JPH0611559A - Method and apparatus for tracking-type optical wireless communication - Google Patents

Method and apparatus for tracking-type optical wireless communication

Info

Publication number
JPH0611559A
JPH0611559A JP4167734A JP16773492A JPH0611559A JP H0611559 A JPH0611559 A JP H0611559A JP 4167734 A JP4167734 A JP 4167734A JP 16773492 A JP16773492 A JP 16773492A JP H0611559 A JPH0611559 A JP H0611559A
Authority
JP
Japan
Prior art keywords
light
receiving
transmitting
terminal
wireless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4167734A
Other languages
Japanese (ja)
Other versions
JP3218477B2 (en
Inventor
Shinji Naito
紳司 内藤
Masanori Suzuki
正憲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP16773492A priority Critical patent/JP3218477B2/en
Publication of JPH0611559A publication Critical patent/JPH0611559A/en
Application granted granted Critical
Publication of JP3218477B2 publication Critical patent/JP3218477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To automatically adjust an axis shift and easily search for a communication target as well as communicate more information irrespective of adverse influence or the like of external noise. CONSTITUTION:Since diffusion light 14, 15 is emitted to each other at the time of searching for communication targets, a wider searching range at the time of emission than a case where condensed light is used can be obtained to facilitate searching. In addition since a light transmitting/receiving part rotates in horizontal and elevation angle directions, searching can be done easily and securely even if there is difference in height between both communicators. If communication is performed with condensed light 13, transmission/reception with high frequency signals is possible, a loss due to light diffusion can be further reduced, and also adverse influence of external noise can be prevented, thereby enabling communication of much data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無人搬送車やロボット
等の移動体に積載して光通信を自動的に行う追尾式光無
線通信方法及びその装置に係り、生産設備内で用いる無
人搬送車や発電プラント内で用いるロボット等のよう
に、電波の使用が制約される移動体に積載するのに好適
なものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tracking type optical wireless communication method for automatically carrying out optical communication by loading it on a moving body such as an automated guided vehicle or a robot, and an apparatus therefor. The present invention relates to a device suitable for loading on a moving body in which use of radio waves is restricted, such as a vehicle or a robot used in a power generation plant.

【0002】[0002]

【従来の技術】従来の追尾式光無線通信装置について
は、例えば米国原子力学会第31回リモートシステムテ
クノロジーカンファレンス(1983年)の講演予稿集
第82ページから第88ページ(The Americ
an Nuclear Society,Procee
dings of the 31st Confere
nce on Remote System Tech
nology,1983,PP.82−88)において
論じられている。この従来技術によれば、受光器内部に
おける結像位置を二次元光センサで検出すると、入射光
の方向を算出し、その算出した結果に基づき受光器の雲
台を入射光の方向に、即ち送光器の方向に向けるように
自動制御できる内容となっている。
2. Description of the Related Art A conventional tracking type optical wireless communication device is described, for example, in Proceedings of the 31st Remote System Technology Conference of the Atomic Energy Society of Japan (1983), pages 82 to 88 (The American).
an Nuclear Society, Procee
dings of the 31st Confere
nce on Remote System Tech
noology, 1983, PP. 82-88). According to this conventional technique, when the imaging position inside the light receiver is detected by the two-dimensional optical sensor, the direction of the incident light is calculated, and the platform of the light receiver is moved in the direction of the incident light based on the calculated result, that is, The contents can be automatically controlled so that it faces the direction of the light transmitter.

【0003】また、他の従来技術として以下のものがあ
る。即ち、特開昭62−172827号公報(以下、第
二の従来技術と云う)に示されるように、光線を拡散さ
せる光拡散手段と、光拡散手段の焦点の内側位置に夫々
配設された複数の発光素子とを有し、各々の発光素子の
発光によって形成される光信号受信可能領域が一部を重
なり合わせると共に、夫々連続的に異なるよう広くする
ことによって多量の情報を得るようにしたものがある。
また、特開昭63−13433号公報(以下、第三の従
来技術と云う)に示されるように、車両に積載した発光
器からの光を地上の受光器が受光すると、その光に基づ
き追従機構が地上の発光器の方向を向くように制御する
と共に、テレビカメラの撮像信号で変調された情報伝送
用の光が車両の受光器で受光されることにより、地上の
テレビカメラで撮像されたホームの状況がモニタに写し
出されるようにしたものがある。さらに、特開昭62−
53529号公報(以下、第四の従来技術と云う)に示
されるように、送受光器を備えた送光側車両と受光側車
両との走行時、双方が直線上では互いに複数配設された
夫々の受光素子の受光量が同量となることによって通信
し、この状態のとき、例えば前方の送光側車両がカーブ
すると、後方の受光側車両における夫々の受光素子の受
光が変化するので、その変化した受光量に応じ受光側車
両のからの受光器取付けハウジングを水平方向に回転さ
せることにより、光通信を寸断なく行えるようにしたも
の等がある。
Other conventional techniques are as follows. That is, as disclosed in Japanese Patent Laid-Open No. 62-172827 (hereinafter referred to as the second prior art), a light diffusing means for diffusing a light beam and a light diffusing means are provided inside the focal point of the light diffusing means, respectively. It has a plurality of light emitting elements, and the optical signal receivable areas formed by the light emission of the respective light emitting elements are partially overlapped and widened so as to be continuously different from each other, thereby obtaining a large amount of information. There is something.
Further, as disclosed in Japanese Patent Laid-Open No. 63-13433 (hereinafter, referred to as a third conventional technique), when a light receiver on the ground receives a light from a light emitter mounted on a vehicle, the light receiver on the ground follows the light. The mechanism controls the light emitting device on the ground so that the light for information transmission modulated by the image pickup signal of the TV camera is received by the light receiving device of the vehicle, so that the image is taken by the ground TV camera. Some home screens are displayed on the monitor. Furthermore, JP-A-62-1
As shown in Japanese Patent No. 53529 (hereinafter, referred to as fourth prior art), when a light-transmitting side vehicle equipped with a light-transmitting and light-receiving device and a light receiving side vehicle are traveling, a plurality of both are arranged on a straight line. Communication is performed by the light receiving amounts of the respective light receiving elements being the same amount, and in this state, for example, when the front light transmitting side vehicle curves, the light receiving of each light receiving element in the rear light receiving side vehicle changes, There is one in which the optical receiver mounting housing from the vehicle on the light receiving side is rotated in the horizontal direction according to the changed amount of received light so that optical communication can be performed without interruption.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、通信
開始の際に何等かの手段により、送受光器の軸ずれが二
次元センサで検出できる範囲内に調整されていることが
前提となっている。しかし、実際には作業者が手動で調
整しており、自動化システムに応用するには必ずしも十
分ではない。ことに生産設備や発電プラント内で移動体
間の光通信を行う場合、障害物や他の移動体によって光
通信が遮られることがしばしば生じる。また複数のロボ
ットが自律的に連携をとりあって作業するような場合、
通信相手を自ら探して情報を伝送する必要がある。この
ような場合、作業者が逐一手動調整を施さなければなら
ず、自動化し難い問題がある。
The above-mentioned prior art is premised on that the axis deviation of the light-transmitting / receiving device is adjusted within a range detectable by the two-dimensional sensor by some means at the time of starting communication. ing. However, in reality, the operator manually adjusts it, which is not always sufficient for application to an automated system. In particular, when performing optical communication between mobiles in a production facility or power plant, optical communication is often interrupted by obstacles or other mobiles. In addition, when multiple robots work autonomously in cooperation with each other,
It is necessary to search for a communication partner and transmit information. In such a case, the operator has to make manual adjustments one by one, which is difficult to automate.

【0005】また第二の従来技術は、拡散光だけを用い
ると、光の拡散によるロスが大きく、従ってより多量の
情報を伝達することができない問題がある。第三の従来
技術は、車両の発光器からの光を地上の受光器が受光す
ると、追従機構が地上の発光器を車両の発光器に向くよ
うに動作させるが、追従機構がどのように動作するのか
具体的に開示されていない。そして、第四の従来技術
は、送光側車両が受光側車両に対してずれた場合、追従
機構が水平方向に回転することによって受光側車両が送
光側車両と向かい合うようにしているが、追従機構が水
平方向にのみ回転するだけであるので、送光側車両と受
光側車両との両者間に高低差がある場合、追従機構が水
平方向に回転するだけでは受光側車両が送光側車両に向
くことができず、通信できなくなる問題がある。この問
題は、上記第二及び第三の従来技術においても同様であ
り、定められた方向以外の方向からの光を受光すること
について開示されていない。さらに、これら他の従来技
術においては、外乱ノイズに対して配慮されていないば
かりでなく、より多量の情報を通信することについても
配慮されていない問題がある。
The second prior art has a problem that if only diffused light is used, the loss due to the diffusion of light is large, and therefore a larger amount of information cannot be transmitted. In the third conventional technique, when the light from the light emitter of the vehicle is received by the light receiver on the ground, the tracking mechanism operates so that the light emitter on the ground faces the light emitter of the vehicle. Whether or not it is not specifically disclosed. Then, in the fourth conventional technique, when the light-transmitting side vehicle is displaced with respect to the light-receiving side vehicle, the light-receiving side vehicle faces the light-transmitting side vehicle by rotating the tracking mechanism in the horizontal direction. Since the tracking mechanism only rotates in the horizontal direction, if there is a difference in height between the light-transmitting side vehicle and the light-receiving side vehicle, the light-receiving side vehicle will not transmit the light-receiving side if the tracking mechanism rotates horizontally. There is a problem that it is not possible to face the vehicle and communication becomes impossible. This problem is the same in the second and third prior arts, and there is no disclosure about receiving light from a direction other than the determined direction. Further, in these other conventional techniques, not only consideration is given to disturbance noise, but also consideration is not given to communication of a larger amount of information.

