JPH06114400A - Concentration of sludge - Google Patents

Concentration of sludge

Info

Publication number
JPH06114400A
JPH06114400A JP4264711A JP26471192A JPH06114400A JP H06114400 A JPH06114400 A JP H06114400A JP 4264711 A JP4264711 A JP 4264711A JP 26471192 A JP26471192 A JP 26471192A JP H06114400 A JPH06114400 A JP H06114400A
Authority
JP
Japan
Prior art keywords
sludge
sewage
concentration
membrane
sedimentation basin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4264711A
Other languages
Japanese (ja)
Other versions
JP3165526B2 (en
Inventor
Yuji Yasuda
雄二 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17407128&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06114400(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26471192A priority Critical patent/JP3165526B2/en
Publication of JPH06114400A publication Critical patent/JPH06114400A/en
Application granted granted Critical
Publication of JP3165526B2 publication Critical patent/JP3165526B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To enhance concn. effect and solid recovery and to exert no effect on sludge properties by sedimenting the sludge generated in the water treatment process of a sedimentatrion basin and concentrating the sedimented sludge by the separation due to a precise filter membrane. CONSTITUTION:Sewage 1 is introduced into a first sedimentation basin 2 and the coarse solid in the sewage is removed. This sewage flows in an aeration tank 3 and the suspended solid matter and soluble org. matter in the sewage are removed. The sewage from which the suspended solid matter and the soluble org. matter are removed in the aeration tank 3 flows in a post-stage final sedimentation basin 4 and the activated sludge in the sewage is recovered in the poststage sedimentation basin 4 and a part thereof is supplied to the aeration tank 3 as return sludge 5 and the remainder thereof is stored in a storage tank 8 as excessive sludge 7 to be conc. by a membrane separation part. The initial sedimented raw sludge 6 generated in the first sedimentation basin 2 is allowed to flow in the final sedimentation basin 4 and mixed with the sludge of the final sedimentation basin as excessive sludge 7. A precise filter membrane 9A is provided to the membrane separation part 9 to concentrate the excessive sludge 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水処理、各種産業廃
水処理等の水処理において発生する汚泥の濃縮方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for concentrating sludge generated in water treatment such as sewage treatment and various industrial wastewater treatment.

【0002】[0002]

【従来の技術】従来の下水汚泥濃縮には、重力濃縮、加
圧浮上濃縮、遠心濃縮などがあるが、表1にこれらの方
法の概要を示す。
2. Description of the Related Art Conventional sewage sludge concentration includes gravity concentration, pressure flotation concentration, centrifugal concentration and the like, and Table 1 shows an outline of these methods.

【0003】[0003]

【表1】 [Table 1]

【0004】これら従来の方法では、汚泥の固形物濃度
1.5%が、重力濃縮で2〜2.5%、加圧浮上濃縮で
3.5〜4%、遠心濃縮で4〜4.5%程度まで濃縮さ
れる。実際の採用実績としては、80%以上が重力濃縮
であり、次いで遠心濃縮、加圧浮上濃縮の順であるが、
近年は後二者の採用が増加している。
In these conventional methods, the solid concentration of sludge of 1.5% is 2-2.5% by gravity concentration, 3.5-4% by pressure floating concentration, and 4-4.5 by centrifugal concentration. It is concentrated to about%. In actual use, 80% or more is gravity concentration, followed by centrifugal concentration and pressure floating concentration.
In recent years, the adoption of the latter two has increased.

