JPH06113278A - Conversion system of visual characteristic to block orthogonal transformation area - Google Patents

Conversion system of visual characteristic to block orthogonal transformation area

Info

Publication number
JPH06113278A
JPH06113278A JP26205091A JP26205091A JPH06113278A JP H06113278 A JPH06113278 A JP H06113278A JP 26205091 A JP26205091 A JP 26205091A JP 26205091 A JP26205091 A JP 26205091A JP H06113278 A JPH06113278 A JP H06113278A
Authority
JP
Japan
Prior art keywords
spatial
block
visual characteristic
area
impulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26205091A
Other languages
Japanese (ja)
Other versions
JP2642545B2 (en
Inventor
Yukio Go
志雄 呉
Yoichi Yamada
陽一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP26205091A priority Critical patent/JP2642545B2/en
Publication of JPH06113278A publication Critical patent/JPH06113278A/en
Application granted granted Critical
Publication of JP2642545B2 publication Critical patent/JP2642545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Image Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

PURPOSE:To obtain the conversion system in which a space impulse response by visual characteristic is not reflected to one block and the visual characteristic is accurately converted. CONSTITUTION:A space area expansion means 1 expands a space area having a space impulse of MXN block size into an area of mMXnN so that no reflection takes place in the space impulse response. A DFT(discrete Fourier transformation) means 2 transforms the space impulse in the expanded area into a space frequency area. A visual characteristic addition means 3 uses a visual characteristic table to provide a visual characteristic in the space frequency area and the result is inverted to the space area by an IDFT(inverse discrete Fourier transformation) means 4. After the space impulse response is converted into a block orthogonal conversion area by a block orthogonal transformation means 5, norm of the same component of each block is obtained. On the other hand, the inputted space impulse is subject to orthogonal transformation and each component absolute value is obtained. The ratio of the norm to the absolute value is outputted as the visual characteristic in the block orthogonal transformation area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は画像の圧縮符号化装置
において用いられ、特に人間の視覚特性を考慮した量子
化あるいは評価を行う場合に、視覚特性(周波数特性)
をブロック直交変換領域に変換する変換方式に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an image compression coding apparatus, and particularly when performing quantization or evaluation in consideration of human visual characteristics, visual characteristics (frequency characteristics)
To a block orthogonal transform domain.

【0002】[0002]

【従来の技術】従来の視覚特性の領域変換方式として
は、例えば文献:「可変長符号化方式における視覚特性
を考慮したDCT係数の最適量子化」(電子情報通信学
会技術研究報告 IE90−101)に開示されるもの
があった。図3は、この従来の方式を説明するための図
であり、以下、従来の方式の処理手順について説明す
る。 図3に於いて、N×Nのブロックサイズの直交変換
領域の視覚特性を得るため、先ず、N×Nのブロックの
値が全てAとなる直交変換領域のブロックデータを入力
する。
2. Description of the Related Art As a conventional visual characteristic region conversion method, for example, reference is made to: "Optimal quantization of DCT coefficient in consideration of visual characteristic in variable length coding method" (Technical Research Report IE90-101 of Institute of Electronics, Information and Communication Engineers). Was disclosed in. FIG. 3 is a diagram for explaining this conventional method, and the processing procedure of the conventional method will be described below. In FIG. 3, in order to obtain the visual characteristics of an orthogonal transformation area having an N × N block size, first, block data of an orthogonal transformation area in which the values of all N × N blocks are A is input.

【0003】 このブロックデータを直交変換し、空
間領域のインパルスを得る。この時インパルスの高さが
1となるように前記係数Aを調節する。
This block data is orthogonally transformed to obtain a spatial domain impulse. At this time, the coefficient A is adjusted so that the impulse height becomes 1.

【0004】 空間領域のインパルスを離散フーリエ
変換(DFT)を用いて空間周波数領域に変換する。
Impulses in the spatial domain are transformed into the spatial frequency domain using the discrete Fourier transform (DFT).

【0005】 空間周波数領域のデータに対して同じ
く空間周波数領域の視覚特性H(k,m)を掛ける。
Similarly, the spatial frequency domain data is multiplied by the spatial frequency domain visual characteristic H (k, m).