【0006】本発明の目的は、上記従来技術の問題点に
鑑み、通信すべき相手との間で軸ずれがあっても、軸ず
れを自動的に調整し、通信相手を容易に探索すると共
に、外乱ノイズの悪影響等に拘ることなく、より多量の
情報を通信し得る追尾式光無線通信方法を提供すること
にあり、他の目的は、上記方法を的確に実施し得る追尾
式光無線通信装置を提供することにある。
In view of the above-mentioned problems of the prior art, an object of the present invention is to automatically adjust the axis deviation even if there is an axis deviation with the communication partner, and to easily search for the communication partner. The present invention is to provide a tracking type optical wireless communication method capable of communicating a larger amount of information regardless of the adverse effects of disturbance noise, and another object is to provide a tracking type optical wireless communication method capable of accurately implementing the above method. To provide a device.

【0007】[0007]

【課題を解決するための手段】本発明方法においては、
一方と他方との通信相手の探索時、双方が互いに拡散光
を放出し、一方が他方の拡散光を受光した時点で、該一
方が他方の拡散光に対する初期光軸調整を行い、次いで
一方が初期光軸調整を終了した時点で他方が一方に対す
る初期光軸調整を行い、その後、一方と他方との双方が
互いに集束光で通信することを特徴としている。
In the method of the present invention,
When searching for a communication partner of one and the other, when both emit diffused light and one receives the diffused light of the other, the one performs initial optical axis adjustment for the diffused light of the other, and then one Another feature is that when the initial optical axis adjustment is completed, the other performs the initial optical axis adjustment for one, and then both the one and the other communicate with each other by focused light.

【0008】本発明装置においては、送受光レンズ及び
発光器並びに受光器を設けた複数の送受光部と、送受光
部内に設置され、受光した光を結像させると共に該結像
位置の位置情報を出力する二次元光センサと、各送受光
部から放射される光を拡散光と集束光との何れかに選択
的に変更する光束変更手段と、各送受光部を水平方向及
び仰角方向に回動させる首振り手段と、各送受光部の光
束変更手段及び首振り手段の夫々を遠隔制御する手段と
を有している。また遠隔制御する手段は、互いに通信相
手の探索時、探索用の送受光部の光束変更手段の駆動に
より送受光部における発光器からの光を拡散させると共
に、首振り手段の駆動により送受光部を水平方向及び仰
角方向に回動させ、一方の送受光部が他方の送受光部か
らの光を受光した時点で、二次元光センサの出力信号に
基づき双方の送受光部を互いに向かい合わせ、かつ探索
した時点で、夫々の送受光部の光束変更手段を駆動し、
双方の送受光部からの光を集束光に変更し、その集束光
で通信するように構成されている。
In the device of the present invention, a plurality of light transmitting / receiving lenses, a light emitting device, and a plurality of light transmitting / receiving parts provided with a light receiving device, and a light receiving / receiving part installed in the light emitting / receiving part to form an image of the received light and position information of the image forming position. A two-dimensional optical sensor, a light flux changing means for selectively changing the light emitted from each light-transmitting / receiving unit into either diffused light or focused light, and each light-receiving unit in the horizontal direction and the elevation angle direction. It has a swinging means for rotating it, and a means for remotely controlling the light flux changing means and the swinging means of each of the light-transmitting and receiving parts. Further, the means for remote control, when searching for a communication partner, diffuses the light from the light emitting device in the light transmitting / receiving portion by driving the light flux changing means of the light transmitting / receiving portion for searching, and drives the swinging means by driving the swinging means. Is rotated in the horizontal direction and the elevation angle direction, and when one of the light transmitting / receiving units receives the light from the other light transmitting / receiving unit, both the light transmitting / receiving units face each other based on the output signal of the two-dimensional optical sensor, And at the time of searching, drive the light flux changing means of each of the light transmitting and receiving parts,
It is configured such that the light from both the light-transmitting and receiving parts is changed to focused light and the focused light is used for communication.

【0009】[0009]

【作用】本発明方法では、上述の如く、通信相手の探索
時に、互いに拡散光を放出するので、集束光を用いる場
合に比較すると、放出時の探索範囲を広くとることがで
きる。このため、放出した光束が通信相手に受信される
可能性が極めて高く、探索がそれだけ容易となる。しか
も、夫々が送受光部を水平方向にかつ仰角方向に回転す
るので、通信間の両者間が高低差のある場合でも、容易
にかつ確実に探索することができる。従来は、集束して
いない広がりをもったスポットは、情報としての価値を
持たないとして利用されることが少ない。拡散光による
スポットは集束光によるスポットに比べ、得られる情報
の点では劣るものの、空間内で相手を探索する際の効率
と云う点では格段に優れている。拡散光にすると、放射
束密度が低下するため、情報伝送と云う点からみて信号
対雑音比が悪化する。拡散光の状態で情報伝送しないよ
うなシステムでは問題ないが、中には拡散光の状態でも
情報伝送したい場合がある。このような場合は、伝送信
号の帯域幅を小さくするか、発光器の発光パワーを上げ
ることにより、信号対雑音比の悪化を抑制することがで
きる。これは次の式によって裏付けることができる。
As described above, according to the method of the present invention, diffused lights are emitted from each other when searching for a communication partner, so that the search range at the time of emission can be made wider than in the case where focused light is used. Therefore, the emitted light flux is very likely to be received by the communication partner, and the search becomes easier accordingly. Moreover, since the respective light-transmitting and receiving units rotate in the horizontal direction and the elevation angle direction, even if there is a difference in height between the two, it is possible to search easily and reliably. Conventionally, a spot having an unfocused spread is rarely used because it has no value as information. Although the spot of diffused light is inferior to the spot of focused light in terms of the information obtained, it is significantly superior in terms of efficiency when searching for a partner in space. When diffused light is used, the radiant flux density decreases, and the signal-to-noise ratio deteriorates from the viewpoint of information transmission. There is no problem in a system that does not transmit information in the diffused light state, but there are cases where it is desired to transmit information even in the diffused light state. In such a case, the deterioration of the signal-to-noise ratio can be suppressed by reducing the bandwidth of the transmission signal or increasing the light emission power of the light emitter. This can be supported by the following formula.

【0010】[0010]

【数1】 [Equation 1]

【0011】また互いに初期光軸調整を終了した後、集
束光で通信すると、周波数の高い信号で授受できるの
で、光の拡散によるロスをさらに小さくすることができ
るばかりでなく、外乱ノイズに対する悪影響を防ぐこと
もでき、このため、単位時間当たりより多量のデータ通
信が可能となる。本発明装置では、上述の如く、送受光
部と二次元光センサと光束変更手段と首振り手段と遠隔
制御する手段とを有し、該手段により送受光部を水平方
向及び仰角方向に回動させ、また送受光部からの光を拡
散光にしたり集束光にしたりするように構成したので、
上記方法を的確に実施し得る。
Further, when the focused optical communication is performed after the completion of the initial optical axis adjustment with each other, a high frequency signal can be transmitted and received, so that not only the loss due to the diffusion of the light can be further reduced, but also the adverse effect on the disturbance noise can be reduced. It is also possible to prevent this, so that a larger amount of data communication can be performed per unit time. As described above, the device of the present invention has the light transmitting / receiving unit, the two-dimensional optical sensor, the light flux changing unit, the swinging unit, and the remote control unit, and the unit rotates the horizontal direction and the elevation angle direction. In addition, since the light from the light transmitting / receiving unit is configured to be diffused light or focused light,
The above method can be carried out accurately.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は本発明による追尾式光無線通信方法を適
用した追尾式光無線通信装置の一実施例を示す概略図で
ある。図1に示す固定ターミナル1は、その上部に送光
器と受光器とが一体的に構成された送受光部2を搭載
し、中央制御装置3と有線で接続されている。中央制御
装置3にはオペレータとの情報をやりとりするため、操
作卓4に設けられた操作ボタンと表示装置5とが設けら
れている。このほか、オペレータとのインターフェース
機能をもたない固定ターミナル6及び固定ターミナル8
が備えられ、さらに移動ターミナル10が備えられてい
る。固定ターミナル6,8は夫々が送受光部7,9を搭
載している。移動ターミナル10は、通信相手の切り替
えをスムースに実行するため、二個の送受光部11及び
12を搭載している。そして、図1において、移動ター
ミナル10と固定ターミナル6とは互いに送受光部11
と7とが向き合っていて、両者11,7間で集束光13
を介してデータ通信を行っており、また固定ターミナル
1と固定ターミナル8との夫々は互いに送受光部2,9
から拡散光14,15を照射することによって通信相手
を探している。即ち、実施例の追尾式光無線通信装置に
おいては、一方のターミナルが送受光部から拡散光を放
出し、その拡散光を他方のターミナルの送受光部が受光
することによって通信相手を探し、通信相手を探すと、
双方の送受光部における初期光軸調整を自動的に行なっ
た後、拡散光から集束光に変更し、その集束光を利用す
ることによって光通信を行うようにしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of a tracking type optical wireless communication device to which a tracking type optical wireless communication method according to the present invention is applied. The fixed terminal 1 shown in FIG. 1 is equipped with a light transmitting / receiving unit 2 in which a light transmitting unit and a light receiving unit are integrally configured, and is connected to a central control unit 3 by wire. The central control device 3 is provided with operation buttons provided on the operation console 4 and a display device 5 for exchanging information with the operator. In addition, fixed terminal 6 and fixed terminal 8 that do not have an interface function with the operator
The mobile terminal 10 is further provided. The fixed terminals 6 and 8 are respectively equipped with the light transmitting / receiving sections 7 and 9. The mobile terminal 10 is equipped with two light transmitting / receiving sections 11 and 12 in order to smoothly switch the communication partner. In FIG. 1, the mobile terminal 10 and the fixed terminal 6 are connected to each other by the light transmitting / receiving unit 11
And 7 face each other, and the focused light 13 is present between both 11 and 7.
The fixed terminal 1 and the fixed terminal 8 communicate with each other via the optical transmitters / receivers 2, 9 respectively.
It is looking for a communication partner by irradiating diffused lights 14 and 15 from. That is, in the tracking type optical wireless communication device of the embodiment, one terminal emits diffused light from the light transmitting / receiving unit, and the diffused light is received by the light transmitting / receiving unit of the other terminal to search for a communication partner and communicate. When you look for a partner,
After the initial optical axis adjustment is automatically performed in both the light transmitting / receiving units, the diffused light is changed to the focused light, and the focused light is used to perform the optical communication.

【0013】図2は各ターミナルに搭載された送受光部
2,7,9,11,12の具体的構成例を示している。
同図において、符号21aは前記送受光部2,7,9,
11,12の何れか一方の筐体であり、符号21bはそ
の他方の筐体を表している。これらの筐体21a,21
bは共に同様の構成であり、支持柱を介し雲台30a,
30bに取付けられ、有線などの遠隔操作により図示し
ない首振り手段を介し水平方向に回動可能でかつ仰角方
向に回動可能に構成されている。また各筐体21a,2
1bの開口された前部には鏡胴22a,22bが夫々前
後方向に摺動可能に取付けられ、その鏡胴22a,22
bは光束変更手段としての鏡胴駆動機構23a,23b
によって駆動される。鏡胴駆動機構23a,23bは詳
細に図示していないが、鏡胴22a,22bに固定され
た凸レンズ24を光軸方向に沿って移動させるよう構成
されている。なお上述の如く、各筐体21aと21bと
は共に同様の構成であるので、以下は一方の筐体21a
のみについて詳述する。
FIG. 2 shows an example of a concrete configuration of the light transmitting / receiving sections 2, 7, 9, 11, 12 mounted on each terminal.
In the figure, reference numeral 21a is the light transmitting / receiving section 2, 7, 9,
It is either one of the housings 11 and 12, and the reference numeral 21b represents the other housing. These housings 21a, 21
Both b have the same structure, and the platform 30a,
It is attached to 30b and is configured to be rotatable in the horizontal direction and in the elevation direction via a swinging means (not shown) by remote control such as a cable. In addition, each housing 21a, 2
Lens barrels 22a and 22b are attached to front open portions of 1b so as to be slidable in the front-rear direction, respectively.
Reference numeral b is a lens barrel drive mechanism 23a, 23b as a light flux changing means.
Driven by. Although not shown in detail, the lens barrel driving mechanisms 23a and 23b are configured to move the convex lens 24 fixed to the lens barrels 22a and 22b along the optical axis direction. As described above, each of the housings 21a and 21b has the same configuration.
Only the details will be described.

【0014】前記鏡胴22aの前部には送受光体として
の凸レンズ24が固定される一方、筐体21aの内部に
は通信状態において凸レンズ24の焦点位置に、受光素
子としてのフォトダイオード25が取付けられると共
に、ビームスプリッタ27を介し発光素子としての赤外
線発光ダイオード26が取付けられ、さらに筐体21a
の内部には通信状態において凸レンズ24の焦点位置
に、ビームスプリッタ29を介し二次元光センサ28が
取付けられている。鏡胴22aの内部において、前記フ
ォトダイオード25は凸レンズ24の光軸上の奥部に配
置され、赤外線発光ダイオード26はこれから発する光
がビームスプリッタ27を介し凸レンズ24に向かうよ
う鏡胴の内側上部に配置され、二次元光センサ28は凸
レンズを通って入り込んだ光の一部をビームスプリッタ
29を介し取り込むよう該ビームスプリッタ29の下方
位置に配置され、後述するように軸ずれを検出する。な
お、ビームスプリッタ27は凸レンズ24の光軸上にお
いて凸レンズ24とフォトダイオード25との間に配置
され、ビームスプリッタ29は凸レンズの光軸上におい
てビームスプリッタ27とフォトダイオード25の間に
配置されている。従って、首振り手段によって送受光部
2,7,11,12を水平方向に回動させたり仰角方向
に移動したりすることにより、通信すべき相手を探索で
き、また鏡胴駆動機構23aによって鏡胴22aを移動
し、赤外線発光ダイオード26に対する凸レンズ24の
位置を変えることにより、送受光部から拡散光や集束光
を放出することができる。
A convex lens 24 as a light-transmitting / receiving body is fixed to the front part of the lens barrel 22a, while a photodiode 25 as a light-receiving element is provided inside the housing 21a at the focal position of the convex lens 24 in a communication state. In addition to being mounted, the infrared light emitting diode 26 as a light emitting element is also mounted via the beam splitter 27, and further the housing 21a.
A two-dimensional optical sensor 28 is attached to the focal position of the convex lens 24 in a communication state via a beam splitter 29. Inside the lens barrel 22a, the photodiode 25 is arranged in the inner portion of the convex lens 24 on the optical axis, and the infrared light emitting diode 26 is arranged above the inner portion of the lens barrel so that the light emitted from the infrared light emitting diode 26 is directed to the convex lens 24 through the beam splitter 27. The two-dimensional optical sensor 28 is arranged below the beam splitter 29 so as to capture a part of the light entering through the convex lens through the beam splitter 29, and detects an axis deviation as described later. The beam splitter 27 is arranged between the convex lens 24 and the photodiode 25 on the optical axis of the convex lens 24, and the beam splitter 29 is arranged between the beam splitter 27 and the photodiode 25 on the optical axis of the convex lens. . Therefore, by rotating the light-transmitting / receiving units 2, 7, 11, 12 by the swinging means in the horizontal direction or moving in the elevation direction, the other party to be communicated can be searched for, and the lens barrel drive mechanism 23a can be used to scan the mirror. By moving the barrel 22a and changing the position of the convex lens 24 with respect to the infrared light emitting diode 26, diffused light or focused light can be emitted from the light transmitting / receiving unit.

【0015】次に、各送受光部2,7,9,11,12
により集束光と拡散光をつくる代表的な例を図3及び図
4より説明する。図3は凸レンズを用いて集束光と拡散
光とをつくる原理を示したものであって、同図(a)に
おいて、符号52は図2に示す凸レンズ24に対応する
ものであり、該凸レンズ52の焦点位置に発光素子51
があるとき、即ち発光素子51と凸レンズ52との距離
が凸レンズ52の焦点距離と等しいとき、凸レンズ52
の左側へ放出される光は集束光となる。これに対し、図
3(b)においては、発光素子51が凸レンズ52の焦
点位置より凸レンズ52寄りの位置にあるとき、即ち発
光素子51と凸レンズ52の距離が該凸レンズ52の焦
点距離より小さいときに、凸レンズ52の左側へ放出さ
れる光は拡散光54となる。従って、発光素子51と凸
レンズ52間の距離を変えることによって集束光と拡散
光とを選択的につくることがことができる。図4は凹面
鏡を用いて集束光と拡散光をつくる原理を示したもので
あって、同図(a)において、発光素子56が凹面鏡5
7の焦点位置にあるとき、即ち発光素子56と凹面鏡5
7の距離が該凹面鏡57の焦点位置と等しいときに、凹
面鏡57の左側へ放出される光は集束光58となる。こ
れに対し、図4(b)においては、発光素子56が凹面
鏡57の焦点位置より該凹面鏡寄りの位置にあるとき、
即ち、発光素子56と凹面鏡57の距離が該凹面鏡の焦
点位置より小さいときに、凹面鏡57の左側へ放出され
る光は拡散光59となる。従って、発光素子56と凹面
鏡57間の距離を変えることによって集束光と拡散光と
を選択的につくることができる。以上のことから、送受
光体として、本例では図2に示す如く凸レンズを用いた
が、凸レンズ或いは凹面鏡57の何れを用いても、鏡胴
駆動機構23a,23bで駆動すれば、集束光から拡散
光に、また拡散光から集束光に簡単に変化させることが
できることがわかる。
Next, the light transmitting / receiving sections 2, 7, 9, 11, 12
A typical example of producing focused light and diffused light will be described with reference to FIGS. 3 and 4. FIG. 3 shows the principle of forming focused light and diffused light using a convex lens. In FIG. 3A, reference numeral 52 corresponds to the convex lens 24 shown in FIG. Light emitting element 51 at the focal position of
When the distance between the light emitting element 51 and the convex lens 52 is equal to the focal length of the convex lens 52, the convex lens 52
The light emitted to the left side of is a focused light. On the other hand, in FIG. 3B, when the light emitting element 51 is located closer to the convex lens 52 than the focal position of the convex lens 52, that is, when the distance between the light emitting element 51 and the convex lens 52 is smaller than the focal length of the convex lens 52. In addition, the light emitted to the left side of the convex lens 52 becomes the diffused light 54. Therefore, it is possible to selectively generate the focused light and the diffused light by changing the distance between the light emitting element 51 and the convex lens 52. FIG. 4 shows the principle of forming focused light and diffused light by using a concave mirror. In FIG. 4A, the light emitting element 56 is a concave mirror 5.
7, the light emitting element 56 and the concave mirror 5
When the distance of 7 is equal to the focal position of the concave mirror 57, the light emitted to the left side of the concave mirror 57 becomes the focused light 58. On the other hand, in FIG. 4B, when the light emitting element 56 is located closer to the concave mirror 57 than the focal position of the concave mirror 57,
That is, when the distance between the light emitting element 56 and the concave mirror 57 is smaller than the focal position of the concave mirror 57, the light emitted to the left side of the concave mirror 57 becomes diffused light 59. Therefore, the focused light and the diffused light can be selectively produced by changing the distance between the light emitting element 56 and the concave mirror 57. From the above, a convex lens is used as the light-transmitting / receiving body in this example as shown in FIG. 2. However, if either the convex lens or the concave mirror 57 is used, if it is driven by the lens barrel driving mechanisms 23a and 23b, the focused light is converted. It can be seen that it is possible to easily change to diffused light and from diffused light to focused light.

【0016】このような構成の送受光部は、赤外線発光
ダイオード26の入力側には増幅器36を介し変調回路
35が接続され、外乱光によるノイズの影響を避けるた
め、上位制御装置からの信号が変調回路35で変調され
た後、その変調信号を増幅器36で増幅することによ
り、赤外線発光ダイオード26を駆動する。また、フォ
トダイオード25の出力側には増幅器37を介しオート
マチックゲイン制御回路(以下、AGC回路と略称す)
及び復調回路39が接続され、フォトダイオード25で
受光した信号が微弱なため、いったん増幅器37で増幅
した後、その受信信号レベルの変化をAGC回路により
補正して一定に保ち、復調回路39により変調信号を除
去することによりデータに戻すようにしている。一方、
二次元光センサ28の出力側にはセンサ信号処理回路4
1を介してサーボ回路42が接続されている。該サーボ
回路42も上位制御装置と接続されており、二次元光セ
ンサ28からの検出信号に基づき雲台30aの駆動制御
の目標値を時時刻刻算出し、その算出した目標値をドラ
イバ回路43で増幅することにより、雲台駆動信号44
を図示しない首振り手段に送付する。さらに、サーボ回
路42は、通信相手の探索と初期光軸調整とを行うのに
必要な拡散光を得るため、上位制御装置から指示45を
受けると、鏡胴位置の目標値を算出し、これをドライバ
回路43で増幅することにより鏡胴駆動機構23aに対
し鏡胴駆動信号46を送付するようになっている。その
ため、サーボ回路42はドライバ回路43を介し鏡胴駆
動機構23a及び首振り手段と接続されている。
In the transmission / reception unit having such a configuration, the modulation circuit 35 is connected to the input side of the infrared light emitting diode 26 through the amplifier 36, and in order to avoid the influence of noise due to the ambient light, the signal from the upper control device is received. After being modulated by the modulation circuit 35, the infrared light emitting diode 26 is driven by amplifying the modulated signal by the amplifier 36. Further, an automatic gain control circuit (hereinafter abbreviated as AGC circuit) is provided on the output side of the photodiode 25 via an amplifier 37.
Since the signal received by the photodiode 25 is weak, the signal received by the photodiode 25 is weak, and after being temporarily amplified by the amplifier 37, the change in the received signal level is corrected by the AGC circuit and kept constant, and then modulated by the demodulating circuit 39. The data is restored by removing the signal. on the other hand,
The sensor signal processing circuit 4 is provided on the output side of the two-dimensional optical sensor 28.
The servo circuit 42 is connected via 1. The servo circuit 42 is also connected to the host controller, calculates the target value of the drive control of the platform 30a based on the detection signal from the two-dimensional optical sensor 28, and the driver circuit 43 uses the calculated target value. By amplifying with the pan head drive signal 44
Is sent to a swinging means (not shown). Further, the servo circuit 42 calculates the target value of the lens barrel position when receiving the instruction 45 from the host controller in order to obtain the diffused light necessary for searching the communication partner and adjusting the initial optical axis. Is amplified by the driver circuit 43, and the lens barrel drive signal 46 is sent to the lens barrel drive mechanism 23a. Therefore, the servo circuit 42 is connected to the lens barrel drive mechanism 23a and the swinging means via the driver circuit 43.

【0017】次に、二次元光センサ28が入射光の方向
を求める原理を図5により説明する。図5において、二
次元光センサ28が凸レンズ24の焦点位置に設置され
ているとき、該凸レンズ24に対する入射光63が受光
光学系の中心軸64となす角度をθ、焦点距離をf、二
次元光センサ28の中心とスポット光65との距離をr
とすると、これらの間にはr=f・tanθの関係が成
立する。ここで、焦点距離fは予め定められ、既知とな
っているから、二次元センサ28にとって距離rを知れ
ば、入射光の角度θが求まる。しかしながら、入射光が
集束光なら問題ないが、通信相手を探索中のターミナル
は拡散光を放出するので、これを受光するターミナルで
は入射光が平行光線とならず、そのため、拡散光を受光
する側のターミナルの二次元センサ28上では完全に集
束せず、上記の如く一点に集束するスポット光64とな
ることがない。そこで、入射光が二次元センサ28上で
完全に集束しないときに距離rを求める原理を図6によ
り説明する。図6において、二次元センサ28は、x座
標軸92で示すようにx方向にn個を、またy座標軸9
3で示すようにy方向にm個の受光素子を夫々配列した
二次元アレイ状に構成されている。この二次元センサ2
8は、拡散光を入射光として受光すると、その光が複数
の受光素子にまたがり、微小な面積を有する近似スポッ
ト光95となることから、受光素子が近似スポット光9
5として受光した量に応じx方向出力制御回路94が出
力96を介し、またy方向出力制御回路95から出力9
7を介し重心位置検出回路98に夫々出力すると、重心
位置検出回路98が二次元センサ28上における近似ス
ポット光95の重心位置101を求めた位置を近似スポ
ットの代表点とし、以後の制御に使用する。そして、求
めた重心位置101のx座標信号99及びy座標信号1
00を上位制御装置に送付する。上位制御装置は、二次
元光センサ28によって軸ずれを検出すると、首振り手
段を介しその軸ずれを吸収する方向に送受光部を移動
し、以下これを繰り返すことにより最終的に拡散光を受
光するターミナルの送受光部を通信すべきターミナルの
送受光部と向き合うようにしている。従って、二次元光
センサ28上で結ぶスポットの面積が受光素子より大き
くなっても、入射光の方向を知ることができる。即ち、
入射光が拡散光であっても、光源の方向を特定できる。
Next, the principle of how the two-dimensional photosensor 28 determines the direction of incident light will be described with reference to FIG. In FIG. 5, when the two-dimensional optical sensor 28 is installed at the focal position of the convex lens 24, the angle formed by the incident light 63 to the convex lens 24 and the central axis 64 of the light receiving optical system is θ, the focal length is f, and the two-dimensional The distance between the center of the optical sensor 28 and the spot light 65 is r
Then, a relation of r = f · tan θ is established between them. Here, since the focal length f is predetermined and known, if the distance r is known to the two-dimensional sensor 28, the angle θ of the incident light can be obtained. However, if the incident light is focused light, there is no problem, but since the terminal that is searching for the communication partner emits diffused light, the incident light does not become parallel rays at the terminal that receives this, so the side that receives diffused light On the two-dimensional sensor 28 of the terminal, the spot light 64 is not completely focused, and the spot light 64 is not focused on one point as described above. Therefore, the principle of obtaining the distance r when the incident light is not completely focused on the two-dimensional sensor 28 will be described with reference to FIG. In FIG. 6, the two-dimensional sensor 28 has n pieces in the x direction as indicated by the x coordinate axis 92, and y coordinate axis 9
As shown in FIG. 3, it is configured in a two-dimensional array in which m light receiving elements are arranged in the y direction. This two-dimensional sensor 2
When the diffused light is received as incident light, the light spreads over a plurality of light receiving elements and becomes an approximate spot light 95 having a minute area.
In accordance with the amount of light received as 5, the x-direction output control circuit 94 outputs the output 96 and the y-direction output control circuit 95 outputs the output 9
7 to the center of gravity position detection circuit 98, the position of the center of gravity position 101 of the approximate spot light 95 on the two-dimensional sensor 28 obtained by the center of gravity position detection circuit 98 is used as a representative point of the approximate spot and used for subsequent control. To do. Then, the x-coordinate signal 99 and the y-coordinate signal 1 of the obtained center-of-gravity position 101
00 is sent to the host controller. When the two-dimensional optical sensor 28 detects the axis deviation, the host controller moves the light-transmitting / receiving section in a direction of absorbing the axis deviation through the swinging means, and repeats this process to finally receive the diffused light. The light-transmitting / receiving unit of the terminal to be communicated faces the light-receiving / receiving unit of the terminal to communicate with. Therefore, even if the area of the spot connected on the two-dimensional optical sensor 28 is larger than that of the light receiving element, the direction of the incident light can be known. That is,
Even if the incident light is diffused light, the direction of the light source can be specified.

【0018】また、上位制御装置が二次元光センサ28
に基づきスポットの二次元位置情報と、通信データとの
両方を得る例を図7により述べる。同図において、二次
元アレイ状に受光素子を配列して形成された二次元光セ
ンサ28は、x座標軸106で示すようにx方向にn
個、y座標軸107で示すようにy方向にm個の受光素
子からなっている。上位制御装置は、二次元光センサ2
8上にスポット光を受けると、その位置に応じx方向出
力制御回路108及びy方向出力制御回路109が出力
し、位置信号処理回路110を経てサーボ回路111に
送られることにより、上位制御装置が首振り手段を制御
する。一方、受光素子105の出力はプリアンプ11
2,AGC回路113,復調回路114を経て通信デー
タに復元される。各受光素子105に独立的に上記回路
群を接続し、その出力を位置信号処理回路110の出力
によって切り替えることにより、どの位置にスポットが
結像しても通信データを復元することができる。或いは
受光素子105のアレイの出力を位置信号処理回路11
0の出力によって切り替え、プリアンプ112に送って
も良い。
Further, the host controller is a two-dimensional optical sensor 28.
An example in which both the two-dimensional position information of the spot and the communication data are obtained based on FIG. In the figure, the two-dimensional optical sensor 28 formed by arranging the light receiving elements in a two-dimensional array is shown in FIG.
Each of them is composed of m light receiving elements in the y direction as indicated by the y coordinate axis 107. The host controller is the two-dimensional optical sensor 2
When the spot light is received on 8, the x-direction output control circuit 108 and the y-direction output control circuit 109 output according to the position, and the light is sent to the servo circuit 111 via the position signal processing circuit 110, so that the host controller can Control the swinging means. On the other hand, the output of the light receiving element 105 is the preamplifier 11
2, through the AGC circuit 113 and the demodulation circuit 114, the communication data is restored. By independently connecting the above-mentioned circuit group to each light receiving element 105 and switching the output thereof by the output of the position signal processing circuit 110, the communication data can be restored regardless of the position of the spot where the image is formed. Alternatively, the output of the array of the light receiving elements 105 may be used as the position signal processing circuit
It may be switched by the output of 0 and sent to the preamplifier 112.

【0019】次に、ターミナルが夫々の上位制御装置に
より通信相手を探索し、かつ初期光軸調整して通信する
過程を図8及び図9により説明する。図8及び図9にお
いては、便宜上、探索用の拡散光を放出している図中右
側のターミナルを、図2に対応させて符号8とし、また
その探索用の拡散光を最初に受光する図中右側のターミ
ナルを符号1とする。今、ターミナル8,1が互いに通
信相手を探索するため、双方の送受光部から図8(a)
に示すように拡散光72,74を放出しているものとす
る。このとき、各ターミナル8,1は夫々の上位制御装
置からの指令を受け、鏡胴駆動機構を駆動することによ
り所望の拡散光72,74を放出すると共に、図示しな
い首振り手段を駆動することにより送受光部を水平方向
や仰角方向に回動しながら移動させる。そのとき、例え
ば一方のターミナル8からの拡散光72をターミナル1
が受光すると、ターミナル1は直ちにターミナル8に対
し、初期光軸調整を開始する旨を連絡する。ターミナル
8は該初期光軸調整開始の連絡を受けると、上位制御装
置の指令により鏡胴駆動機構及び首振り手段をそのまま
の位置にさせておくことにより移動や送受光部の姿勢変
化を停止し、拡散光72を送り続ける。このとき、ター
ミナル8からの拡散光72は図8(a)に示すように横
軸に時間、縦軸に振幅をとった波形75をなしている。
また拡散光72をターミナル1が受光して得る信号は、
波形76にて示すように、波形75に比べると同じ周波
数でかつ同じタイミングであるが、振幅の小さいもので
ある。次いで、ターミナル1が自身の二次元光センサ2
8による位置情報(軸ずれ)に基づき送受光部をターミ
ナル8の方向に向ける。図8(b)はターミナル1がタ
ーミナル8の方向を向いた状態を示している。
Next, the process in which the terminal searches for a communication partner by each host controller and adjusts the initial optical axis to perform communication will be described with reference to FIGS. 8 and 9. 8 and 9, for the sake of convenience, the terminal on the right side of the drawing that emits the diffused light for search is designated by reference numeral 8 in correspondence with FIG. 2, and the diffused light for search is received first. The terminal on the right side of the middle is labeled 1. Now, since the terminals 8 and 1 search each other for a communication partner, the terminals 8 and 1 are connected to each other as shown in FIG.
It is assumed that diffused light 72, 74 is emitted as shown in FIG. At this time, each of the terminals 8 and 1 receives a command from the host controller and drives the lens barrel drive mechanism to emit the desired diffused light 72 and 74 and drive the swinging means (not shown). The transmitter / receiver is moved by rotating in the horizontal direction and the elevation angle direction. At that time, for example, the diffused light 72 from one terminal 8 is transmitted to the terminal 1
Upon receiving the light, the terminal 1 immediately informs the terminal 8 that the initial optical axis adjustment will be started. When the terminal 8 receives the notification of the start of the initial optical axis adjustment, the lens barrel drive mechanism and the swinging means are left in the same positions in response to a command from the host controller to stop the movement and the attitude change of the light-transmitting / receiving section. , Continue to send diffused light 72. At this time, the diffused light 72 from the terminal 8 has a waveform 75 in which the horizontal axis represents time and the vertical axis represents amplitude, as shown in FIG.
The signal obtained by the terminal 1 receiving the diffused light 72 is
As shown by the waveform 76, the waveform has the same frequency and the same timing as the waveform 75, but has a smaller amplitude. Next, the terminal 1 has its own two-dimensional optical sensor 2
The light-transmitting / receiving unit is directed toward the terminal 8 on the basis of the position information (axis deviation) by the unit 8. FIG. 8B shows a state in which the terminal 1 faces the terminal 8.

【0020】このようにして、ターミナル1がターミナ
ル8の方向を向くと、図9(a)に示すように、今度は
ターミナル1が集束光77を放出し、ターミナル8に対
して初期光軸調整を要請する。このとき、集束光77
は、光の拡散によるロスがなくなるため、図8(b)に
比べ、周波数の高い波形78を放出することが可能とな
る。この高い周波数からなる集束光77をターミナル8
で受光して得る信号は、波形79にて示すように、波形
78に比較して同じ周波数でかつ同じタイミングであ
り、振幅の小さいものになる。ターミナル8が集束光7
7を受光すると、自身の二次元光センサ28の検出情報
に基づき、その送受後部をターミナル1の送受光部の方
向を向く。この状態を図9(b)に示す。そして、ター
ミナル8がターミナル1の方向を向き、該ターミナルに
対する初期光軸調整が終了すると、拡散光から集束光8
0に変更し、図9(c)に示すようにその集束光80を
ターミナル1に放出する。このとき、集束光80は波形
81であり、またその集束光80を受光して得る信号は
波形81に比較すると、波形82にて示すように同じ周
波数でかつ同じタイミングであり、振幅の小さいものに
なる。
In this way, when the terminal 1 faces the direction of the terminal 8, as shown in FIG. 9 (a), the terminal 1 emits the focused light 77, and the initial optical axis adjustment with respect to the terminal 8 is performed. Request. At this time, the focused light 77
Since the loss due to the diffusion of light is eliminated, it becomes possible to emit the waveform 78 having a higher frequency than that in FIG. 8B. The focused light 77 having this high frequency is used for the terminal 8
As shown by the waveform 79, the signal obtained by receiving the light has the same frequency and the same timing as the waveform 78, and has a small amplitude. Focused light 7 at terminal 8
When 7 is received, the transmission / reception rear part faces the direction of the transmission / reception part of the terminal 1 based on the detection information of the own two-dimensional optical sensor 28. This state is shown in FIG. Then, when the terminal 8 faces the direction of the terminal 1 and the initial optical axis adjustment for the terminal is completed, the diffused light is converged to the focused light 8
0, and the focused light 80 is emitted to the terminal 1 as shown in FIG. At this time, the focused light 80 has a waveform 81, and the signal obtained by receiving the focused light 80 has the same frequency and the same timing as the waveform 82, and has a small amplitude. become.

【0021】従って、ターミナル8と1とが互いに初期
光軸調整を終了し、集束光77,80で通信すると、周
波数の高い波形81,82で信号を授受できるので、光
の拡散によるロスをさらに小さくすることができるばか
りでなく、外乱ノイズに対する悪影響を防ぐこともで
き、このため、単位時間当たりより多量のデータ通信が
可能となる。また、通信相手の探索時には、互いに拡散
光72,74を放出するので、集束光を用いる場合に比
較すると、放出時の探索範囲を広くとることができ、こ
のため、放出した光束が通信相手のターミナル1に受信
される可能性が極めて高く、探索がそれだけ容易とな
る。しかも、夫々の首振り手段が送受光部を水平方向に
かつ仰角方向に回転させるので、通信間の両者間が高低
差のある場合でも、容易にかつ確実に探索することがで
きると共に、初期光軸を確実に自動的に調整することが
できる。そして図示実施例では、探索時、上位制御装置
が二次元光センサ28からの位置情報として、二次元光
センサ28上で結ぶ近似スポット光95の重心を光軸ず
れの位置情報とした例を示したが、例えば二次元光セン
サ上に結像された光の代表点を位置情報としても、同様
の作用効果がある。また送受光部を搭載するターミナル
1,6,8,10が複数からなり、それらが固定式のも
のと移動式のものとで構成されているので、特に移動式
のターミナルを作業者が立ち入ることのできない環境下
で使用することができ、その際、ターミナルが周囲の障
害物によって通信が途絶えることがあっても、ターミナ
ルの移動により再通信することが容易にできる。さら
に、図示実施例では、夫々の送受光部2,7,9,1
1,12が受光素子25と二次元光センサ28とを設け
た例を示したが、それらの代わりとして、受光した光を
結ぶ像の位置を出力する二次元光センサのみで構成すれ
ば、それだけ送受光部の構成の簡素化を図ることもでき
る。またさらに各ターミナルの送受光部として、発光器
26と受光器25とを一体に組み付けた例を示したが、
夫々が別々に、即ち、発光器と受光器とを夫々別に構成
して発光部と受光部とからなる追尾式光無線通信装置に
適用することができる。この場合、光束変更手段として
の鏡胴駆動機構を発光部に設け、また首振り手段を少な
くとも発光部と受光部との何れか一方に設け、その首振
り手段及び鏡胴駆動機構を上位制御装置によって遠隔制
御するものに適用することもできる。
Therefore, when the terminals 8 and 1 complete the initial optical axis adjustment with each other and communicate with the focused lights 77 and 80, signals can be transmitted and received with the high frequency waveforms 81 and 82, so that the loss due to the diffusion of light is further increased. Not only can it be made smaller, but adverse effects on disturbance noise can also be prevented, which allows a larger amount of data communication per unit time. Further, since the diffused lights 72 and 74 are emitted to each other when searching for a communication partner, the search range at the time of emission can be made wider than that in the case where focused light is used. It is very likely that the data will be received by the terminal 1, and the search becomes easier. Moreover, since each swinging means rotates the light-transmitting and receiving parts in the horizontal direction and in the elevation angle direction, even if there is a difference in height between the two, it is possible to easily and surely search, and the initial light is transmitted. The axis can be reliably and automatically adjusted. Then, in the illustrated embodiment, an example in which the host controller uses the center of gravity of the approximate spot light 95 connected on the two-dimensional optical sensor 28 as the positional information from the two-dimensional optical sensor 28 during the search is the positional information of the optical axis shift. However, even if the representative point of the light imaged on the two-dimensional optical sensor is used as the position information, the same operational effect can be obtained. In addition, since the terminals 1, 6, 8 and 10 equipped with the light transmitting / receiving section are composed of a plurality of terminals, which are fixed type and movable type, it is particularly necessary for an operator to enter the mobile type terminal. It can be used in an environment where it is not possible, and at that time, even if the terminal may lose communication due to obstacles around it, it is easy to re-communicate by moving the terminal. Further, in the illustrated embodiment, each of the light transmitting / receiving units 2, 7, 9, 1
1 and 12 show the example in which the light receiving element 25 and the two-dimensional optical sensor 28 are provided, but instead of these, if only a two-dimensional optical sensor that outputs the position of the image connecting the received light is used, that is all that is required. It is also possible to simplify the configuration of the light transmitting / receiving unit. Further, an example in which the light emitting device 26 and the light receiving device 25 are integrally assembled as the light transmitting / receiving unit of each terminal is shown.
The present invention can be applied to a tracking type optical wireless communication device including a light emitting unit and a light receiving unit, each of which is separately configured, that is, a light emitting unit and a light receiving unit are separately configured. In this case, a lens barrel driving mechanism as a light flux changing unit is provided in the light emitting unit, and a swinging unit is provided in at least one of the light emitting unit and the light receiving unit, and the swinging unit and the lens barrel driving mechanism are provided in the host controller. It can also be applied to those remotely controlled by.

【0022】[0022]

【発明の効果】以上述べたように、本発明の請求項1に
よれば、探索時に拡散光を放出し、一方が他方の光を受
光した時点で水平方向及び仰角方向に移動して初期光軸
を調整すると共に、他方も同様に初期光軸を調節し、そ
の後双方が互いに集束光で通信するように構成したの
で、通信すべき相手との間で軸ずれがあっても、軸ずれ
を自動的に調整し、通信相手を容易に探索すると共に、
外乱ノイズの悪影響等に拘ることなく、より多量の情報
を通信し得る効果がある。請求項2によれば、一方が初
期光軸調整を終了した時点で、拡散光から集束光に変更
するので、拡散光のままで初期光軸調整を行う場合に比
較すると、初期光軸調整を速やかにかつ正確に行うこと
ができ、請求項3によれば、通信相手から受光した光を
結ぶ像の重心と代表点との何れかの位置を求め、該求め
た位置に基づいて光軸ずれを吸収する方向に移動するの
で、拡散光であっても、発光元の位置を確実に求めるこ
とができる。請求項4〜6,8,9によれば、探索時に
水平方向及び仰角方向に回動しながら拡散光を放出で
き、初期光軸調整後、拡散光から集束光に変更できるよ
うに構成したので、請求項1及び2の方法を的確に実施
し得る効果があり、特に請求項8,9によれば、送受光
部の構成を簡素化することができる効果がある。請求項
7,10によれば、作業者の立ち入ることができない環
境下で使用できるので、特に原子力発電プラントにおい
て有益であり、請求項11によれば請求項3の方法を的
確に実施し得、請求項12によれば各々の位置情報を通
信できる。
As described above, according to claim 1 of the present invention, diffused light is emitted at the time of search, and when one receives the other light, it moves in the horizontal direction and the elevation angle direction to obtain the initial light. In addition to adjusting the axis, the other also adjusts the initial optical axis, and after that both sides communicate with each other by focused light, so even if there is an axis deviation with the other party to communicate, the axis deviation It automatically adjusts and easily searches for the communication partner,
There is an effect that a larger amount of information can be communicated regardless of the adverse effects of disturbance noise. According to the second aspect, since the diffused light is changed to the focused light when one of the initial optical axis adjustments is completed, the initial optical axis adjustment is performed as compared with the case where the initial optical axis adjustment is performed with the diffused light as it is. This can be performed quickly and accurately, and according to claim 3, either the center of gravity of the image connecting the light received from the communication partner or the representative point is obtained, and the optical axis shift is made based on the obtained position. Since it moves in a direction that absorbs light, the position of the light emission source can be reliably obtained even with diffused light. According to claims 4 to 6, 8 and 9, since the diffused light can be emitted while rotating in the horizontal direction and the elevation angle direction during the search, and the diffused light can be changed to the focused light after the initial optical axis adjustment. According to the eighth and ninth aspects, there is an effect that the method of claims 1 and 2 can be carried out accurately, and in particular, according to the eighth and ninth aspects, the configuration of the light transmitting / receiving section can be simplified. According to claims 7 and 10, since it can be used in an environment where workers cannot enter, it is particularly useful in a nuclear power plant, and according to claim 11, the method of claim 3 can be accurately implemented, According to claim 12, each position information can be communicated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による追尾式光無線通信方法を適用した
追尾式光無線通信装置の一実施例を示す概略図。
FIG. 1 is a schematic diagram showing an embodiment of a tracking type optical wireless communication device to which a tracking type optical wireless communication method according to the present invention is applied.

【図2】送受光部の具体的構成例を示す説明図。FIG. 2 is an explanatory diagram showing a specific configuration example of a light transmitting / receiving unit.

【図3】凸レンズを使用した場合の集束光を得る原理説
明図(a)及び拡散光を得る原理説明図(b)。
3A and 3B are an explanatory view of a principle of obtaining focused light when a convex lens is used and an explanatory view of a principle of obtaining diffused light in FIG. 3B.

【図4】凹面鏡を使用した場合の集束光を得る原理説明
図(a)及び拡散光を得る原理説明図(b)。
FIG. 4 is an explanatory diagram (a) of the principle of obtaining focused light and an explanatory diagram (b) of the principle of obtaining diffused light when a concave mirror is used.

【図5】二次元光センサによって入射光の方向を求める
原理説明図。
FIG. 5 is an explanatory diagram of the principle of determining the direction of incident light by a two-dimensional photosensor.

【図6】二次元光センサが近似スポット光を検出すると
きの原理説明図。
FIG. 6 is an explanatory diagram of the principle when the two-dimensional optical sensor detects approximate spot light.

【図7】二次元光センサがスポット光を検出するときの
説明図。
FIG. 7 is an explanatory diagram when a two-dimensional optical sensor detects spot light.

【図8】互いに拡散光を放出したときの説明図(a)及
び一方が初期光軸を調整したときの説明図(b)。
FIG. 8 is an explanatory view (a) when diffused lights are emitted from each other and an explanatory view (b) when one of them adjusts an initial optical axis.

【図9】一方が他方に対し初期光軸調整を要請している
ときの説明図(a),他方が初期光軸を調整するときの
説明図(b),互いに集束光で通信するときの説明図
(c)。
9A and 9B are explanatory views when one requests initial optical axis adjustment to the other, explanatory views when the other side adjusts the initial optical axis, and FIG. Explanatory drawing (c).

【符号の説明】[Explanation of symbols]

1,6,8…固定ターミナル、10…移動ターミナル、
2,7,9,11,12…送受光部、13,53,5
8,77,80…集束光、14,15,54,59,7
2,74…拡散光、21a,21b…筐体、24,52
…送受光体としての凸レンズ、25…フォトダイオー
ド、26…赤外線発光ダイオード、28…二次元光セン
サ、57…送受光体としての凹面鏡。
1, 6, 8 ... Fixed terminal, 10 ... Mobile terminal,
2, 7, 9, 11, 12 ... Transmitting / receiving unit, 13, 53, 5
8, 77, 80 ... Focused light, 14, 15, 54, 59, 7
2, 74 ... Diffused light, 21a, 21b ... Housing, 24, 52
... a convex lens as a light transmitting / receiving body, 25 ... a photodiode, 26 ... an infrared light emitting diode, 28 ... a two-dimensional optical sensor, 57 ... a concave mirror as a light receiving / receiving body.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H04B 10/22

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 一方と他方との通信相手の探索時、双方
が互いに水平方向及び仰角方向に移動しながら拡散光を
放出し、一方が他方の拡散光を受光した時点で、該一方
が水平方向及び仰角方向に移動して他方の拡散光に対す
る初期光軸調整を行い、次いで一方が初期光軸調整を終
了した時点で他方が水平方向及び仰角方向に移動して一
方に対する初期光軸調整を行い、その後、一方と他方と
の双方が互いに集束光で通信することを特徴とする追尾
式光無線通信方法。
1. When searching for a communication partner of one side and the other side, both emit horizontal light and vertical direction while emitting diffused light, and when one receives the other diffused light, the one is horizontal. Direction and elevation angle direction to perform the initial optical axis adjustment for the other diffused light, and when one side completes the initial optical axis adjustment, the other side moves in the horizontal direction and elevation angle direction to perform the initial optical axis adjustment for one. A tracking type optical wireless communication method, characterized in that both the one and the other communicate with each other by focused light.
【請求項2】 一方が初期光軸調整を終了した時点で、
拡散光から集束光に変換することを特徴とする請求項1
に記載の追尾式光無線通信方法。
2. When one end of the initial optical axis adjustment,
2. The diffused light is converted into the focused light.
Tracking optical wireless communication method described in.
【請求項3】 初期光軸調整時、他方の通信相手から受
光した光の像の重心と代表点との何れかの位置を求め、
該求めた位置に基づき他方の光軸に対する光軸ずれを吸
収する方向に一方が移動することを特徴とする請求項1
に記載の追尾式光無線通信方法。
3. At the time of initial optical axis adjustment, the position of either the center of gravity or the representative point of the image of the light received from the other communication partner is determined,
2. One moves in a direction of absorbing an optical axis shift with respect to the other optical axis based on the obtained position.
Tracking optical wireless communication method described in.
【請求項4】 送光レンズ,該送光レンズの焦点位置に
そのレンズ面に向けて設置された発光器を夫々設けた送
光部と、受光レンズ,該受光レンズの焦点位置にそのレ
ンズ面に向けて設置された受光器を夫々有する受光部
と、受光した光を結像させると共に該結像位置の位置情
報を出力する二次元光センサとを有し、二次元センサの
位置情報に基づいて送光部と受光部とを向かい合わせる
と共に、送光部からの受光部への光の伝搬によって情報
伝送するように制御された追尾式光無線通信装置におい
て、送光部における発光器からの光束を拡散光と集束光
との何れかに選択的に変更する光束変更手段と、少なく
とも送光部と受光部との何れか一方を水平方向にかつ仰
角方向に回動させる首振り手段と、光束変更手段及び首
振り手段の夫々を遠隔制御する手段とを有することを特
徴とする追尾式光無線通信装置。
4. A light-sending lens, a light-sending unit provided with a light-emitter installed at a focal position of the light-sending lens facing the lens surface, and a lens surface at a focal position of the light-receiving lens and the light-receiving lens. And a two-dimensional optical sensor for forming an image of the received light and outputting position information of the image-forming position, based on the position information of the two-dimensional sensor. In the tracking type optical wireless communication device controlled so that the light transmitting unit and the light receiving unit are faced to each other and the information is transmitted by the propagation of light from the light transmitting unit to the light receiving unit, Luminous flux changing means for selectively changing the luminous flux to either diffused light or focused light, and swinging means for rotating at least one of the light transmitting portion and the light receiving portion in the horizontal direction and the elevation angle direction, The light flux changing means and the swinging means are remote from each other. A tracking type optical wireless communication device comprising: a controlling unit.
【請求項5】 送受光体及び発光器並びに受光器を設け
た複数の送受光部と、送受光部内に設置され、受光した
光を結像させると共に該結像位置の位置情報を出力する
二次元光センサと、各送受光部から放射される光を拡散
光と集束光との何れかに選択的に変更する光束変更手段
と、各送受光部を水平方向及び仰角方向に回動させる首
振り手段と、各送受光部の光束変更手段及び首振り手段
の夫々を遠隔制御する手段とを有し、かつ該手段は、互
いに通信相手の探索時、探索用の送受光部の光束変更手
段の駆動により送受光部における発光器からの光を拡散
させると共に、首振り手段の駆動により送受光部を水平
方向及び仰角方向に回動させ、一方の送受光部が他方の
送受光部からの光を受光した時点で、二次元光センサの
出力信号に基づき双方の送受光部を互いに向かい合わ
せ、かつ探索した時点で、夫々の送受光部の光束変更手
段を駆動し、双方の送受光部からの光を集束光に変更す
ることを特徴とする追尾式光無線通信装置。
5. A plurality of light-transmitting / receiving bodies, a light-emitting device, and a plurality of light-receiving / receiving parts provided with the light-receiving device, and a light-receiving / light-receiving part installed in the light-receiving / light-receiving part. Dimensional optical sensor, light flux changing means for selectively changing the light emitted from each of the light-transmitting and receiving sections to either diffused light or focused light, and a neck for rotating each of the light-transmitting and receiving sections in the horizontal direction and the elevation angle direction. And a means for remotely controlling the light flux changing means of each of the light transmitting and receiving portions and the swinging means, and the means is a light flux changing means of the light transmitting and receiving portions for searching when mutually searching for a communication partner. The light from the light emitting device in the light transmitting / receiving unit is diffused by driving, and the light transmitting / receiving unit is rotated in the horizontal direction and the elevation direction by driving the swinging means. When light is received, the dual signal is output based on the output signal of the two-dimensional optical sensor. One of the light-transmitting and light-receiving units faces each other, and at the time of searching, the light-flux changing unit of each of the light-transmitting and receiving units is driven to change the light from both the light-transmitting and receiving units into focused light. Optical wireless communication device.
【請求項6】 送受光体,発光器,受光器を設けた送受
光部を夫々搭載する複数のターミナルと、該各ターミナ
ルの送受光部内に設置され、受光した光を結像させると
共に該結像位置の位置情報を出力する二次元光検出セン
サと、各ターミナルの送受光部から放射される光を拡散
光と集束光との何れかに選択的に変更する光束変更手段
と、各ターミナルの送受光部を水平方向及び仰角方向に
回動させる首振り手段と、各ターミナルにおける送受光
部の光束変更手段及び首振り手段の夫々を遠隔制御する
手段とを有し、かつ該手段は、互いに通信相手の探索
時、探索用ターミナルの光束変更手段の駆動により送受
光部における発光器からの光を拡散させると共に、首振
り手段の駆動により送受光部を水平方向及び仰角方向に
回動させ、一方のターミナルの送受光部が他方のターミ
ナルの送受光部からの光を受光した時点で、二次元光セ
ンサの出力信号に基づき双方の送受光部を互いに向かい
合わせ、かつ探索した時点で、夫々のターミナルの光束
変更手段を駆動し、双方の送受光部からの光を集束光に
変更することを特徴とする追尾式光無線通信装置。
6. A plurality of terminals, each having a light-transmitting / receiving body, a light-emitting device, and a light-receiving / receiving unit provided with the light-receiving unit, and a plurality of terminals installed in the light-receiving / receiving units of the respective terminals to form an image of the received light, A two-dimensional light detection sensor that outputs position information of the image position, a light flux changing unit that selectively changes the light emitted from the light transmitting / receiving unit of each terminal to either diffused light or focused light, and each terminal It has a swinging means for rotating the light transmitting and receiving portion in the horizontal direction and the elevation angle direction, and means for remotely controlling each of the light flux changing means and the swinging means of the light transmitting and receiving portion in each terminal, and the means are mutually At the time of searching for a communication partner, the light from the light emitting unit in the light transmitting / receiving unit is diffused by driving the light flux changing unit of the search terminal, and the transmitting / receiving unit is rotated in the horizontal direction and the elevation angle direction by driving the swinging unit. One of the tar When the light transmitting / receiving unit of the terminal receives the light from the light transmitting / receiving unit of the other terminal, both the light transmitting / receiving units face each other based on the output signal of the two-dimensional optical sensor, and at the time of searching, the respective terminals are transmitted. 2. The tracking type optical wireless communication device, characterized in that the light flux changing means of (1) is driven to change the light from both the light transmitting and receiving parts into focused light.
【請求項7】 複数のターミナルは、定位置に固定され
た固定ターミナルと移動可能に構成された移動ターミナ
ルとからなることを特徴とする請求項6に記載の追尾式
光無線通信装置。
7. The tracking type optical wireless communication device according to claim 6, wherein the plurality of terminals include a fixed terminal fixed at a fixed position and a mobile terminal configured to be movable.
【請求項8】 送光レンズ,発光器,受光した光を結像
させると共に該結像位置の位置情報を出力する二次元光
検出センサを設けた送受光部と、該送受光部から放射さ
れる光を拡散光と集束光との何れかに選択的に変更する
光束変更手段と、送受光部を水平方向及び仰角方向に回
動させる首振り手段と、各送受光部の該光束変更手段及
び首振り手段の夫々を遠隔制御する手段とを有し、かつ
該手段は、通信相手の探索時、光束変更手段の駆動によ
り送受光部における発光器からの光を拡散させると共
に、首振り手段の駆動により送受光部を水平方向及び仰
角方向に回動させ、一方の送受光部が他方の送受光部か
らの光を受光した時点で、二次元光センサの出力信号に
基づき双方の送受光部を互いに向かい合わせ、かつ探索
した時点で、夫々の送受光部の光束変更手段を駆動し、
双方の送受光部からの光を集束光に変更することを特徴
とする追尾式光無線通信装置。
8. A light-transmitting lens, a light-emitting device, a light-transmitting / receiving unit provided with a two-dimensional light detection sensor for forming an image of received light and outputting position information of the image-forming position, and a light-emitting / receiving unit emitting light. Beam changing means for selectively changing the light to be diffused light or focused light, a swinging means for rotating the light transmitting / receiving portion in the horizontal direction and the elevation angle direction, and the light beam changing means of each light transmitting / receiving portion. And a means for remotely controlling each of the swinging means, the means for diffusing the light from the light emitting device in the light transmitting and receiving portion by driving the light flux changing means at the time of searching for a communication partner, and swinging means. Drive the optical transmitter and receiver to rotate in the horizontal and elevation directions, and when one of the transmitter and receiver receives the light from the other transmitter and receiver, both transmitter and receiver based on the output signal of the two-dimensional optical sensor. When the departments face each other and search, Driving the light flux changing means of the light receiving part,
A tracking type optical wireless communication device, characterized in that light from both of the light transmitting and receiving parts is changed to focused light.
【請求項9】 送光レンズ,発光器,受光した光を結像
させると共に該結像位置の位置情報を出力する二次元光
検出センサを設けた送受光部を夫々搭載する複数のター
ミナルと、該各ターミナルの送受光部から放射される光
を拡散光と集束光との何れかに選択的に変更する光束変
更手段と、送受光部を水平方向及び仰角方向に回動させ
る首振り手段と、各ターミナルの光束変更手段及び首振
り手段の夫々を遠隔制御する手段とを有し、かつ該手段
は、通信相手の探索時、探索用ターミナルの光束変更手
段の駆動により送受光部における発光器からの光を拡散
させると共に、首振り手段の駆動により送受光部を水平
方向及び仰角方向に回動させ、一方のターミナルの送受
光部が他方のターミナルの送受光部からの光を受光した
時点で、二次元光センサの出力信号に基づき双方の送受
光部を互いに向かい合わせ、かつ探索した時点で、夫々
のターミナルの光束変更手段を駆動し、双方のターミナ
ルの送受光部からの光を集束光に変更することを特徴と
する追尾式光無線通信装置。
9. A plurality of terminals each equipped with a light-transmitting lens, a light-emitting device, a light-transmitting / receiving unit provided with a two-dimensional light detection sensor for forming an image of received light and outputting position information of the image-forming position, Luminous flux changing means for selectively changing the light emitted from the light transmitting / receiving portion of each terminal to either diffused light or focused light, and swinging means for rotating the light transmitting / receiving portion in the horizontal direction and the elevation angle direction. , A means for remotely controlling each of the light flux changing means and the swinging means of each terminal, and the means for driving the light flux changing means of the search terminal at the time of searching for a communication partner When the transmitter / receiver of one terminal receives the light from the transmitter / receiver of the other terminal while diffusing the light from the transmitter and rotating the transmitter / receiver in the horizontal and elevation directions by driving the swinging means. Then, the two-dimensional light Both light-transmitting and light-receiving parts face each other based on the output signal of the sensor, and at the time of searching, drive the light flux changing means of each terminal to change the light from the light-transmitting and light-receiving parts of both terminals to focused light. Tracking type optical wireless communication device.
【請求項10】 複数のターミナルは、定位置に固定さ
れた固定ターミナルと移動可能に構成された移動ターミ
ナルとからなることを特徴とする請求項9に記載の追尾
式光無線通信装置。
10. The tracking type optical wireless communication device according to claim 9, wherein the plurality of terminals include a fixed terminal fixed at a fixed position and a mobile terminal configured to be movable.
【請求項11】 前記手段は、受光した光が二次元光セ
ンサ上で結ぶ像の重心位置と像の代表点との何れかを光
軸ずれの位置情報とすることを特徴とする請求項4〜
6,8,9の一項に記載の追尾式光無線通信装置。
11. The position information of the optical axis shift, wherein the means uses either the barycentric position of the image formed by the received light on the two-dimensional optical sensor or the representative point of the image as position information of the optical axis shift. ~
The tracking type optical wireless communication device according to any one of items 6, 8 and 9.
【請求項12】前記手段は、送受光器の位置或いは姿勢
情報を光の通信データに重畳して伝送することを特徴と
する請求項5,6,8,9の一項に記載の追尾式光無線
通信装置。
12. A tracking system according to claim 5, 6, 8 or 9, wherein said means superimposes position or orientation information of the light transmitter / receiver on optical communication data and transmits the information. Optical wireless communication device.
【請求項13】 前記送受光体は凸レンズと凹面鏡との
何れかで構成することを特徴とする請求項5,6,8,
9の一項に記載の追尾式光無線通信装置。
13. The light-transmitting / receiving body is composed of either a convex lens or a concave mirror.
9. A tracking type optical wireless communication device according to item 9.
JP16773492A 1992-06-25 1992-06-25 Tracking optical wireless communication method and device Expired - Fee Related JP3218477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16773492A JP3218477B2 (en) 1992-06-25 1992-06-25 Tracking optical wireless communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16773492A JP3218477B2 (en) 1992-06-25 1992-06-25 Tracking optical wireless communication method and device

Publications (2)

Publication Number Publication Date
JPH0611559A true JPH0611559A (en) 1994-01-21
JP3218477B2 JP3218477B2 (en) 2001-10-15

Family

ID=15855154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16773492A Expired - Fee Related JP3218477B2 (en) 1992-06-25 1992-06-25 Tracking optical wireless communication method and device

Country Status (1)

Country Link
JP (1) JP3218477B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269398A (en) * 2004-03-19 2005-09-29 Kddi Corp Signal light generating method, and optical transmission device
JP2009168488A (en) * 2008-01-11 2009-07-30 Toyota Motor Corp Position information acquisition apparatus, position estimation apparatus, and moving body
JP2009177637A (en) * 2008-01-25 2009-08-06 Sharp Corp Terminal device and control method thereof, communication system, communication method, communication program, and recording medium
JP2013523007A (en) * 2010-03-16 2013-06-13 ポールウォール エーエス Method for directing an optical receiver to a light source and apparatus for carrying out the method
JP2018170647A (en) * 2017-03-30 2018-11-01 東洋電機株式会社 Spatial optical transmission device
WO2023181375A1 (en) * 2022-03-25 2023-09-28 株式会社ニコン Light emitting device and optical wireless communication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269398A (en) * 2004-03-19 2005-09-29 Kddi Corp Signal light generating method, and optical transmission device
JP2009168488A (en) * 2008-01-11 2009-07-30 Toyota Motor Corp Position information acquisition apparatus, position estimation apparatus, and moving body
JP2009177637A (en) * 2008-01-25 2009-08-06 Sharp Corp Terminal device and control method thereof, communication system, communication method, communication program, and recording medium
JP2013523007A (en) * 2010-03-16 2013-06-13 ポールウォール エーエス Method for directing an optical receiver to a light source and apparatus for carrying out the method
US8805192B2 (en) 2010-03-16 2014-08-12 Polewall As Method of directing an optical receiver toward a light source and an apparatus of practicing the method
JP2018170647A (en) * 2017-03-30 2018-11-01 東洋電機株式会社 Spatial optical transmission device
WO2023181375A1 (en) * 2022-03-25 2023-09-28 株式会社ニコン Light emitting device and optical wireless communication system

Also Published As

Publication number Publication date
JP3218477B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
EP3187895B1 (en) Variable resolution light radar system
US10516489B1 (en) Underwater wireless communication apparatus and communication method thereof
EP0797076B1 (en) Surveying system
RU2210492C2 (en) Mobile robot and method for correcting its motion course
CN110233664B (en) Tracking and aiming control system and tracking and aiming control method for wireless optical communication
US20060136097A1 (en) Robot system
JPH11136190A (en) Optical space communication equipment
US7312872B2 (en) System and method for automated positioning of camera
CN109360406B (en) Automatic following control method and system based on infrared signals
KR102210902B1 (en) Anti-drone integrated system that dynamically detects drones
JPH11122179A (en) Space light transmitter and space light transmission method
WO2018055861A1 (en) Mobile object control device and mobile object control system
JP3218477B2 (en) Tracking optical wireless communication method and device
JP3823976B2 (en) Optical wireless transmission system and optical wireless transmission device
JP2007184706A (en) Optical wireless transmission apparatus
JP2000244408A (en) Optical space communication equipment
JPH0683145B2 (en) Optical wireless communication device for moving body
JPH0464082A (en) Reflector for automatic tracking device
US7400834B2 (en) Optical space transmission apparatus and optical space communication system
CN111580511B (en) Inspection system and control method thereof
CN217766922U (en) Optical communication device
CN213956130U (en) Laser anti-sniping system for unmanned vehicle
JP2004349797A (en) Optical radio transmission apparatus, and optical axis adjusting method thereof
JPS629996B2 (en)
JPH08194534A (en) Guidance controller for mobile object

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees