JPH06113574A - Starter for semiconductor motor - Google Patents

Starter for semiconductor motor

Info

Publication number
JPH06113574A
JPH06113574A JP25963292A JP25963292A JPH06113574A JP H06113574 A JPH06113574 A JP H06113574A JP 25963292 A JP25963292 A JP 25963292A JP 25963292 A JP25963292 A JP 25963292A JP H06113574 A JPH06113574 A JP H06113574A
Authority
JP
Japan
Prior art keywords
current
motor
phase
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25963292A
Other languages
Japanese (ja)
Inventor
Yukihiko Hatano
幸彦 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25963292A priority Critical patent/JPH06113574A/en
Publication of JPH06113574A publication Critical patent/JPH06113574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference

Landscapes

  • Motor And Converter Starters (AREA)

Abstract

PURPOSE:To prevent fluctuation of r.p.m. by detecting AC three-phase motor current and setting a current increase rate and a final limit current based on the initial current at the time of starting. CONSTITUTION:When a start command is fed to a current reference pattern generating circuit(PG) 18 and a phase control circuit 20, the PG 18 generates a current reference signal iref which increases from a level set by an initial current setting circuit 15 at a rate set by an increase rate setting circuit 16. A signal detected through any one of current detectors 10-12 is fed through a rectifying circuit 13 and a low-pass filter 14 to produce a current feedback signal (if) and the difference DELTAi from the current signal iref is fed to a current control circuit 19. The current control circuit 19 produces a phase control signal Ec from the difference DELTAi. The phase control circuit 20 increases the voltage to be applied on a motor when the signal Ec is positive whereas lowers the voltage to be applied on the motor when the signal Ec is negative thus equalizing the feed back amount if to the current reference iref.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三相交流モータを始動
するための半導体モータ始動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor motor starting device for starting a three-phase AC motor.

【0002】[0002]

【従来の技術】周知のように三相交流モータは、直入れ
始動時に定格電流の6〜8倍の過電流が流れ、負荷の機
械的ストレスを増大させたり、電源電圧の低下を引き起
こしたり様々な問題を生じる。このような不具合をなく
すために、従来かサイリスタやトライアックのような半
導体スイッチング素子を用いた半導体モータ始動装置が
採用されている。図3に従来の半導体モータ始動装置を
示す。
2. Description of the Related Art As is well known, in a three-phase AC motor, an overcurrent of 6 to 8 times the rated current flows at the time of direct insertion start, which increases mechanical stress on the load and causes a decrease in power supply voltage. Cause problems. In order to eliminate such inconvenience, a semiconductor motor starting device using a semiconductor switching element such as a thyristor or a triac has been conventionally used. FIG. 3 shows a conventional semiconductor motor starting device.

【0003】図3において、1乃至6は、サイリスタ等
の半導体スイッチング素子であり、三相の各相に逆並列
に接続されて三相交流モータ7に電力を供給する。9は
スタート/ストップ指令に基づいて半導体スイッチング
素子1乃至6をオンオフさせるための位相制御信号を発
生させる位相制御パターン発生回路である。このような
半導体モータ始動装置において、外部よりスタート指令
が位相制御パターン発生回路9に入力されると、位相制
御パターン発生回路9は三相交流モータへの始動時の印
加電圧が所定の特性になるように半導体スイッチング素
子1乃至6を点弧する位置制御信号パターンを発生す
る。例えば図4(a)のように三相交流モータ7への印
加電圧をスタート指令後、直線的に上昇させるように半
導体スイッチング素子1乃至6の点弧位相を変化させる
ようになっている。このように三相交流モータ7への印
加電圧を除々に増加することによって始動時の過電流を
制御している。始動終了後、半導体スイッチング素子1
乃至6は全点弧となり、三相交流モータ7への印加電圧
は三相交流電源電圧の100%電圧に等しくなる。また
ストップ指令が位相制御パターン発生回路9に入力され
ると三相交流モータ7への印加電圧は始動時と逆に減少
するように制御されるのが一般的である。
In FIG. 3, reference numerals 1 to 6 denote semiconductor switching elements such as thyristors, which are connected in antiparallel to each of the three phases to supply electric power to the three-phase AC motor 7. Reference numeral 9 is a phase control pattern generation circuit for generating a phase control signal for turning on / off the semiconductor switching elements 1 to 6 based on a start / stop command. In such a semiconductor motor starting device, when a start command is input to the phase control pattern generation circuit 9 from the outside, the phase control pattern generation circuit 9 has a predetermined characteristic in the applied voltage at the time of starting the three-phase AC motor. Thus, the position control signal pattern for firing the semiconductor switching elements 1 to 6 is generated. For example, as shown in FIG. 4A, after the start command of the voltage applied to the three-phase AC motor 7, the firing phases of the semiconductor switching elements 1 to 6 are changed so as to increase linearly. In this way, the overcurrent at the start is controlled by gradually increasing the voltage applied to the three-phase AC motor 7. After the start, the semiconductor switching element 1
6 to 6 are all fired, and the voltage applied to the three-phase AC motor 7 is equal to 100% of the three-phase AC power supply voltage. Further, when a stop command is input to the phase control pattern generating circuit 9, the voltage applied to the three-phase AC motor 7 is generally controlled so as to decrease in reverse to that at the start.

【0004】[0004]

【発明が解決しようとする課題】上記の半導体モータ始
動装置において、三相交流モータ7への印加電圧が三相
電源電圧の100%になる前に三相交流モータ7の回転
速度が定格速度になった場合、負荷によっては図4
(b)に示すように定格速度の近辺で回転数に振動が発
生する。この振動は、三相交流モータ7に接続された動
力系やモータ自身にも大きな機械ストレスを生じ、時に
は動力系の破損といった大問題が発生する。この振動の
生じる原因は、半導体スイッチング素子1乃至6によっ
て位相制御されたモータへの印加電圧に、多量の高調波
(電源基本周波数の第5,7,11,13…調波)が含
まれているためである。つまり三相交流モータ7は、電
源に含まれる割合が最も多い第5調波の同期速度まで回
転数を上昇しようとするが、基本波の同期速度を超える
とモータは発電機となり電源側に電力を回生してモータ
にブレーキ力が働く。モータの回転数は慣性により定格
速度以下となるが、電圧に含まれる第5調波の同期速度
まで再度上昇しようとする。以降同様の現象が繰り返さ
れ、ついにはモータへの印加電圧が電源電圧に等しくな
ったとき、つまり高調波が含まれない正弦波になったと
きに始めて回転数の振動がおさまり、定格速度での運転
で安定する。本発明は、上記の問題点を解決するために
なされたもので、モータ回転数の振動をなくすことので
きる半導体モータ始動装置を提供することにある。
In the above semiconductor motor starter, the rotation speed of the three-phase AC motor 7 reaches the rated speed before the voltage applied to the three-phase AC motor 7 reaches 100% of the three-phase power supply voltage. If it becomes, depending on the load,
As shown in (b), the rotation speed vibrates near the rated speed. This vibration causes a large mechanical stress in the power system connected to the three-phase AC motor 7 and also in the motor itself, sometimes causing a big problem such as damage to the power system. The cause of this vibration is that a large amount of harmonics (5th, 7th, 11th, 13th harmonics of the power source fundamental frequency) are included in the voltage applied to the motor whose phase is controlled by the semiconductor switching elements 1 to 6. This is because In other words, the three-phase AC motor 7 tries to increase the rotation speed up to the synchronous speed of the fifth harmonic, which is most included in the power supply, but when the synchronous speed of the fundamental wave is exceeded, the motor becomes a generator and power is supplied to the power supply side. To regenerate the braking force on the motor. Although the rotation speed of the motor is lower than the rated speed due to inertia, it tries to increase again to the synchronous speed of the fifth harmonic contained in the voltage. The same phenomenon is repeated thereafter, and finally, when the voltage applied to the motor becomes equal to the power supply voltage, that is, when it becomes a sine wave that does not include harmonics, the vibration of the rotational speed subsides and the rated speed Be stable during driving. The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor motor starter capable of eliminating vibration of the motor rotation speed.

【0005】[0005]

【課題を解決するための手段】本発明の半導体モータ始
動装置は、半導体スイッチング素子を逆並列に接続して
なる半導体交流スイッチを、三相交流電源と、三相交流
モータとの間に接続し、この三相交流モータの始動時に
半導体スイッチング素子を位相制御し三相交流モータへ
の印加電圧を変化させる半導体モータ始動装置にあっ
て、前記三相交流モータの電流を検出して始動時の初期
電流を設定する手段と、初期電流から電流の上昇率を設
定する手段及び最終のリミット電流を設定する手段を設
けたことを特徴とする。
In a semiconductor motor starting device of the present invention, a semiconductor AC switch having semiconductor switching elements connected in anti-parallel is connected between a three-phase AC power source and a three-phase AC motor. In a semiconductor motor starting device for controlling a phase of a semiconductor switching element at the time of starting the three-phase AC motor to change a voltage applied to the three-phase AC motor, an electric current of the three-phase AC motor is detected to start an initial operation at the time of starting. It is characterized in that a means for setting the current, a means for setting the rate of increase of the current from the initial current, and a means for setting the final limit current are provided.

【0006】[0006]

【作用】本発明の半導体モータ始動装置によれば、三相
交流モータの電流を、設定したパターンに制御するた
め、三相交流モータが定格速度になって電流が低下する
と、設定電流を流そうと三相交流モータへの印加電圧が
上昇して交流電源電圧と等しくなるので、三相交流モー
タの回転数の振動をなくすことができる。
According to the semiconductor motor starting device of the present invention, the current of the three-phase AC motor is controlled in the set pattern. Therefore, when the three-phase AC motor reaches the rated speed and the current drops, the set current will flow. Since the voltage applied to the three-phase AC motor rises and becomes equal to the AC power supply voltage, it is possible to eliminate the vibration of the rotation speed of the three-phase AC motor.

【0007】[0007]

【実施例】図1は本発明の一実施例を示す半導体モータ
始動装置のブロック図であり、図3と同一部分には同一
符号を付し、その詳細な説明を省略する。
1 is a block diagram of a semiconductor motor starting device showing an embodiment of the present invention. The same parts as those in FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0008】図1において、1乃至6は半導体スイッチ
ング素子、7は三相交流モータ、10乃至12は三相交
流モータ7の電流を検出する、例えばCTのような電流
検出器、13は電流検出器10乃至12の出力を整流す
る整流回路、14はローパスフィルタ、15は初期電流
設定回路、16は電流の上昇率を設定する上昇率設定回
路、17は最終の電流を設定するリミット電流回路、1
8は15乃至17の各設定回路の信号より電流基準のパ
ターンを発生する電流基準パターン発生回路、19は電
流基準パターン発生回路18からの出力irefとロー
パスフィルタ14の出力信号である電流フィールドバッ
ク神港ifとの差分から位相を決定する信号Ecを発生
させる電流制御回路、20は信号Ecより各々のサイリ
スタにゲートを発生させる位相制御回路である。
In FIG. 1, 1 to 6 are semiconductor switching elements, 7 is a three-phase AC motor, 10 to 12 are current detectors for detecting the current of the three-phase AC motor 7, for example, a current detector such as CT, 13 is a current detector. A rectifying circuit for rectifying the outputs of the capacitors 10 to 12, 14 is a low-pass filter, 15 is an initial current setting circuit, 16 is a rising rate setting circuit for setting a rising rate of current, 17 is a limit current circuit for setting a final current, 1
Reference numeral 8 is a current reference pattern generation circuit that generates a current reference pattern from the signals of the setting circuits 15 to 17, and reference numeral 19 is an output iref from the current reference pattern generation circuit 18 and a current field background signal which is an output signal of the low pass filter 14. A current control circuit that generates a signal Ec that determines the phase from the difference from the port if, and 20 is a phase control circuit that generates a gate in each thyristor from the signal Ec.

【0009】いまここで、スータト指令が電流基準パタ
ーン発生回路18と位相制御回路20に入力されると、
電流基準パターン発生回路18は図2(d)のように初
期電流設定回路15で設定された値から上昇設定回路1
6で設定された上昇率にて上昇する電流基準信号ire
fを発生する。電流検出器10乃至12で検出された信
号は整流回路13,ローパスフィルタ14を経て電流フ
ィードバック信号ifとなり、電流信号irefとの差
分△i=(iref−if)が電流制御回路19に入力
される。電流制御回路19は△iから位相制御信号Ec
を出力する。
Now, when the start command is input to the current reference pattern generation circuit 18 and the phase control circuit 20,
The current reference pattern generation circuit 18 increases the value from the value set by the initial current setting circuit 15 as shown in FIG.
The current reference signal ire rising at the rising rate set in 6.
generate f. The signals detected by the current detectors 10 to 12 pass through the rectifier circuit 13 and the low-pass filter 14 to become the current feedback signal if, and the difference Δi = (iref−if) from the current signal iref is input to the current control circuit 19. . The current control circuit 19 changes the phase control signal Ec from Δi.
Is output.

【0010】なお、制御方法は、従来の制御技術で知ら
れている様にP制御,PI制御,PID制御等各種ある
が、ここでは単純な比例制御であるP制御について述べ
る。位相制御信号Ecはiref>ifの時(つまり基
準値よりもフィードバック量が小さい時、Ec>0が成
り立つ。逆にiref<if、つまり基準値よりもフィ
ードバック量が大きい時、Ec>0となる。
There are various control methods such as P control, PI control, PID control, etc. as known in the conventional control technology, but here, P control which is simple proportional control will be described. The phase control signal Ec is Eref> if (that is, Ec> 0 when the feedback amount is smaller than the reference value. Conversely, iref <if, that is, Ec> 0 when the feedback amount is larger than the reference value. .

【0011】そこで、位相制御回路20は、信号Ecが
正の時に、モータ印加電圧を上昇させる様に、又信号E
cが負の時に、モータ印加電圧を下降させる様にすれ
ば、フィードバック量ifは電流基準irefと等しく
なる様に制御される。
Therefore, the phase control circuit 20 increases the voltage applied to the motor when the signal Ec is positive, and the signal Ec.
When the voltage applied to the motor is lowered when c is negative, the feedback amount if is controlled to be equal to the current reference iref.

【0012】よって、モータ電流は図2(c)の様にモ
ータ回転数が定格になるまでは電流基準通りとなる。図
2の実線は設定に対してモータの始動に要する時間が長
い場合を、点線は短い場合を示している。モータは、回
転速度が定格に近くなるとモータ電流は負荷によって決
定される電流まで低下する。電流基準は上昇中か、又は
リミット電流に固定されているので、モータ電流が低下
し始めると位相制御信号Ecは、Ec>0となり、図2
(a)の様に三相交流モータ7への印加電圧は短時間で
上昇する。つまりモータが定格速度になると三相交流モ
ータ7への印加電圧を短時間で電流電圧の100%まで
上昇させるので、三相交流モータ7への印加電圧に高調
波が含まれる期間を短くすることができ、回転数の振動
をなくすことができる。
Therefore, as shown in FIG. 2 (c), the motor current is in accordance with the current reference until the motor rotation speed reaches the rated value. The solid line in FIG. 2 shows the case where the time required to start the motor is long with respect to the setting, and the dotted line shows the case where the time is short. When the rotation speed of the motor approaches the rated value, the motor current drops to a current determined by the load. Since the current reference is increasing or fixed to the limit current, when the motor current starts to decrease, the phase control signal Ec becomes Ec> 0, and FIG.
As shown in (a), the voltage applied to the three-phase AC motor 7 rises in a short time. In other words, when the motor reaches the rated speed, the voltage applied to the three-phase AC motor 7 rises to 100% of the current voltage in a short time. Therefore, the period in which the voltage applied to the three-phase AC motor 7 contains harmonics should be shortened. It is possible to eliminate the vibration of the rotation speed.

【0013】[0013]

【発明の効果】以上説明のように、本発明によれば、モ
ータ電流を電流基準に等しくなる様に制御できるので、
モータ電流が電流基準より小さくなった時点でモータへ
の印加電圧が速やかに電源電圧と等しくなり、高調波の
発生する期間を短くできモータ回転の振動によるモータ
や負荷動力系に与える機械的ストレスをなくすことがで
きる。又モータ電流を直線的に上昇させる様にしたの
で、極めて滑らかな始動が可能となるだけでなく、初期
電流や電流の上昇率,リミット電流が個別に設定できる
ので負荷に最も適した始動をさせることが可能となる。
As described above, according to the present invention, the motor current can be controlled to be equal to the current reference.
When the motor current becomes smaller than the current reference, the voltage applied to the motor quickly becomes equal to the power supply voltage, and the period in which harmonics occur can be shortened, and mechanical stress applied to the motor and load power system due to vibration of the motor rotation can be reduced. It can be lost. Also, since the motor current is increased linearly, not only can an extremely smooth start be made possible, but the initial current, current increase rate, and limit current can be set individually, so a start most suitable for the load can be achieved. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す半導体モータ始動装置
のブロック図
FIG. 1 is a block diagram of a semiconductor motor starting device showing an embodiment of the present invention.

【図2】本発明による半導体モータ始動装置の動作を説
明する波形図を示し、(a)はモータ印加電圧の波形
図、(b)はモータ回転速度の波形図、(c)はモータ
電流の波形図、(d)は電流基準の波形図
2A and 2B are waveform diagrams for explaining the operation of the semiconductor motor starter according to the present invention, in which FIG. 2A is a waveform diagram of a motor applied voltage, FIG. 2B is a waveform diagram of a motor rotation speed, and FIG. Waveform diagram, (d) Waveform diagram of current reference

【図3】従来の半導体モータ始動装置のブロック図FIG. 3 is a block diagram of a conventional semiconductor motor starting device.

【図4】従来の半導体モータ始動装置の動作を説明する
波形図
FIG. 4 is a waveform diagram illustrating the operation of a conventional semiconductor motor starting device.

【符号の説明】[Explanation of symbols]

1乃至6は半導体スイッチング素子、7は三相交流モー
タ、10乃至12は電流検出器、13は整流回路、14
はローパスフィルタ、15は初期電流設定回路、16は
上昇率設定回路、17はリミット電流設定回路、18は
電流基準パターン発生回路、19は電流制御回路、20
は位相制御回路を示す。
1 to 6 are semiconductor switching elements, 7 is a three-phase AC motor, 10 to 12 are current detectors, 13 is a rectifier circuit, 14
Is a low pass filter, 15 is an initial current setting circuit, 16 is a rising rate setting circuit, 17 is a limit current setting circuit, 18 is a current reference pattern generation circuit, 19 is a current control circuit, 20
Indicates a phase control circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体スイッチング素子を逆並列に接続
してなる半導体交流スイッチを三相流電源と三相交流モ
ータとの間に接続し、この三相交流モータの始動時に半
導体スイッチング素子を位相制御し、三相交流モータへ
の印加電圧を変化させる半導体モータ始動装置におい
て、前記三相交流モータの電流を検出して始動時の初期
電流を設定する手段と、初期電流から電流の上昇率を設
定する手段及び最終のリミット電流を設定する手段を設
けたことを特徴とする半導体モータ始動装置。
1. A semiconductor AC switch in which semiconductor switching elements are connected in anti-parallel is connected between a three-phase flow power source and a three-phase AC motor, and the semiconductor switching elements are phase-controlled when the three-phase AC motor is started. In the semiconductor motor starting device that changes the voltage applied to the three-phase AC motor, means for detecting the current of the three-phase AC motor and setting the initial current at the time of starting, and setting the rate of increase of the current from the initial current And a means for setting a final limit current.
JP25963292A 1992-09-29 1992-09-29 Starter for semiconductor motor Pending JPH06113574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25963292A JPH06113574A (en) 1992-09-29 1992-09-29 Starter for semiconductor motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25963292A JPH06113574A (en) 1992-09-29 1992-09-29 Starter for semiconductor motor

Publications (1)

Publication Number Publication Date
JPH06113574A true JPH06113574A (en) 1994-04-22

Family

ID=17336770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25963292A Pending JPH06113574A (en) 1992-09-29 1992-09-29 Starter for semiconductor motor

Country Status (1)

Country Link
JP (1) JPH06113574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397565B1 (en) * 2001-01-16 2003-09-13 엘지산전 주식회사 Multi-functional hybrid contactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397565B1 (en) * 2001-01-16 2003-09-13 엘지산전 주식회사 Multi-functional hybrid contactor

Similar Documents

Publication Publication Date Title
US4879639A (en) Power converter for driving an AC motor at a variable speed
US4767976A (en) Control system for PWM inverter
US4227138A (en) Reversible variable frequency oscillator for smooth reversing of AC motor drives
JPH0612954B2 (en) Synchronous motor control method
CA1275436C (en) Induction generator/motor system
US4654572A (en) Load-commutated inverter for operating synchronous motor
US4412160A (en) DC Motor driving apparatus
JPH06113574A (en) Starter for semiconductor motor
JPH06165582A (en) Inverter unit
JP2001103774A (en) Variable speed controller for induction motor
JP3062638B2 (en) Single phase induction motor
JPH05292768A (en) Starter for semiconductor motor
JP2579977B2 (en) Electric power generation control device
JP2809581B2 (en) Pumping generator motor control device
JP3251769B2 (en) Restart method of voltage source inverter
JPH06245565A (en) Regenerative controller for voltage-type inverter
JP2539519B2 (en) Control device for variable speed pumped storage generator motor
JP2816020B2 (en) Control method for Servius device
JPH1042590A (en) Voltage-type inverter
JPH0328915B2 (en)
JPS61109478A (en) Power regeneration system in voltage inverter
SU1112520A1 (en) Electric drive
JP2956845B2 (en) Power converter
JPH01283056A (en) Power supply equipment
JPH0235557B2 (en)