【0005】[0005]

【発明が解決しようとする課題】重力濃縮、加圧浮上濃
縮、遠心濃縮などの従来の汚泥の濃縮方法では、次の基
本的問題点がある。 (1)固液分離機能及び濃縮機能が不安定である(いず
れの方法も汚泥性状変化の影響を受け易く、とくに大半
を占める重力濃縮はその影響がきわめて大きい。) (2)固形物回収率が低い(重力濃縮で70〜80%、
加圧浮上で80〜85%、遠心濃縮で85〜90%)。 (3)濃縮分離液水質がよくない。濃縮分離液は水処理
工程に返流されるが、その水質がよくないため水処理工
程(生物処理)にかかる負荷が無視できなくなってお
り、返流水負荷として下水処理場の基本的問題点の1つ
にあげられている。
The conventional sludge concentration methods such as gravity concentration, pressure floating concentration and centrifugal concentration have the following basic problems. (1) The solid-liquid separation function and the concentration function are unstable (Each method is susceptible to changes in sludge properties, and gravity concentration, which accounts for the majority, is extremely large.) (2) Solids recovery rate Is low (70-80% by gravity concentration,
80-85% by pressure floatation, 85-90% by centrifugal concentration). (3) The water quality of the concentrated separated liquid is not good. The concentrated separated liquid is returned to the water treatment process, but the quality of the water is not good, so the load on the water treatment process (biological treatment) cannot be ignored, and as a return water load, it is a basic problem of sewage treatment plants. It is listed as one.

【0006】このような従来の汚泥の濃縮方法の基本的
問題点の最大の要因は、 (a)固液分離機能が十分に高くないこと。 (b)固液分離,濃縮機能が汚泥性状変化の影響を受け
易いこと。 であり、固液分離機能が高く、しかも固液分離・濃縮機
能が汚泥性状変化の影響を受けない汚泥の濃縮方法が待
望されている。
[0006] The major cause of the basic problem of such a conventional sludge concentration method is (a) that the solid-liquid separation function is not sufficiently high. (B) Solid-liquid separation and concentration functions are easily affected by changes in sludge properties. Therefore, there is a demand for a sludge concentrating method which has a high solid-liquid separation function and whose solid-liquid separation / concentration functions are not affected by changes in sludge properties.

【0007】本発明は、以上の問題点を解決することが
できる汚泥の濃縮方法を提供しようとするものである。
The present invention is intended to provide a sludge concentration method which can solve the above problems.

【0008】[0008]

【課題を解決するための手段】本発明の汚泥の濃縮方法
は、沈澱池において水処理工程で発生する汚泥を沈澱さ
せ、前記の沈澱した汚泥を精密濾過膜分離によって濃縮
することを特徴とする。
The method for concentrating sludge according to the present invention is characterized in that sludge generated in a water treatment step is precipitated in a settling basin and the precipitated sludge is concentrated by microfiltration membrane separation. .

【0009】[0009]

【作用】液体分離用の膜分離方法には、精密濾過膜分離
(膜孔径μオーダー)と限外濾過膜分離(膜孔径Åオー
ダー)があるが、これらの膜分離は、次の基本的特徴が
ある。 (1)固形物回収率が高い(膜孔径の選択によっては1
00%)。 (2)固形物回収率が高いことに起因して、固液分離水
々質が良好である。さらに、膜孔径の選択によっては溶
解性物質もある程度阻止される。 (3)膜による固形物阻止という一種の強制濃縮である
ため濃縮機能が対象液性状の影響をほとんど受けない。
[Function] The membrane separation methods for liquid separation include microfiltration membrane separation (membrane pore size μ order) and ultrafiltration membrane separation (membrane pore size Å order). These membrane separations have the following basic features. There is. (1) High solid recovery rate (1 depending on the membrane pore size selection
00%). (2) The solid-liquid separated water quality is good due to the high solids recovery rate. Furthermore, soluble substances are also blocked to some extent depending on the choice of membrane pore size. (3) The concentration function is hardly affected by the properties of the target liquid because it is a type of forced concentration in which solids are blocked by the membrane.

【0010】従って、前記の膜分離は、「発明が解決し
ようとする課題」の欄で説明した従来の汚泥の濃縮方法
の基本的問題点を解消することが期待できる。しかし、
適用にあたって問題となるのは、濃縮機能が既存の方法
と同等以上に維持できるか否かである。
Therefore, it can be expected that the above-mentioned membrane separation solves the basic problems of the conventional sludge concentration method described in the section "Problems to be solved by the invention". But,
The issue in application is whether or not the concentration function can be maintained at the same level as or higher than existing methods.

【0011】本発明者は、数多くの実験によって、汚泥
の濃縮方法に適用する膜分離としては限外濾過よりも精
密濾過の方が適性があること、精密濾過でも膜孔径の適
正な選択によって既存の汚泥の濃縮方法と同等以上の濃
縮機能を有することを見出したものである。
The present inventor has conducted a number of experiments and found that microfiltration is more suitable than ultrafiltration as a membrane separation applied to a sludge concentration method, and that even in microfiltration, existing selections have been made by appropriately selecting the membrane pore size. It was found that the sludge has a concentration function equal to or higher than that of the sludge concentration method.

【0012】図2に、本発明者が実施した下水汚泥の膜
分離試験の結果を示す。図2中、限外濾過をUF、精密
濾過をMFとして示しており、図3に試験装置の概要図
を示す。この試験装置は、図3に示すように、温度制御
用のヒータeをもち有効液量300ミリリットルの原液
貯槽a、同貯槽a内の原液を膜分離部cへ供給する循環
ポンプbを備えている。循環ポンプbによって膜分離部
cへ供給された原液貯槽a内の原液は、膜分離部cに装
着された膜dによって膜透過水と濃縮循環液に分離さ
れ、濃縮循環液が原液貯槽aに返送される。前記の膜分
離部cに装着される膜dは、種々変えられるようになっ
ている。
FIG. 2 shows the result of the membrane separation test of sewage sludge carried out by the present inventor. In FIG. 2, ultrafiltration is shown as UF and microfiltration is shown as MF, and FIG. 3 shows a schematic diagram of the test apparatus. As shown in FIG. 3, this test apparatus is provided with a stock solution storage tank a having a heater e for temperature control and an effective solution amount of 300 ml, and a circulation pump b for supplying the stock solution in the storage tank a to a membrane separation section c. There is. The stock solution in the stock solution storage tank a supplied to the membrane separation section c by the circulation pump b is separated into the membrane permeated water and the concentrated circulation solution by the membrane d attached to the membrane separation section c, and the concentrated circulation solution is stored in the stock solution storage tank a. Will be returned. The membrane d mounted on the membrane separating portion c can be changed in various ways.

【0013】以上の試験装置に使用した膜は、 (i)限外濾過膜 分画分子量40000(材質ポリアク
リルニトリル),100000(材質ポリエーテルスル
フォン) (ii)精密濾過膜膜孔径0.1,0.2,0.45μm
(材質ポリスルフォン)である。 試験方法・条件は次の通り。原液貯槽aに試料液(A市
下水処理場より採取した重力濃縮槽入口汚泥、汚泥濃度
16500〜17900ppm)を入れた後、N2 ガス
で所定の透過圧力(4.0kg/cm2G)に設定し、膜分離
部cで濃縮された濃縮液を連続循環させつつ、膜透過水
を経時的に排出させる回分試験である。
The membranes used in the above test apparatus are (i) ultrafiltration membrane molecular weight cutoff of 40,000 (material polyacrylonitrile), 100000 (material polyethersulfone) (ii) microfiltration membrane pore diameter 0.1, 0.2, 0.45 μm
(Material polysulfone). The test method and conditions are as follows. After putting the sample liquid (gravity concentrating tank inlet sludge collected from City A sewage treatment plant, sludge concentration 16500 to 17900 ppm) into the stock solution storage tank a, a predetermined permeation pressure (4.0 kg / cm 2 G) was obtained with N 2 gas. It is a batch test in which the membrane permeated water is discharged over time while the concentrated liquid that has been set and concentrated in the membrane separation section c is continuously circulated.

【0014】回分試験開始後、所定時間ごとに「累積膜
透過水量」を計測し、透過終了後、回収した膜透過水に
ついて固形物濃度(SS)を分析した。濃縮汚泥濃度は、
膜透過流束が極端に低下する累積膜透過水量(Vu ) を
用い、固形物収支から式 CU =Co o /(Vo − Vu ) で計算して求めた。ここで、Cu;濃縮汚泥濃度
(%)、Co ;対象汚泥濃度(%)、Vo ;初期試料液
量(ミリリットル) 本発明者の行った以上の試験結果である図2に示すよう
に、濃縮汚泥濃度はUFよりMFの方が高いこと、MF
でも濃縮汚泥濃度が最大となる膜孔径(0.2μm)が
存在すること、膜孔径0.1〜0.2μmのMFを適用
すれば3.5〜4%と既存濃縮度のうち重力濃縮、加圧
浮上濃縮と同等以上の濃縮機能を得られていることが判
明した。また、固形物回収率はUF,MFのいずれも1
00%であることが判明した。
After the start of the batch test, the "cumulative amount of permeated water" was measured every predetermined time, and after the permeation was completed, the solid concentration (SS) of the collected permeated water was analyzed. The concentration of concentrated sludge is
The cumulative membrane permeation water amount (V u ) at which the membrane permeation flux was extremely reduced was used and calculated from the solid balance by the formula C U = C o V o / (V o −V u ). Here, Cu: concentrated sludge concentration (%), C o : target sludge concentration (%), V o : initial sample liquid amount (milliliter) As shown in FIG. 2, which is the result of the above test conducted by the present inventor. , MF is higher in concentrated sludge concentration than UF, MF
However, there is a membrane pore diameter (0.2 μm) that maximizes the concentration of concentrated sludge, and if MF with a membrane pore diameter of 0.1 to 0.2 μm is applied, it will be 3.5 to 4%, which is gravity concentration among existing concentrations, It was found that a concentration function equivalent to or higher than the pressure floating concentration was obtained. In addition, the solid recovery rate is 1 for both UF and MF.
It was found to be 00%.

【0015】以上の試験結果に基づき、本発明において
は、沈澱池において水処理により発生する汚泥を沈澱さ
せ、この沈澱した汚泥を濃縮するに当って精密濾過膜
(MF)分離を採用した。以上説明したように、本発明
は、以上の構成を備えたことによって、従来の汚泥の濃
縮方法と同等以上の濃縮機能を保持しつゝ、固形物回収
率が高く安定した固液分離機能を維持することができ
る。
Based on the above test results, in the present invention, the sludge generated by the water treatment in the sedimentation basin is precipitated, and the microfiltration membrane (MF) separation is used in concentrating the precipitated sludge. As described above, according to the present invention, by having the above-mentioned configuration, while maintaining a concentration function equal to or higher than that of the conventional sludge concentration method, a solid-liquid separation function having a high solid recovery rate and a stable solid-liquid separation function can be obtained. Can be maintained.

【0016】[0016]

【実施例】本発明の一実施例を、図1によって説明す
る。本実施例は、下水処理から発生する汚泥処理の濃縮
工程を精密濾過膜(MF)分離としたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIG. In this example, the concentration step of sludge treatment generated from sewage treatment is performed by microfiltration membrane (MF) separation.

【0017】下水1は、最初沈澱池2において粗大固形
物を除去した後、曝気槽3に流入し、同曝気槽3におい
て浮遊性固形物と溶解性有機物などを除去する。曝気槽
3で浮遊性固形物と溶解性有機物などが除去された混合
液は後段の最終沈澱池4に流入し、混合液中の活性汚泥
は後段の最終沈澱池4で回収され、一部は返送汚泥5と
して曝気槽3へ、残部は余剰汚泥7として貯留槽8に貯
留後、膜分離部9で濃縮される。また、最初沈澱池2で
発生した初沈生汚泥6を最終沈澱池4に流入させ、同初
沈生汚泥6を最終沈澱池汚泥と混合し余剰汚泥7として
処理する。前記膜分離部9には精密濾過膜9Aが装着さ
れており、同精密濾過膜9Aによって余剰汚泥7の濃縮
が行われるようになっている。
The sewage 1 first removes coarse solids in the settling tank 2 and then flows into the aeration tank 3 to remove floating solids and soluble organic substances in the aeration tank 3. The mixed solution from which the floating solids and soluble organic substances have been removed in the aeration tank 3 flows into the final settling tank 4 in the latter stage, and the activated sludge in the mixed solution is recovered in the final settling tank 4 in the latter stage, and part of it The returned sludge 5 is stored in the aeration tank 3, and the rest is stored in the storage tank 8 as excess sludge 7, and then concentrated in the membrane separation unit 9. The first settling sludge 6 generated in the first settling basin 2 is caused to flow into the final settling basin 4, and the first settling sludge 6 is mixed with the final settling basin sludge to be treated as surplus sludge 7. A microfiltration membrane 9A is attached to the membrane separation section 9 so that the excess sludge 7 is concentrated by the microfiltration membrane 9A.

【0018】前記膜分離部9においては、濃縮分離液と
なる膜透過水11と濃縮汚泥10が発生し、膜透過水1
1は曝気槽3へ送られ、濃縮汚泥10は脱水機12へ送
られる。脱水機12においては、濃縮汚泥10を脱水し
て脱水汚泥13とし、この脱水汚泥13は後段の汚泥処
理部へ送られる。
In the membrane separation section 9, the membrane permeated water 11 and the concentrated sludge 10 which are concentrated separated liquids are generated, and the membrane permeated water 1
1 is sent to the aeration tank 3, and the concentrated sludge 10 is sent to the dehydrator 12. In the dehydrator 12, the concentrated sludge 10 is dehydrated into a dehydrated sludge 13, and this dehydrated sludge 13 is sent to a sludge treatment unit in a subsequent stage.

【0019】本実施例においては、以上説明したよう
に、最初沈澱池2で発生する初沈生汚泥6と後段の最終
沈澱池4で発生する汚泥とが余剰汚泥7として膜分離部
9へ送られ、こゝで精密濾過膜9Aによる分離によって
濃縮される。従って、本実施例は、「作用」欄で詳述し
たように、従来の汚泥の濃縮方法と同等以上の濃縮機能
を保持しつゝ、固形物回収率が高く安定した固液分離機
能を維持することができる。
In the present embodiment, as described above, the initial sludge 6 generated in the first settling tank 2 and the sludge generated in the final settling tank 4 in the subsequent stage are sent to the membrane separation section 9 as excess sludge 7. It is then concentrated by separation with the microfiltration membrane 9A. Therefore, as described in detail in the "Action" column, this example maintains a concentration function equal to or higher than that of the conventional sludge concentration method, while maintaining a high solid recovery rate and a stable solid-liquid separation function. can do.

【0020】[0020]

【発明の効果】本発明は、沈澱池において水処理による
発生する汚泥を沈澱させ、前記の沈澱した汚泥を精密濾
過膜分離によって濃縮することによって、従来の汚泥の
濃縮方法と同等以上の濃縮機能を保持しつゝ、固形物回
収率が高く、かつ、汚泥の性状等に影響されない安定し
た固液分離機能を維持することができる。
INDUSTRIAL APPLICABILITY According to the present invention, sludge generated by water treatment is settled in a settling basin and the settled sludge is concentrated by microfiltration membrane separation. As a result, the solid recovery rate is high, and a stable solid-liquid separation function that is not affected by the properties of sludge can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】限外濾過膜と精密濾過膜を用いた試験結果を示
すグラフである。
FIG. 2 is a graph showing the test results using an ultrafiltration membrane and a microfiltration membrane.

【図3】前記試験に用いられた試験装置の構成図であ
る。
FIG. 3 is a configuration diagram of a test apparatus used in the test.

【符号の説明】[Explanation of symbols]

1 下水 2 最初沈澱池 3 曝気槽 4 最終沈澱池 5 返送汚泥 6 初沈生汚泥 7 余剰汚泥 8 貯留槽 9 膜分離部 9A 精密濾過膜 10 濃縮汚泥 11 膜透過水 12 脱水機 13 脱水汚泥 1 Sewage 2 First settling tank 3 Aeration tank 4 Final settling tank 5 Return sludge 6 Initial sludge sludge 7 Excess sludge 8 Storage tank 9 Membrane separation section 9A Microfiltration membrane 10 Concentrated sludge 11 Membrane permeate 12 Dehydrator 13 Dewatered sludge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 沈澱池において水処理により発生した汚
泥を沈澱させ、前記の沈澱した汚泥を精密濾過膜分離に
よって濃縮することを特徴とする汚泥の濃縮方法。
1. A method for concentrating sludge, which comprises sludge sludge generated by water treatment in a settling basin and concentrating the precipitated sludge by microfiltration membrane separation.
JP26471192A 1992-10-02 1992-10-02 Sludge concentration method Ceased JP3165526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26471192A JP3165526B2 (en) 1992-10-02 1992-10-02 Sludge concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26471192A JP3165526B2 (en) 1992-10-02 1992-10-02 Sludge concentration method

Publications (2)

Publication Number Publication Date
JPH06114400A true JPH06114400A (en) 1994-04-26
JP3165526B2 JP3165526B2 (en) 2001-05-14

Family

ID=17407128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26471192A Ceased JP3165526B2 (en) 1992-10-02 1992-10-02 Sludge concentration method

Country Status (1)

Country Link
JP (1) JP3165526B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263093A (en) * 1999-03-15 2000-09-26 Maezawa Ind Inc Waste water treatment apparatus
US7879229B2 (en) 2003-10-29 2011-02-01 Zenon Technology Partnership Water treatment plant with immersed membranes
US8114293B2 (en) 2003-10-29 2012-02-14 Zenon Technology Partnership Method of operating a water treatment plant with immersed membranes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263093A (en) * 1999-03-15 2000-09-26 Maezawa Ind Inc Waste water treatment apparatus
US7879229B2 (en) 2003-10-29 2011-02-01 Zenon Technology Partnership Water treatment plant with immersed membranes
US8114293B2 (en) 2003-10-29 2012-02-14 Zenon Technology Partnership Method of operating a water treatment plant with immersed membranes

Also Published As

Publication number Publication date
JP3165526B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
TWI446956B (en) Method of improving performance of ultrafiltration or microfiltration membrane processes in backwash water treatment
Park Effect of ozonation for reducing membrane-fouling in the UF membrane
US20220234930A1 (en) Method for Purifying Contaminated Water
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP2001276844A (en) Water producing method and water producing system
JP2911327B2 (en) Method and apparatus for treating water containing turbid components
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP2003080246A (en) Apparatus and method for treating water
JPH10323674A (en) Organic matter-containing water treatment apparatus
JP3165526B2 (en) Sludge concentration method
US5916437A (en) Domestic sewage cleaning system
US20020011438A1 (en) Water purification treatment apparatus with large pore size filter membrane unit
JP4925403B2 (en) Waste water treatment apparatus and waste water treatment method
JP3185398B2 (en) Water purification equipment
JP3697938B2 (en) Wastewater treatment equipment
JPH0631270A (en) Film cleaning process for water and operation of the device
CN205635230U (en) Energy -efficient salt effluent disposal system that contains
JP3421905B2 (en) Wastewater treatment equipment
JP4539321B2 (en) Water purification system
JPH11128928A (en) Wastewater treatment vehicle
Choksuchart et al. Surface water clarification by ultrafiltration with an immersed membrane system: effect of coagulation/aeration on flux enhancement
JP3697529B2 (en) Membrane-based wastewater treatment method and water purification apparatus
KR100229406B1 (en) Water treating method using membrane
KR100262264B1 (en) Water treatment process by using mf/uf tubular membranes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

RVOP Cancellation by post-grant opposition