【0006】 このデータを逆離散フーリエ変換(I
DFT)を用いて空間領域に変換し、視覚特性による空
間インパルス応答を得る。
Inverse discrete Fourier transform (I
DFT) is used to transform into the spatial domain to obtain the spatial impulse response due to visual characteristics.

【0007】 最後に、この空間インパルス応答を逆
直交変換することにより所定の直交変換領域に変換し、
直交変換領域における視覚特性を得る。この場合視覚特
性は複素数で表されるのでそのノルムを求め更に前記係
数Aで正規化することにより直交変換領域における正規
化された視覚特性が得られる。
Finally, the spatial impulse response is transformed into a predetermined orthogonal transformation region by inverse orthogonal transformation,
Obtain the visual characteristics in the orthogonal transformation domain. In this case, since the visual characteristic is represented by a complex number, the norm is calculated and further normalized by the coefficient A to obtain the normalized visual characteristic in the orthogonal transformation region.

【0008】表1は8×8のブロックにおいて、視距離
LをL=1024(画素)とし、直交変換として離散余
弦変換(DCT)を用いた場合のDCTにおける視覚特
性の一例を示したものである。
Table 1 shows an example of visual characteristics in the DCT when the visual distance L is L = 1024 (pixels) and the discrete cosine transform (DCT) is used as the orthogonal transform in the 8 × 8 block. is there.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
変換方式をブロック直交変換領域に応用した場合、本来
多数のブロックに広がるはずの視覚特性による空間イン
パルス応答が1つのブロックに折り返され、正確なイン
パルス応答が得られなくなり、従って正確な視覚特性の
変換が出来なくなるという問題点があった。
However, when the conventional transform method is applied to the block orthogonal transform domain, the spatial impulse response due to the visual characteristics that should originally spread to a large number of blocks is folded back into one block, and an accurate impulse is obtained. There is a problem in that no response can be obtained and thus accurate conversion of visual characteristics cannot be performed.

【0011】この発明は以上述べた視覚特性による空間
インパルス応答が1つのブロックに折り返される結果正
確なインパルス応答が得られなくなり、従って正確な視
覚特性の変換が出来なくなるというブロック分割による
視覚特性への悪影響を除去し視覚特性を正確に変換する
変換方式を提供することを目的とする。
According to the present invention, since the spatial impulse response due to the visual characteristics described above is folded back into one block, an accurate impulse response cannot be obtained, and therefore the accurate visual characteristics cannot be converted. It is an object of the present invention to provide a conversion method that removes adverse effects and accurately converts visual characteristics.

【0012】[0012]

【課題を解決するための手段】この発明は前記課題を解
決するために、(a)M×Nのブロックサイズの空間イ
ンパルスを有する空間領域をブロックサイズに応じて設
定可変な拡張倍率m,nによりm・M×n・Nの領域に
拡張する際に、後記空間インパルス応答に折り返しが生
じないように前記拡張倍率を選択すると共に該拡張領域
に於いて前記空間インパルスのピーク点を空間の中央付
近に配置し、(b)領域拡張された前記空間インパルス
を空間周波数領域に変換し、(c)空間周波数領域に変
換された前記空間インパルスに空間周波数領域における
視覚特性を乗じた後に空間領域に逆変換し、(d)空間
領域に逆変換することにより得られた空間インパルス応
答を所定のブロック直交変換領域に変換した後、該ブロ
ック直交変換された空間インパルスの各ブロックの同一
成分のノルムを求め、(e)前記空間インパルスをブロ
ック直交変換領域に変換した後、該ブロック直交変換さ
れた空間インパルスの各成分の絶対値を求め、(f)視
覚特性が付与されブロック直交変換された空間インパル
スの前記ノルム値とブロック直交変換された空間インパ
ルスの前記絶対値との比によりブロック直交変換領域に
おける視覚特性を求めることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides (a) expansion magnifications m and n in which a spatial region having a spatial impulse of M × N block size can be set in accordance with the block size. The expansion magnification is selected so that aliasing does not occur in the spatial impulse response described later when expanding to the area of m · M × n · N, and the peak point of the spatial impulse is set to the center of the space in the expanded area. It is arranged in the vicinity, and (b) the spatially expanded spatial impulse is converted into a spatial frequency domain, and (c) the spatial impulse converted into the spatial frequency domain is multiplied by a visual characteristic in the spatial frequency domain, and then is converted into the spatial domain. After the inverse transform and (d) the spatial impulse response obtained by the inverse transform into the spatial domain is transformed into a predetermined block orthogonal transform domain, the block orthogonal transform is performed. The norm of the same component of each block of the spatial impulse is obtained, (e) after converting the spatial impulse into a block orthogonal transformation region, the absolute value of each component of the spatial impulse subjected to the block orthogonal transformation is obtained, and (f) visual It is characterized in that the visual characteristic in the block orthogonal transformation region is obtained from the ratio of the norm value of the spatial impulse subjected to the block orthogonal transformation to which the characteristic is given and the absolute value of the spatial impulse subjected to the block orthogonal transformation.

【0013】[0013]

【作用】この発明によれば、M×Nのブロックサイズの
空間インパルスを有する空間領域をブロックサイズに応
じて設定可変な拡張倍率m,nによりm・M×n・Nの
領域に拡張する際に、空間インパルス応答に折り返しが
生じないように拡張倍率を選択すると共に該拡張領域に
於いて前記空間インパルスのピーク点を空間の中央付近
に配置し、該拡張領域において空間周波数領域に変換さ
れたのち視覚特性が付与されブロック直交変換された空
間インパルスのノルム値とブロック直交変換された空間
インパルスの絶対値との比を求め、これによりブロック
直交変換領域における視覚特性を求めており、前記空間
インパルスの折り返しによる歪みの生じない正確な視覚
特性の変換を可能としている。
According to the present invention, when a spatial area having a spatial impulse of M × N block size is expanded to an area of m · M × n · N by expansion magnifications m and n which can be set according to the block size. In addition, the expansion magnification is selected so that aliasing does not occur in the spatial impulse response, and the peak point of the spatial impulse is arranged near the center of the space in the expanded region, and the spatial impulse is converted into the spatial frequency domain in the expanded region. After that, the ratio of the norm value of the spatial impulse subjected to the block orthogonal transformation to which the visual characteristic is added and the absolute value of the spatial impulse subjected to the block orthogonal transformation is obtained, and thereby the visual characteristic in the block orthogonal transformation region is obtained. This enables accurate conversion of visual characteristics without distortion caused by folding back.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面を参照しなが
ら詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0015】図1は本発明の一実施例を示す装置の機能
ブロック図であり、図1において、入力101はM×N
のブロックサイズ(M,Nは高速変換等の都合上M,N
=2P と設定されることが多い)の空間インパルスであ
る。このインパルスのピーク点は後述のインパルス応答
の特性を考慮してブロックの中央付近に置かれる。
FIG. 1 is a functional block diagram of an apparatus showing an embodiment of the present invention. In FIG. 1, an input 101 is M × N.
Block size (M and N are M and N for reasons such as high-speed conversion)
Is often set as = 2P). The peak point of this impulse is placed near the center of the block in consideration of the characteristics of the impulse response described later.

【0016】空間領域拡張手段1は、前記入力101の
M×Nのブロックを中心として空間領域をmM×nNの
領域に拡張する。但し、m,nは正の整数で、インパル
ス応答に折り返しが生じないようにブロックサイズに応
じた好適な値が後述のように選択される。
The space area expansion means 1 expands the space area to the area of mM × nN centering on the M × N block of the input 101. However, m and n are positive integers, and a suitable value according to the block size is selected as described later so that aliasing does not occur in the impulse response.

【0017】離散フーリエ変換(DFT)手段2は、拡
張されたmM×nNの空間領域102を空間周波数領域
に変換する。
The discrete Fourier transform (DFT) means 2 transforms the expanded mM × nN spatial domain 102 into a spatial frequency domain.

【0018】視覚特性付加手段3は、空間周波数領域に
変換された空間インパルス103に視覚特性テーブル9
から出力される空間周波数領域における視覚特性111
を乗算する。
The visual characteristic adding means 3 applies the visual characteristic table 9 to the spatial impulse 103 converted into the spatial frequency domain.
From the visual characteristics 111 in the spatial frequency domain
Is multiplied by.

【0019】逆離散フーリエ変換(IDFT)4は、視
覚特性が付加され空間周波数領域に変換された空間イン
パルス104を再び空間領域に変換する。この結果、視
覚特性による空間インパルス応答105が得られる。
The inverse discrete Fourier transform (IDFT) 4 transforms the spatial impulse 104, which has been added with visual characteristics and has been transformed into the spatial frequency domain, into the spatial domain again. As a result, the spatial impulse response 105 based on the visual characteristic is obtained.

【0020】ブロック直交変換手段5は前記空間インパ
ルス応答105をM×Nのブロック直交変換領域に変換
すると共に前記空間インパルス入力101を1ブロック
のみブロック直交変換する。
The block orthogonal transform means 5 transforms the spatial impulse response 105 into an M.times.N block orthogonal transform region and transforms the spatial impulse input 101 into a block orthogonal transform of only one block.

【0021】ノルム演算手段6は、ブロック直交変換さ
れた前記各ブロックの同一成分106のノルム演算を行
い、絶対値手段7は直交変換された前記空間インパルス
108の絶対値演算を行う。
The norm calculation means 6 calculates the norm of the same component 106 of each block that has been subjected to the block orthogonal transformation, and the absolute value means 7 calculates the absolute value of the orthogonally transformed space impulse 108.

【0022】比較正規化手段8は視覚特性の付加された
空間インパルスの直交変換値107と空間インパルスの
直交変換値109との比を取り必要に応じて正規化を行
いブロック直交変換領域における視覚特性110を出力
する。
The comparison and normalization means 8 takes the ratio of the orthogonal transform value 107 of the spatial impulse to which the visual characteristic is added and the orthogonal transform value 109 of the spatial impulse, and normalizes as necessary to perform the visual characteristic in the block orthogonal transform region. 110 is output.

【0023】次に視覚特性のブロック直交変換領域への
変換方式の詳細および手順を図2を参照して説明する。
Next, the details and procedure of the conversion method of the visual characteristic into the block orthogonal conversion area will be described with reference to FIG.

【0024】 先ずM×Nのブロックサイズの空間イ
ンパルス[X(k,l)]31を入力する。但し[・]
は行列を表し、k,lは0≦k<M,0≦l<Nの離散
値をとる。
First, a spatial impulse [X (k, l)] 31 having an M × N block size is input. However, [・]
Represents a matrix, and k and l take discrete values of 0 ≦ k <M and 0 ≦ l <N.

【0025】[0025]

【数1】 [Equation 1]

【0026】 前記空間インパルス[X(k,l)]
が中央となるように空間を(m×n)倍に拡張し(但し
m,n≧1)、拡張された領域のデータを全て“0”と
する。尚、拡張倍率m,nは例えばM,N=8の場合
m,n≧3、M,N=16の場合m,n≧2、M,N≧
32の場合m,n≧1とすると空間インパルス応答が1
つのブロックに折り返されることのない良好な結果が得
られる。
The spatial impulse [X (k, l)]
The space is expanded (m × n) times so that it becomes the center (where m, n ≧ 1), and all the data in the expanded area are set to “0”. The expansion magnifications m and n are, for example, m and n ≧ 3 when M and N = 8, and m and n ≧ 2 and M and N ≧ when M and N = 16.
In the case of 32, if m and n ≧ 1, the spatial impulse response is 1
Good results with no wrapping into one block.

【0027】 領域拡張された空間インパルス32を
離散フーリエ変換(DFT)する。このDFTは次式
(2)で表される。
Discrete Fourier transform (DFT) is performed on the spatial impulse 32 whose domain has been expanded. This DFT is expressed by the following equation (2).

【0028】[0028]

【数2】 [Equation 2]

【0029】 [F(u,v)]33に視覚特性のD
FT値[HF (u,v)]34を掛けこの値35を逆離
散フーリエ変換(IDFT)し空間領域に戻す。このI
DFTは次式(3)で表される。得られた[XH (k,
l)]36は前記空間インパルスの視覚特性による応答
となる。
[F (u, v)] 33 has a visual characteristic D
The FT value [HF (u, v)] 34 is multiplied and this value 35 is subjected to the inverse discrete Fourier transform (IDFT) to be returned to the spatial domain. This I
The DFT is expressed by the following equation (3). Obtained [X H (k,
l)] 36 is a response due to the visual characteristics of the spatial impulse.

【0030】[0030]

【数3】 [Equation 3]  

【0031】 前記インパルス応答[XH (k,
l)]に対してM×Nのブロック直交変換を施すと共に
前記空間インパルス[X(k,l)]も同様にブロック
直交変換する。このブロック直交変換はそれぞれ次式
(4)、(5)で表される。但し、式(4)における
(i,j)はブロック番号を表し、[C]は任意の直交
変換関数行列であり[Ct ]はその転置行列である。
The impulse response [X H (k,
l)] is subjected to M × N block orthogonal transform, and the spatial impulse [X (k, l)] is similarly subjected to block orthogonal transform. This block orthogonal transformation is expressed by the following equations (4) and (5), respectively. However, (i, j) in the equation (4) represents a block number, [C] is an arbitrary orthogonal transformation function matrix, and [C t ] is its transposed matrix.

【0032】 [CH (i,j) (u,v) ]=[Ct ]・[XH (i・M+k,j ・ N+l)]・[C] (4) [CX (u,v) ]=[Ct ]・[X(k,l) ]・[C] (5) [CH (i,j) (u,v) ]37は[CX (u,v) ]39の
視覚特性を示しているが、視覚特性の画像圧縮、評価へ
の応用を考えて[CH (i,j) (u,v) ]の各ブロックの同
一成分のノルム‖CH (u,v) ‖を次式(6)により対象
となる行列の各要素の絶対値の二乗和の平方根として定
義し、[‖CH (u,v) ‖]38を求めると共に[C
X (u,v) ]の各要素の絶対値からなる[|CX (u,v)
|]40を求める。
[CH (i, j)(u, v)] = [Ct] ・ [XH(i ・ M + k, j ・ N + l)] ・ [C] (4) [CX(u, v)] = [Ct]-[X (k, l)]-[C] (5) [CH (i, j)(u, v)] 37 is [CX(u, v)] of 39
It shows visual characteristics, but to image compression and evaluation of visual characteristics
Considering the application of [CH (i, j)(u, v)] of each block
Norm of one component ‖CHTarget (u, v) ‖ according to the following equation (6)
Constant as the square root of the sum of squares of the absolute values of the elements of
Meaning, [‖CH(u, v) ‖] 38 and [C
X(u, v)] consisting of the absolute value of each element [| CX(u, v)
|] 40 is calculated.

【0033】[0033]

【数4】 [Equation 4]

【0034】 最後に、式(7)で与えられる[‖C
H (u,v) ‖]と[|CX (u,v) |]との各要素間の比を
求め、ブロック直交変換領域における視覚特性とする。
視覚特性[HC ]41は必要に応じて正規化、あるいは
K倍することが可能である。 HC (u,v) =‖CH (u,v) ‖/|CX (u,v) | (7) L=1024,S=3,M,N=8,m,n=3の場合
の視覚特性をブロック余弦変換領域に変換した例を表2
から表5に示す。表2は空間インパルス応答[XH ]を
示したものであり、表3は[XH ]をブロック余弦変換
した[CH ]を示したものである。表4は空間インパル
スをブロック余弦変換した[Cx ]を示し、表5はブロ
ック余弦変換領域における視覚特性[HC ]である。
Finally, [‖C given by equation (7)
The ratio between each element of H (u, v) |] and [| C X (u, v) |] is calculated and used as the visual characteristic in the block orthogonal transformation region.
The visual characteristic [H C ] 41 can be normalized or multiplied by K as required. H C (u, v) = ‖C H (u, v) ‖ / | C X (u, v) | (7) L = 1024, S = 3, M, N = 8, m, n = 3 An example in which the visual characteristics of the case are converted into the block cosine conversion area Table 2
To Table 5 below. Table 2 shows the spatial impulse response [X H ] and Table 3 shows [C H ] obtained by performing block cosine transform of [X H ]. Table 4 shows [C x ] obtained by performing the block cosine transform of the spatial impulse, and Table 5 shows the visual characteristic [H C ] in the block cosine transform region.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば視
覚特性の空間インパルス応答を正確に表現し、この空間
インパルス応答の広がりによる周囲ブロックへの影響を
適切に表現しているので、適切な視覚特性のブロック直
交変換領域への変換が実現出来る。
As described above, according to the present invention, the spatial impulse response of the visual characteristic is accurately expressed, and the influence of the spread of the spatial impulse response on the surrounding blocks is appropriately expressed. It is possible to realize conversion into a block orthogonal transformation domain with various visual characteristics.

【0040】また、画像圧縮符号化装置等では画像の視
覚特性に適した量子化法または符号化法は重要な役割を
果たしているので正確な視覚特性を用いることにより画
像の圧縮符号化効率を大幅に向上させることが可能とな
り、また画像の品質向上も可能となる。
In addition, since the quantization method or the coding method suitable for the visual characteristics of the image plays an important role in the image compression coding apparatus and the like, the compression coding efficiency of the image is greatly increased by using the accurate visual characteristics. It is also possible to improve the quality of the image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す装置の機能ブロック図
である。
FIG. 1 is a functional block diagram of an apparatus showing an embodiment of the present invention.

【図2】本発明の変換方式の説明図である。FIG. 2 is an explanatory diagram of a conversion system of the present invention.

【図3】従来方式の説明図である。FIG. 3 is an explanatory diagram of a conventional method.

【符号の説明】[Explanation of symbols]

1 空間領域拡張手段 2 DFT手段 3 視覚特性付加手段 4 IDFT手段 5 ブロック直交変換手段 6 ノルム演算手段 7 絶対値演算手段 8 比較・正規化手段 9 視覚特性テーブル DESCRIPTION OF SYMBOLS 1 Spatial region expansion means 2 DFT means 3 Visual characteristic addition means 4 IDFT means 5 Block orthogonal transformation means 6 Norm calculation means 7 Absolute value calculation means 8 Comparison / Normalization means 9 Visual characteristic table

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)M×Nのブロックサイズの空間イ
ンパルスを有する空間領域をブロックサイズに応じて設
定可変な拡張倍率m,nによりm・M×n・Nの領域に
拡張する際に、後記空間インパルス応答に折り返しが生
じないように前記拡張倍率を選択すると共に該拡張領域
に於いて前記空間インパルスのピーク点を空間の中央付
近に配置し、 (b)領域拡張された前記空間インパルスを空間周波数
領域に変換し、 (c)空間周波数領域に変換された前記空間インパルス
に空間周波数領域における視覚特性を乗じた後に空間領
域に逆変換し、 (d)空間領域に逆変換することにより得られた空間イ
ンパルス応答を所定のブロック直交変換領域に変換した
後、該ブロック直交変換された空間インパルスの各ブロ
ックの同一成分のノルムを求め、 (e)前記空間インパルスをブロック直交変換領域に変
換した後、該ブロック直交変換された空間インパルスの
各成分の絶対値を求め、 (f)視覚特性が付与されブロック直交変換された空間
インパルスの前記ノルム値とブロック直交変換された空
間インパルスの前記絶対値との比によりブロック直交変
換領域における視覚特性を求めることを特徴とする視覚
特性のブロック直交変換領域への変換方式。
1. (a) When a spatial area having a spatial impulse of a block size of M × N is expanded to an area of m · M × n · N by expansion magnifications m and n which can be set according to the block size. The spatial magnification is selected so that aliasing does not occur in the spatial impulse response, and the peak point of the spatial impulse is arranged near the center of the space in the expanded region. Is converted into a spatial frequency domain, and (c) the spatial impulse converted into the spatial frequency domain is multiplied by the visual characteristic in the spatial frequency domain, and then inversely transformed into the spatial domain, and (d) the inversely transformed into the spatial domain. After transforming the obtained spatial impulse response into a predetermined block orthogonal transform domain, the norm of the same component of each block of the block orthogonal transformed spatial impulse is obtained. (E) After converting the spatial impulse into a block orthogonal transform domain, the absolute value of each component of the block orthogonal transformed spatial impulse is obtained, and (f) the spatial impulse of the block orthogonal transformed with visual characteristics is given. A method of transforming a visual characteristic into a block orthogonal transform domain, wherein the visual characteristic in the block orthogonal transform domain is obtained by a ratio of the norm value and the absolute value of the spatial impulse subjected to the block orthogonal transform.
JP26205091A 1991-10-09 1991-10-09 How to convert visual characteristics into block orthogonal transform domain Expired - Fee Related JP2642545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26205091A JP2642545B2 (en) 1991-10-09 1991-10-09 How to convert visual characteristics into block orthogonal transform domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26205091A JP2642545B2 (en) 1991-10-09 1991-10-09 How to convert visual characteristics into block orthogonal transform domain

Publications (2)

Publication Number Publication Date
JPH06113278A true JPH06113278A (en) 1994-04-22
JP2642545B2 JP2642545B2 (en) 1997-08-20

Family

ID=17370342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26205091A Expired - Fee Related JP2642545B2 (en) 1991-10-09 1991-10-09 How to convert visual characteristics into block orthogonal transform domain

Country Status (1)

Country Link
JP (1) JP2642545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006641A1 (en) * 1995-08-03 1997-02-20 Matsushita Electric Industrial Co., Ltd. Image encoder, image decoder, image decoding method, and image transmitting system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON COMMUNICATIONS=1985 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006641A1 (en) * 1995-08-03 1997-02-20 Matsushita Electric Industrial Co., Ltd. Image encoder, image decoder, image decoding method, and image transmitting system

Also Published As

Publication number Publication date
JP2642545B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
Neelamani et al. JPEG compression history estimation for color images
JP4001935B2 (en) Random noise filtering device using data compression
JP2000216682A (en) Signal processor and signal processing method
US4261043A (en) Coefficient extrapolator for the Haar, Walsh, and Hadamard domains
Abderrahim et al. Novel design of a fractional wavelet and its application to image denoising
US5761346A (en) Method of discrete orthogonal basis restoration
JP2975691B2 (en) System and method for image sample rate conversion using discrete cosine transform
Aly et al. Specification of the observation model for regularized image up-sampling
JP2639176B2 (en) Two-dimensional signal encoding / decoding method and encoding / decoding device thereof
JP3302731B2 (en) Image enlargement method
JP3234232B2 (en) Hyper-spatial variable apodization (Super SVA)
JPH06113278A (en) Conversion system of visual characteristic to block orthogonal transformation area
Berg et al. An efficient structure and algorithm for image representation using nonorthogonal basis images
JP3107609B2 (en) Transformation method of visual characteristics to block overlap orthogonal transform domain
US6473207B1 (en) Image size transformation method for orthogonal transformation coded image
US6567568B1 (en) Pixel interpolating device capable of preventing noise generation
JP2916607B2 (en) Image magnifier
Wu et al. Coprime interpolation and compressive sensing for future heterogeneous network towards 5G
Ruggeri et al. A bayesian decision theoretic approach to wavelet thresholding
Scholefield et al. Accurate image registration using approximate Strang-Fix and an application in super-resolution
Vrhel et al. Pre-filtering for the initialization of multi-wavelet transforms
JPH1185971A (en) Method and device for gradation conversion
JP2002506600A (en) Image interpolation method
Takahashi et al. An enlargement method of digital images based on Laplacian pyramid representation
JPH05110868A (en) Visual characteristic region conversion system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees