物
および結果的に光吸収の原因となる物質を含む溶液から
製造した、400〜800nmの波長範囲の少なくとも
一部の光の透過率が50%以下である材料を使用するこ
とを特徴とする真珠光沢顔料の製造方法。
1. A method for producing a pearlescent pigment by coating a flake-shaped substrate with titania or zirconia alone or a mixture thereof, and in the method for producing a pearlescent pigment, the flake-shaped substrate is a hydrolyzable / polycondensable organic material. A material having a light transmittance of 50% or less in at least a part of a wavelength range of 400 to 800 nm, which is manufactured from a solution containing a metal compound and a substance causing light absorption as a result. Manufacturing method of pearlescent pigment.
【請求項2】 前記結果的に光吸収の原因となる物質が
炭素原子を分子中に有する有機物であり、前記材料は、
前記溶液から製造したフレーク状ゲルを熱処理すること
により得た、炭素を含むガラスである請求項1記載の真
珠光沢顔料の製造方法。
2. The substance which causes light absorption as a result is an organic substance having a carbon atom in the molecule, and the material is
The method for producing a pearlescent pigment according to claim 1, which is a glass containing carbon obtained by heat-treating a flaky gel produced from the solution.
JP04267114A 1992-10-06 1992-10-06 Method for producing pearlescent pigment Expired - Fee Related JP3097349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04267114A JP3097349B2 (en) 1992-10-06 1992-10-06 Method for producing pearlescent pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04267114A JP3097349B2 (en) 1992-10-06 1992-10-06 Method for producing pearlescent pigment

Publications (2)

Publication Number Publication Date
JPH06116510A true JPH06116510A (en) 1994-04-26
JP3097349B2 JP3097349B2 (en) 2000-10-10

Family

ID=17440263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04267114A Expired - Fee Related JP3097349B2 (en) 1992-10-06 1992-10-06 Method for producing pearlescent pigment

Country Status (1)

Country Link
JP (1) JP3097349B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046624A1 (en) * 1996-06-03 1997-12-11 Engelhard Corporation Pearlescent glass
WO2002010291A1 (en) * 2000-07-31 2002-02-07 Nippon Sheet Glass Co., Ltd. Glass flakes and cosmetics containing the same
EP1463777A2 (en) 2001-05-09 2004-10-06 MERCK PATENT GmbH Effect pigments based on coated glass flakes
JP2006527779A (en) * 2003-06-17 2006-12-07 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Method for producing a pigment comprising a core material and at least one dielectric layer
JP2008247736A (en) * 2003-02-27 2008-10-16 Nippon Sheet Glass Co Ltd Process for producing flake glass
US8658184B2 (en) 2006-03-24 2014-02-25 Merck Patent Gmbh Glass flakes, and the use thereof as transparent filler
JP2016027095A (en) * 2014-07-03 2016-02-18 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド PEG-ASSISTED DEPOSITION OF CRACK-FREE TITANIA NANOCRYSTALLINE COATINGS OVER Al FLAKES
EP1474486B1 (en) * 2001-07-12 2019-04-03 Merck Patent GmbH Multilayer pigments based on glass flakes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046624A1 (en) * 1996-06-03 1997-12-11 Engelhard Corporation Pearlescent glass
JP2004352725A (en) * 1996-06-03 2004-12-16 Engelhard Corp Glass substrate pearlescent pigment for cosmetic
WO2002010291A1 (en) * 2000-07-31 2002-02-07 Nippon Sheet Glass Co., Ltd. Glass flakes and cosmetics containing the same
EP1463777A2 (en) 2001-05-09 2004-10-06 MERCK PATENT GmbH Effect pigments based on coated glass flakes
EP1474486B1 (en) * 2001-07-12 2019-04-03 Merck Patent GmbH Multilayer pigments based on glass flakes
JP2008247736A (en) * 2003-02-27 2008-10-16 Nippon Sheet Glass Co Ltd Process for producing flake glass
US7641730B2 (en) 2003-02-27 2010-01-05 Nippon Sheet Glass Company, Limited Glass flake and method of manufacrturing the same
JP2006527779A (en) * 2003-06-17 2006-12-07 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Method for producing a pigment comprising a core material and at least one dielectric layer
JP4767845B2 (en) * 2003-06-17 2011-09-07 チバ ホールディング インコーポレーテッド Method for producing a pigment comprising a core material and at least one dielectric layer
US8658184B2 (en) 2006-03-24 2014-02-25 Merck Patent Gmbh Glass flakes, and the use thereof as transparent filler
JP2016027095A (en) * 2014-07-03 2016-02-18 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド PEG-ASSISTED DEPOSITION OF CRACK-FREE TITANIA NANOCRYSTALLINE COATINGS OVER Al FLAKES

Also Published As

Publication number Publication date
JP3097349B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3051853B2 (en) Mica pigment coated with rutile titanium oxide formed without tin
US4494993A (en) Nacreous pigments, their preparation and use
US4192691A (en) Metal oxide platelets as nacreous pigments
JP2959928B2 (en) White conductive resin composition
KR100253774B1 (en) Coloured and coated platelike pigments
JP3242561B2 (en) Flaky aluminum oxide, pearlescent pigment and method for producing the same
US7850775B2 (en) Multi-colored lustrous pearlescent pigments
JP5717343B2 (en) Method for forming platelet pigment coated with (rutile) titanium dioxide
CA2343085C (en) Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof
JPS6234962A (en) Pearl gloss pigment having iron oxide coating layer
JPH10513206A (en) Colored aluminum pigment, method for producing the same and use thereof
JP2006526041A (en) Interference pigment with high hiding power
JPS6291567A (en) Pearl gloss pigment stable in glaze and enamel
DE19951869A1 (en) Color interference pigments
WO2005071019A1 (en) Colored bright pigment
JPH06116507A (en) Iridescent luster pigment
JP3097349B2 (en) Method for producing pearlescent pigment
JPS603111B2 (en) Coated titanium dioxide pigment and its manufacturing method
JP5205204B2 (en) Monoclinic fine particle bismuth oxide production method, ultraviolet shielding dispersion and production method thereof, and ultraviolet shielding coating composition
JP3504300B2 (en) Method for producing tantalum (V) nitride and colored pigment comprising the tantalum (V)
EP2512650B1 (en) Method for producing encapsulated metal colloids as inorganic pigments
JP3655513B2 (en) Powder having interference color and method for producing the same
JPH0216168A (en) Coated pigment
JPH06116508A (en) Production of flaky material coated with titania or zirconia
JP2697611B2 (en) Flake glass, method for producing the same, and cosmetics incorporating the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees