JPH06112130A - Crystal growth device - Google Patents

Crystal growth device

Info

Publication number
JPH06112130A
JPH06112130A JP22847792A JP22847792A JPH06112130A JP H06112130 A JPH06112130 A JP H06112130A JP 22847792 A JP22847792 A JP 22847792A JP 22847792 A JP22847792 A JP 22847792A JP H06112130 A JPH06112130 A JP H06112130A
Authority
JP
Japan
Prior art keywords
gas
crystal
airtight container
raw material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22847792A
Other languages
Japanese (ja)
Other versions
JP3168276B2 (en
Inventor
Yoshihisa Fujisaki
芳久 藤崎
Toru Haga
芳賀  徹
Shinichiro Takatani
信一郎 高谷
Toshimitsu Miyata
敏光 宮田
Kenji Okumura
健治 奥村
Nobunori Omori
宣典 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Hitachi Ltd
Original Assignee
Daido Hoxan Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc, Hitachi Ltd filed Critical Daido Hoxan Inc
Priority to JP22847792A priority Critical patent/JP3168276B2/en
Publication of JPH06112130A publication Critical patent/JPH06112130A/en
Application granted granted Critical
Publication of JP3168276B2 publication Critical patent/JP3168276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To grow a thin-film while being controlled at a monoatomic layer level. CONSTITUTION:A crystal growth device is composed of an airtight vessel 6, in which a substrate crystal 13 mounted into a vacuum vessel 2 is housed, a gas exhaust valve from the airtight vessel into the vacuum vessel, a control valve 9 for the quantity of a gas leaked from the airtight vessel, raw material gas introducing pipings 16, 21 into the airtight vessel, a heating apparatus 14 for the substrate crystal installed into the airtight vessel, an exhauster 3 evacuating the inside of the vacuum vessel to a high degree, and a raw material gas supply controller consisting of mass flow controllers 18, 23 supplying the raw material gas at predetermined flow rate and time and valve groups 17, 22. The substrate crystal 13 is irradiated alternately with two kinds or more of raw material gases, the gas exhaust valve set up into the airtight vessel is driven while being synchronized with the changeover of the gases and the crystal can be grown. Electron-ray incident and outgoing windows are further fitted to the airtight vessel in the crystal growth device having the same constitution, and the crystal can be grown by the same operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子機器などの製造に用
いられる薄膜結晶の結晶成長装置に係り、特に、薄膜を
1原子層レベルで制御しながら成長させることのできる
結晶成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth apparatus for thin film crystals used in the manufacture of electronic equipment, and more particularly to a crystal growth apparatus capable of growing a thin film while controlling it at the level of one atomic layer.

【0002】[0002]

【従来の技術】ガスを原料として薄膜結晶を成長させる
方法としては、これまで、化学ビームエピタキシ法(CBE
法)、MOMBE法などが知られている。これらの方法は、図
2に示すような装置を用いて、基板結晶上に1原子層か
ら10μm程度までの厚さの薄膜を製造するようになって
いる。図2において、真空容器蓋29及び真空容器本体30
で構成される成長室は真空ポンプ31によって到達真空度
1E‐7パスカル程度の高真空状態に保たれている。基板
結晶35は成長面を下向きに基板結晶保持板32に固定さ
れ、裏面から基板加熱ヒータ34によって加熱される。原
料ガス39はマスフローコントローラ38、バルブ37、ノズ
ル36を介して基板結晶に噴射される。同様にして、第2
の原料ガス43はマスフローコントローラ42、バルブ41、
ノズル40を経て基板表面に噴射されるようになってい
る。このような原料ガスラインは、通常、ガスの種類ご
とに用意し、例えば GaAs のみを成長させる場合は2系
統、GaAsに1種類の不純物をドープする場合は3系統な
どとする必要がある。
2. Description of the Related Art Chemical beam epitaxy (CBE) has hitherto been used as a method for growing a thin film crystal using gas as a raw material.
Law), MOMBE method, etc. are known. These methods use a device as shown in FIG. 2 to manufacture a thin film having a thickness of one atomic layer to about 10 μm on a substrate crystal. In FIG. 2, the vacuum container lid 29 and the vacuum container body 30 are shown.
The growth chamber composed of
It is kept in a high vacuum state of about 1E-7 Pascal. The substrate crystal 35 is fixed to the substrate crystal holding plate 32 with the growth surface facing downward, and is heated by the substrate heater 34 from the back surface. The source gas 39 is sprayed onto the substrate crystal through the mass flow controller 38, the valve 37 and the nozzle 36. Similarly, the second
The raw material gas 43 is a mass flow controller 42, a valve 41,
It is adapted to be ejected onto the surface of the substrate through the nozzle 40. Such a source gas line is usually prepared for each type of gas, and it is necessary to use, for example, two systems when growing only GaAs and three systems when doping GaAs with one type of impurity.

【0003】マスフローコントローラ38、42やバルブ3
7、41はコンピュータに接続され、予め作成されたプロ
グラムに従って動作する。例えば、GaAs 結晶を1原子
層ごとにエピタキシャル成長させる場合、図3に示すよ
うに、原料のアルシン(AsH3)とトリメチルガリウム(TMG
a)とを基板結晶上に交互に噴射する。すなわち、初めア
ルシンを流量 L1でτ1秒間噴射し、その後ガスの流入を
τ2秒間ストップし、基板周囲から原料ガスを除去す
る。この後、Ga の原料であるトリメチルガリウムを流
量 L2でτ3秒噴射し、GaAs 1層を成長させる。この操
作を繰り返し行うことにより、1原子層ごとに制御され
た結晶成長が可能となる。なお、上記待ち時間τ2を設
けることは、例えば特開昭61‐34927号公報に記載され
ているように、2種類のガスが互いに混じりあわないよ
うにする効果があり、1層ずつ制御しながら GaAs を成
長させるために必要なプロセスである。
Mass flow controllers 38, 42 and valve 3
7 and 41 are connected to a computer and operate according to a program created in advance. For example, when epitaxially growing a GaAs crystal for each atomic layer, as shown in FIG. 3, arsine (AsH 3 ) and trimethylgallium (TMG), which are raw materials, are used.
a) and are sprayed alternately on the substrate crystal. That is, first, arsine is injected at a flow rate of L 1 for τ 1 second, then the inflow of gas is stopped for τ 2 seconds, and the source gas is removed from the periphery of the substrate. After that, trimethylgallium, which is a Ga source, is injected at a flow rate of L 2 for τ 3 seconds to grow a GaAs 1 layer. By repeating this operation, controlled crystal growth can be performed for each atomic layer. Providing the waiting time τ 2 has the effect of preventing two kinds of gases from mixing with each other, as described in, for example, Japanese Patent Application Laid-Open No. 61-34927, and controls one layer at a time. However, it is a necessary process for growing GaAs.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来装置
を用いて図3に示したようなガスの供給を行うと、結晶
成長容器全体にガスが充満し、基板結晶表面で原料ガス
を急峻に切り替えることが困難になる。すなわち、例え
ば GaAs を成長させるために図3に示すような手順でガ
スを供給した場合、基板結晶付近での原料ガスの分圧
は、原料の供給、停止プロセスに対し、図4に示すよう
に、一定時間の遅れを生じることになる。図4はアルシ
ンをτ4秒(τ4= 5〜10秒)供給した後の結晶成長室の分
圧の変化の様子を模式的に示したものである。すなわ
ち、アルシンの供給を停止した後もτ7秒(τ7= 20〜60
秒)と長時間にわたり結晶成長容器内にアルシンが残留
し、次のトリメチルガリウムの供給に影響を及ぼしてい
る。また、トリメチルガリウム自体もアルシンと同様の
残留現象を起し、アルシンとトリメチルガリウムの混合
が生じ、1原子層レベルで制御された結晶成長は実現が
困難になるという問題があった。
When the gas as shown in FIG. 3 is supplied by using the above conventional apparatus, the entire crystal growth container is filled with the gas, and the raw material gas is steeped on the substrate crystal surface. It becomes difficult to switch to. That is, for example, when a gas is supplied by the procedure shown in FIG. 3 for growing GaAs, the partial pressure of the source gas near the substrate crystal is as shown in FIG. , There will be a delay of a certain time. FIG. 4 schematically shows how the partial pressure in the crystal growth chamber changes after supplying arsine for τ 4 seconds (τ 4 = 5 to 10 seconds). That is, τ 7 seconds (τ 7 = 20 to 60) even after the supply of arsine is stopped.
Second) and arsine remains in the crystal growth container for a long time, affecting the next supply of trimethylgallium. Further, trimethylgallium itself causes a residual phenomenon similar to that of arsine, resulting in mixing of arsine and trimethylgallium, which makes it difficult to achieve crystal growth controlled at the level of one atomic layer.

【0005】さらに、従来の装置では、図5に示すよう
な異なる種類の結晶層を連続的に成長させるヘテロ結合
形成の場合にも、原料ガスの残留現象でヘテロ界面を1
原子層レベルで急峻にできないという問題があった。図
5は、GaAs 基板結晶48、AlGaAsエピタキシャル層49、5
1、GaAs エピタキシャル層50からなるヘテロ接合構造を
示した図で、結晶成長は49、50、51 の順に行ったもの
である。この場合、GaAs と AlGaAs との各境界面がヘ
テロ界面であるが、特に49から50への移り変わり時に問
題が発生する。すなわち、AlGaAs 49 の成長に用いた A
l 原料が結晶成長室内に残留し、GaAs 50 の成長時にも
混入してしまうため、49と50とのヘテロ界面が1原子層
レベルで急峻にできないという問題である。このため、
従来装置では、通常1μm/時程度の成長速度を0.1μm/
時以下の極端に小さな値にするなどの制限が課せられて
いた。
Further, in the conventional device, even when a heterojunction is formed in which different types of crystal layers are continuously grown as shown in FIG.
There is a problem that it cannot be made steep at the atomic layer level. Fig. 5 shows GaAs substrate crystal 48, AlGaAs epitaxial layers 49, 5
1. A diagram showing a heterojunction structure composed of a GaAs epitaxial layer 50. Crystal growth was carried out in the order of 49, 50 and 51. In this case, each interface between GaAs and AlGaAs is a hetero interface, but a problem occurs especially at the transition from 49 to 50. That is, A used for the growth of AlGaAs 49
l The raw material remains in the crystal growth chamber and is mixed in during the growth of GaAs 50, so that the hetero interface between 49 and 50 cannot be made sharp at the level of one atomic layer. For this reason,
With the conventional equipment, the growth rate of about 1 μm / hour is usually set to 0.1 μm / hour.
There were restrictions such as extremely small values below the hour.

【0006】以上述べたように、従来装置での問題点
は、容量の大きい成長室に原料ガスが長時間にわたり残
留するという点にある。
As described above, the problem with the conventional apparatus is that the raw material gas remains in the growth chamber having a large capacity for a long time.

【0007】本発明の目的は、上記従来技術の有してい
た課題を解決して、薄膜を1原子層レベルで制御しなが
ら成長させることのできる結晶成長装置を提供すること
にある。
An object of the present invention is to solve the problems of the prior art and to provide a crystal growth apparatus capable of growing a thin film while controlling it at the level of one atomic layer.

【0008】[0008]

【課題を解決するための手段】上記目的は、真空容器内
に設置した基板結晶を格納するための気密容器と、該気
密容器に設けた該気密容器から上記真空容器内にガスを
排出するためのガス排気弁と、該気密容器からのガスの
リーク量を微調整するための調節弁と、該気密容器内に
原料ガスを導入するための配管と、該気密容器内に格納
した基板結晶を輻射熱で加熱するための加熱装置と、上
記真空容器を高真空に排気するための排気装置と、原料
ガスを予め定めた流量及び時間で供給するマスフローコ
ントローラ及びバルブ群からなる原料ガス供給制御装置
とから構成される結晶成長装置であって、2種類以上の
原料ガスを基板結晶に交互に照射し、かつ、上記原料ガ
スの切り替えに同期して上記気密容器に設けたガス排気
弁を駆動して結晶成長を行うことを可能にした構成から
なることを特徴とする結晶成長装置とすること、あるい
は、真空容器内に設置した基板結晶を格納するための気
密容器と、該気密容器に設けた電子線の入出射窓と、該
気密容器から上記真空容器内にガスを排出するためのガ
ス排気弁と、該気密容器からのガスのリーク量を微調整
するための調節弁と、該気密容器内に原料ガスを導入す
るための配管と、該気密容器内に格納した基板結晶を輻
射熱で加熱するための加熱装置と、上記真空容器を高真
空に排気するための排気装置と、原料ガスを予め定めた
流量及び時間で供給するマスフローコントローラ及びバ
ルブ群からなる原料ガス供給制御装置とから構成される
結晶成長装置であって、2種類以上の原料ガスを基板結
晶に交互に照射し、かつ、上記原料ガスの切り替えに同
期して上記気密容器に設けたガス排気弁を駆動して結晶
成長を行うことを可能にした構成からなることを特徴と
する結晶成長装置とすることによって達成することがで
きる。
The above object is to provide an airtight container for storing substrate crystals installed in a vacuum container, and to discharge gas from the airtight container provided in the airtight container into the vacuum container. A gas exhaust valve, a control valve for finely adjusting the amount of gas leaked from the airtight container, a pipe for introducing a raw material gas into the airtight container, and a substrate crystal stored in the airtight container. A heating device for heating with radiant heat, an exhaust device for exhausting the vacuum container to a high vacuum, a raw material gas supply control device including a mass flow controller and a valve group for supplying a raw material gas at a predetermined flow rate and time. A crystal growth apparatus comprising: a substrate crystal, which is alternately irradiated with two or more kinds of source gases, and a gas exhaust valve provided in the airtight container is driven in synchronization with switching of the source gases. crystal A crystal growth apparatus characterized by comprising a structure capable of performing lengthening, or an airtight container for storing a substrate crystal installed in a vacuum container, and an electron beam provided in the airtight container Entry / exit window, a gas exhaust valve for discharging gas from the airtight container into the vacuum container, a control valve for finely adjusting the amount of gas leaked from the airtight container, and the inside of the airtight container A pipe for introducing the raw material gas, a heating device for heating the substrate crystal stored in the airtight container with radiant heat, an exhaust device for evacuating the vacuum container to a high vacuum, and a predetermined raw material gas A crystal growth apparatus composed of a mass flow controller that supplies at different flow rates and times and a source gas supply control device that includes a valve group, the substrate crystal being alternately irradiated with two or more types of source gas, and the source material described above. In synchronization with the switching of the scan can be accomplished by a crystal growth apparatus characterized by comprising a structure made it possible to carry out the crystal growth by driving a gas discharge valve provided in the airtight container.

【0009】[0009]

【作用】上記本発明の装置においては、真空容器内に設
けた小さい反応室にまず原料ガスを導入し、所定量の原
料を基板結晶に照射した後原料ガスを遮断し、これと同
期して反応室に設けたガス排気弁を動作させて余剰のガ
スを真空容器内に排出する。このような機構を用いるこ
とによって、真空容器全体が常時原料ガスに曝されるこ
とがなくなり、また、原料ガスに常時曝される部分の表
面積を従来装置に比べて一桁以上小さくすることがで
き、外の真空容器内壁に吸着した原料ガスは反応室で次
のガスを用いた結晶成長を進行させている間に効率的に
排出することができるため、基板結晶付近での不要な原
料ガスの残留を大きく減少させることができる。すなわ
ち、本発明装置を用いることによって、図4に示した基
板結晶表面での原料分圧の時間的変化において、原料ガ
ス残留の影響によるガスの切れの時定数τ7、τ8を従来
装置に比べて一桁以上小さくできる効果が得られる。
In the above apparatus of the present invention, the raw material gas is first introduced into a small reaction chamber provided in a vacuum container, a predetermined amount of the raw material is irradiated on the substrate crystal, and then the raw material gas is shut off. The gas exhaust valve provided in the reaction chamber is operated to discharge the excess gas into the vacuum container. By using such a mechanism, the entire vacuum container is not constantly exposed to the raw material gas, and the surface area of the part that is constantly exposed to the raw material gas can be reduced by one digit or more compared to the conventional device. , The raw material gas adsorbed on the inner wall of the outer vacuum vessel can be efficiently discharged while the crystal growth using the next gas is proceeding in the reaction chamber, so that unnecessary raw material gas near the substrate crystal is Residue can be greatly reduced. That is, by using the device of the present invention, the time constants τ 7 and τ 8 of gas breakage due to the influence of the residual raw material gas in the conventional device in the temporal change of the raw material partial pressure on the substrate crystal surface shown in FIG. Compared with this, the effect that it can be reduced by one digit or more is obtained.

【0010】また、結晶成長状態を観察するためによく
用いられる RHEED 等のための電子線入出射用小窓を反
応室に設け、外部から開閉制御できる機構とすること
で、反応室から真空容器へのガス排気弁の機能を兼ねる
ことが可能である。原料ガス遮断と同時に電子線入出射
用小窓を開けることで、ガス排出と成長状態観察の準備
を同時に行い得るという利点がある。
Further, a small window for electron beam entrance / exit for RHEED, which is often used for observing a crystal growth state, is provided in the reaction chamber, and a mechanism capable of opening / closing control from the outside is provided, so that a vacuum container can be opened from the reaction chamber. It is possible to combine the function of the gas exhaust valve. By opening the small window for electron beam entrance / exit at the same time as shutting off the raw material gas, there is an advantage that gas discharge and preparation for growth state observation can be performed simultaneously.

【0011】[0011]

【実施例】以下、本発明結晶成長装置について実施例に
よって具体的に説明する。
EXAMPLES The crystal growth apparatus of the present invention will be specifically described below with reference to examples.

【0012】図1は本発明結晶成長装置の一実施例の構
成を示す断面図で、本装置が大きくは真空容器蓋1、真
空容器本体2及び真空ポンプ3とからなることを示す。
真空容器には結晶成長を行わせる反応室が設けてある。
反応室はモリブデン製の反応室蓋4とステンレス製の反
応室本体6とからなり、それぞれ、反応室支持柱5及び
反応室本体支持棒7によって独立に支えられている。反
応室本体6は上下機構8に固定され、外部から上下に移
動できる構造となっている。蓋4と本体6とは、12で示
すように、擦り合わせ構造となっており、気密性を保持
することができる。また、反応室本体6には圧力調整弁
9を設けてある。該弁9は駆動棒10により矢印11で示す
ように回転させることにより真空容器の外部から開口面
積を調整し、反応室圧力を制御できるようにしてある。
本実施例の場合では、反応室本体6が降下し、蓋4との
擦り合わせ状態が開放されることで反応室の気密性が破
れ、反応室内の原料ガスが真空容器内に排出される。す
なわち、上下機構7、8と擦り合わせ12がガス排気弁を
構成する形にしてある。GaAs 基板結晶13は蓋4の中央
に成長面を下向きにして取り付け、蓋4の裏面に配置し
た加熱ヒータ14によって加熱する。
FIG. 1 is a cross-sectional view showing the structure of an embodiment of the crystal growth apparatus of the present invention, showing that the apparatus mainly comprises a vacuum container lid 1, a vacuum container body 2 and a vacuum pump 3.
The vacuum chamber is provided with a reaction chamber for crystal growth.
The reaction chamber comprises a reaction chamber lid 4 made of molybdenum and a reaction chamber body 6 made of stainless steel, and each is independently supported by a reaction chamber support column 5 and a reaction chamber body support rod 7. The reaction chamber body 6 is fixed to the up-and-down mechanism 8 and has a structure that can be vertically moved from the outside. As shown by 12, the lid 4 and the main body 6 have a rubbing structure, and can maintain airtightness. Further, the reaction chamber main body 6 is provided with a pressure adjusting valve 9. The valve 9 is rotated by a drive rod 10 as shown by an arrow 11 to adjust the opening area from the outside of the vacuum container so that the pressure in the reaction chamber can be controlled.
In the case of the present embodiment, the reaction chamber main body 6 is lowered and the state in which it is rubbed with the lid 4 is opened, whereby the airtightness of the reaction chamber is broken and the source gas in the reaction chamber is discharged into the vacuum container. That is, the up-down mechanisms 7 and 8 and the rubbing 12 form a gas exhaust valve. The GaAs substrate crystal 13 is attached to the center of the lid 4 with the growth surface facing downward, and is heated by the heater 14 arranged on the back surface of the lid 4.

【0013】反応室6には As の原料となるアルシンを
基板結晶13に噴射するためのノズル15を固定してあり、
該ノズル15はフレキシブルパイプ16、バルブ17、マスフ
ローコントローラ18からなるアルシン配管系に接続して
ある。なお、アルシン配管の途中にはアルシンを熱分解
するためのヒータ19を設けてある。また、アルシン配管
系とほぼ対称に Ga 原料であるトリメチルガリウムを供
給するノズル20、フレキシブルパイプ21、バルブ22、マ
スフローコントローラ23からなるトリメチルガリウム配
管系を設置してある。該配管系はヒータ24によって加熱
する。また、真空容器2には結晶成長状態観察用の電子
銃25を設置してあり、該電子銃25から放出された電子線
26は GaAs 基板13の成長表面に照射され、表面で回折さ
れた反射電子線27が真空容器2に設置したスクリーン28
上に回折パターンを写しだすようにしてある。
A nozzle 15 for injecting arsine, which is a raw material of As, onto the substrate crystal 13 is fixed in the reaction chamber 6,
The nozzle 15 is connected to an arsine piping system including a flexible pipe 16, a valve 17, and a mass flow controller 18. A heater 19 for thermally decomposing arsine is provided in the arsine piping. Further, a trimethylgallium piping system including a nozzle 20, a flexible pipe 21, a valve 22, and a mass flow controller 23 for supplying trimethylgallium as a Ga raw material is installed almost symmetrically to the arsine piping system. The piping system is heated by the heater 24. Further, an electron gun 25 for observing a crystal growth state is installed in the vacuum container 2, and an electron beam emitted from the electron gun 25.
26 is a screen that is irradiated on the growth surface of the GaAs substrate 13 and the backscattered electron beam 27 diffracted on the surface is installed in the vacuum chamber 2.
The diffraction pattern is shown above.

【0014】次に、薄膜形成時の装置の動作について説
明する。まず、 GaAs 基板結晶13を反応室蓋4に配置し
た後、蓋1及び本体2で構成される真空容器の圧力が 1
E‐6パスカル以下の真空状態になるまで真空ポンプ3に
よって真空引きを行う。この時、反応室本体6は蓋4と
擦り合わせ状態とならない位置まで下げ、反応室の排気
バルブは開の状態にしておく。真空容器の圧力が1E‐6
パスカル以下になった時点で上下機構7、8を動作さ
せ、反応室本体6を上昇させて、該本体6と蓋4が図1
の12に示すような擦り合わせ状態となるようにする。す
なわち、反応室のガス排気弁を閉の状態にする。また、
原料ガスを流した場合の反応室の圧力が 1E‐2 〜 1E‐
1 パスカル程度となるように圧力調整弁9を予め定めた
開度に調節する。次に、ヒータ14に通電して基板13を60
0〜700℃に加熱する。加熱中、熱電対等でモニターした
基板結晶温度が400℃以上となった時点から、GaAs 基板
からの As 抜けを防ぐため、アルシンをマスフローコン
トローラ18、バルブ17を経て真空容器に導入する。アル
シンは途中ヒータ19で800℃程度に加熱され、熱分解し
ながらノズル15から基板に噴射される。アルシンを流し
ながら基板結晶を600〜700℃に加熱した状態を10分程度
維持して、基板表面の酸化物を除去する。基板結晶表面
が十分清浄化された後、基板温度を400〜600℃に下げ
る。基板温度が所定の温度で安定した後、図3に示した
手順で原料を交互に導入する。すなわち、アルシンを流
量 L1でτ1秒間流し、τ2秒間経過後、トリメチルガリ
ウムを流量 L2でτ3秒間流す。この時、アルシンもトリ
メチルガリウムも流さないτ2秒間は反応室本体6を上
下機構7、8を用いて下方に下げ、反応室に充満したア
ルシンまたはトリメチルガリウムが急速に排出されるよ
うにする。すなわち、反応室のガス排気弁を開の状態に
する。なお、流量 L1と供給時間τ1は As 原料が GaAs
基板表面を1原子層被覆するに充分な量となるように定
め、流量 L2と供給時間τ3は Ga 原料が GaAs 基板表面
を1原子層被覆するに充分な量となるように定める。こ
のような手順を繰り返し行って、基板表面に原子層単位
で薄膜を形成する。
Next, the operation of the apparatus when forming a thin film will be described. First, after placing the GaAs substrate crystal 13 on the reaction chamber lid 4, the pressure of the vacuum container composed of the lid 1 and the main body 2 is set to 1
Vacuuming is performed by the vacuum pump 3 until a vacuum state of E-6 Pascal or less is reached. At this time, the reaction chamber body 6 is lowered to a position where it does not rub against the lid 4, and the exhaust valve of the reaction chamber is kept open. Vacuum container pressure is 1E-6
When the temperature falls below Pascal, the up-and-down mechanisms 7 and 8 are operated to raise the reaction chamber main body 6 so that the main body 6 and the lid 4 are moved as shown in FIG.
Make sure that they are rubbed together as shown in 12 above. That is, the gas exhaust valve of the reaction chamber is closed. Also,
The pressure of the reaction chamber when flowing the source gas is 1E-2 to 1E-
The pressure adjusting valve 9 is adjusted to a predetermined opening so that the pressure is about 1 pascal. Next, the heater 14 is energized to move the substrate 13 to 60
Heat to 0-700 ° C. During the heating, arsine is introduced into the vacuum container through the mass flow controller 18 and the valve 17 from the time when the substrate crystal temperature monitored by a thermocouple or the like becomes 400 ° C. or higher in order to prevent As escape from the GaAs substrate. Arsine is heated to about 800 ° C. by the heater 19 on the way and is sprayed from the nozzle 15 onto the substrate while thermally decomposing. While flowing arsine, the substrate crystal is heated at 600 to 700 ° C. for about 10 minutes to remove the oxide on the substrate surface. After the crystal surface of the substrate is sufficiently cleaned, the substrate temperature is lowered to 400 to 600 ° C. After the substrate temperature stabilizes at a predetermined temperature, the raw materials are alternately introduced in the procedure shown in FIG. That is, arsine is caused to flow at a flow rate L 1 for τ 1 second, and after τ 2 seconds have elapsed, trimethylgallium is caused to flow at a flow rate L 2 for τ 3 seconds. At this time, the reaction chamber main body 6 is lowered downward by using the elevating mechanisms 7 and 8 for τ 2 seconds in which neither arsine nor trimethylgallium flows, so that arsine or trimethylgallium filled in the reaction chamber is rapidly discharged. That is, the gas exhaust valve of the reaction chamber is opened. The flow rate L 1 and supply time τ 1 are As
The substrate surface is determined to have a sufficient amount to cover one atomic layer, and the flow rate L 2 and the supply time τ 3 are determined so that the Ga raw material has a sufficient amount to cover the GaAs substrate surface with one atomic layer. By repeating this procedure, a thin film is formed on the surface of the substrate in atomic layer units.

【0015】なお、反応室のガス排気弁をτ2秒間開の
状態にした時、電子銃25からの電子線26と基板で回折さ
れた反射電子線27とのビームパスが確保され、RHEED 法
による成長状態の観察が可能となる。
When the gas exhaust valve of the reaction chamber is opened for τ 2 seconds, a beam path between the electron beam 26 from the electron gun 25 and the reflected electron beam 27 diffracted by the substrate is secured, and the RHEED method is used. It is possible to observe the growth state.

【0016】次に、本発明装置を用いた結晶成長条件の
一例を示す。まず、原料ガスを流した場合の反応室の圧
力が 5E‐2パスカルとなるように、圧力調整弁9を予め
定めた開度に調節する。次に、ヒータ14に通電して基板
結晶13を650℃に加熱する。加熱中、熱電対等でモニタ
ーした基板結晶の温度が400℃以上になった時点から、G
aAs 基板からの As 抜けを防ぐため、アルシン5cc/min
をマスフローコントローラ18、バルブ17を経て真空容器
に導入する。アルシンは途中ヒータ19で810℃に加熱さ
れ、熱分解しながらノズル15から基板に噴射される。ア
ルシンを流しながら基板結晶を600〜700℃に加熱した状
態を10分間維持し、基板表面の酸化物を除去、清浄化す
る。その後、基板温度を450℃に下げる。基板温度が450
℃で安定した後(約5分後)、図3に示した手順で原料を
交互に導入する。すなわち、アルシンを流量2cc/minで
2秒間流し、さらに2秒間経過後、トリメチルガリウム
を流量4cc/minで3秒間流す。この時、アルシンもトリ
メチルガリウムも流さない中間の2秒間は、反応室6を
上下機構7、8を用いて下方に下げ、反応室に充満した
アルシンまたはトリメチルガリウムが急速に排出される
ようにする。すなわち、反応室のガス排気弁を開の状態
にする。アルシン供給、ガス排気弁開、ガス排気弁閉、
トリメチルガリウム供給、ガス排気弁開、ガス排気弁閉
を1サイクルとした成長を繰り返すと、基板表面に1サ
イクル当り1原子層の率で薄膜を形成することができ
る。
Next, an example of crystal growth conditions using the apparatus of the present invention will be shown. First, the pressure control valve 9 is adjusted to a predetermined opening so that the pressure in the reaction chamber when the raw material gas flows is 5E-2 Pascal. Next, the heater 14 is energized to heat the substrate crystal 13 to 650 ° C. During heating, when the temperature of the substrate crystal monitored by a thermocouple etc. reached 400 ℃ or higher, G
arsine 5cc / min to prevent As leakage from the aAs substrate
Is introduced into the vacuum container through the mass flow controller 18 and the valve 17. Arsine is heated to 810 ° C. by the heater 19 on the way and is sprayed from the nozzle 15 onto the substrate while thermally decomposing. While flowing arsine, the substrate crystal is heated at 600 to 700 ° C for 10 minutes to remove oxides on the substrate surface for cleaning. After that, the substrate temperature is lowered to 450 ° C. Substrate temperature is 450
After stabilizing at 0 ° C. (after about 5 minutes), the raw materials are alternately introduced according to the procedure shown in FIG. That is, arsine is flown for 2 seconds at a flow rate of 2 cc / min, and after a further 2 seconds, trimethylgallium is flowed for 3 seconds at a flow rate of 4 cc / min. At this time, during the middle 2 seconds in which neither arsine nor trimethylgallium is allowed to flow, the reaction chamber 6 is lowered downward by using the elevating mechanisms 7 and 8 so that the arsine or trimethylgallium filled in the reaction chamber is rapidly discharged. . That is, the gas exhaust valve of the reaction chamber is opened. Arsine supply, gas exhaust valve open, gas exhaust valve closed,
By repeating the growth with supplying trimethylgallium, opening the gas exhaust valve, and closing the gas exhaust valve as one cycle, a thin film can be formed on the surface of the substrate at a rate of one atomic layer per cycle.

【0017】[0017]

【発明の効果】以上述べてきたように、結晶成長装置を
本発明構成の装置とすることによって、従来技術の有し
ていた課題を解決して、薄膜を1原子層レベルで制御し
ながら成長させることのできる結晶成長装置を提供する
ことができた。すなわち、本発明構成の装置とすること
によって、ガス原料を用いた高真空の結晶成長におい
て、原料ガスを遮断した後の基板結晶近傍でのガス残留
を低減できるので原子層単位での結晶成長が容易になる
という効果がある。また、ヘテロ接合構造の成長におい
て、結晶成長速度を下げることなく1原子層レベルで急
峻なヘテロ界面を作製することができる。
As described above, the crystal growth apparatus having the structure of the present invention solves the problems of the prior art, and grows a thin film while controlling it at the level of one atomic layer. It was possible to provide a crystal growth apparatus capable of performing the above. That is, by using the apparatus having the configuration of the present invention, in high-vacuum crystal growth using a gas raw material, it is possible to reduce the gas residue in the vicinity of the substrate crystal after shutting off the raw material gas, so that crystal growth in atomic layer units can be achieved. It has the effect of making it easier. Further, in the growth of the heterojunction structure, a steep hetero interface can be formed at the level of one atomic layer without lowering the crystal growth rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明結晶成長装置の一実施例の構成を示す断
面図。
FIG. 1 is a sectional view showing the structure of an embodiment of a crystal growth apparatus of the present invention.

【図2】従来の化学ビームエピタキシー(CBE)装置の構
造を示す断面図。
FIG. 2 is a cross-sectional view showing the structure of a conventional chemical beam epitaxy (CBE) device.

【図3】GaAs を原子層単位で成長させるためのガス導
入手順を示す図。
FIG. 3 is a diagram showing a gas introduction procedure for growing GaAs in atomic layer units.

【図4】従来の装置で、図3に示す手順によりガスを導
入して GaAs を成長させた場合の基板結晶付近での原料
ガス分圧の時間変化を示した図。
FIG. 4 is a diagram showing a time change of a source gas partial pressure in the vicinity of a substrate crystal when a gas is introduced by the procedure shown in FIG. 3 to grow GaAs in a conventional apparatus.

【図5】GaAs/AlGaAs のヘテロ接合構造を示す断面図。FIG. 5 is a cross-sectional view showing a GaAs / AlGaAs heterojunction structure.

【符号の説明】[Explanation of symbols]

1…真空容器蓋、2…真空容器本体、3…真空ポンプ、
4…反応室蓋、5…反応室蓋支持柱、6…反応室本体、
7…反応室本体支持棒、8…反応室本体上下機構、9…
反応室圧力調整弁、10…反応室圧力調整弁開閉機構、11
…反応室圧力調整弁開閉動作、12…擦り合わせ部、13…
基板結晶、14…基板加熱ヒータ、15…ノズル、16…ガス
送気用パイプ、17…バルブ、18…マスフローコントロー
ラ、19…原料ガス熱分解用ヒータ、20…ノズル、21…ガ
ス送気用パイプ、22…バルブ、23…マスフローコントロ
ーラ、24…配管保温用ヒータ、25…電子銃、26…電子
線、27…回折電子線、28…電子線観察用スクリーン、29
…真空容器蓋、30…真空容器本体、31…真空ポンプ、32
…基板結晶保持板、33…基板結晶保持板支持柱、34…基
板加熱ヒータ、35…基板結晶、36…ノズル、37…バル
ブ、38…マスフローコントローラ、39…原料ガス、40…
ノズル、41…バルブ、42…マスフローコントローラ、43
…原料ガス、44…電子銃、45…電子線、46…回折電子
線、47…電子線観察用スクリーン、48… GaAs 基板結
晶、49… AlGaAs エピタキシャル層、50… GaAsエピタ
キシャル層、51… AlGaAs エピタキシャル層。
1 ... vacuum container lid, 2 ... vacuum container body, 3 ... vacuum pump,
4 ... Reaction chamber lid, 5 ... Reaction chamber lid support column, 6 ... Reaction chamber body,
7 ... Reaction chamber body support rod, 8 ... Reaction chamber body up / down mechanism, 9 ...
Reaction chamber pressure adjusting valve, 10 ... Reaction chamber pressure adjusting valve opening / closing mechanism, 11
… Reaction chamber pressure control valve opening / closing operation, 12… Rubbing part, 13…
Substrate crystal, 14 ... Substrate heating heater, 15 ... Nozzle, 16 ... Gas air supply pipe, 17 ... Valve, 18 ... Mass flow controller, 19 ... Raw gas pyrolysis heater, 20 ... Nozzle, 21 ... Gas air supply pipe , 22 ... Valve, 23 ... Mass flow controller, 24 ... Pipe heat insulation heater, 25 ... Electron gun, 26 ... Electron beam, 27 ... Diffraction electron beam, 28 ... Electron beam observation screen, 29
… Vacuum container lid, 30… Vacuum container body, 31… Vacuum pump, 32
... Substrate crystal holding plate, 33 ... Substrate crystal holding plate support column, 34 ... Substrate heating heater, 35 ... Substrate crystal, 36 ... Nozzle, 37 ... Valve, 38 ... Mass flow controller, 39 ... Raw material gas, 40 ...
Nozzle, 41 ... Valve, 42 ... Mass flow controller, 43
Material gas 44 Electron gun 45 Electron beam 46 Diffraction electron beam 47 Electron beam observation screen 48 GaAs substrate crystal 49 AlGaAs epitaxial layer 50 50 GaAs epitaxial layer 51 AlGaAs epitaxial layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高谷 信一郎 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 宮田 敏光 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 奥村 健治 大阪府堺市築港新町2丁目6番40 大同酸 素株式会社堺工場内 (72)発明者 大森 宣典 大阪府堺市築港新町2丁目6番40 大同酸 素株式会社堺工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichiro Takatani 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Toshimitsu Miyata 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Kenji Okumura 2-6-40 Chikko Shinmachi, Sakai City, Osaka Daido Acid Co., Ltd. Sakai Plant (72) Inori Noriori Omori 2-640 Tsukiko Shinmachi, Sakai City, Osaka Daido Acid Sato Co., Ltd. Sakai factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空容器内に設置した基板結晶を格納する
ための気密容器と、該気密容器に設けた該気密容器から
上記真空容器内にガスを排出するためのガス排気弁と、
該気密容器からのガスのリーク量を微調整するための調
節弁と、該気密容器内に原料ガスを導入するための配管
と、該気密容器内に格納した基板結晶を輻射熱で加熱す
るための加熱装置と、上記真空容器を高真空に排気する
ための排気装置と、原料ガスを予め定めた流量及び時間
で供給するマスフローコントローラ及びバルブ群からな
る原料ガス供給制御装置とから構成される結晶成長装置
であって、2種類以上の原料ガスを基板結晶に交互に照
射し、かつ、上記原料ガスの切り替えに同期して上記気
密容器に設けたガス排気弁を駆動して結晶成長を行うこ
とを可能にした構成からなることを特徴とする結晶成長
装置。
1. An airtight container for storing a substrate crystal installed in a vacuum container, and a gas exhaust valve provided in the airtight container for exhausting gas from the airtight container into the vacuum container.
A control valve for finely adjusting the leak amount of gas from the airtight container, a pipe for introducing a raw material gas into the airtight container, and a substrate crystal stored in the airtight container for heating with radiant heat Crystal growth composed of a heating device, an exhaust device for evacuating the vacuum container to a high vacuum, and a source gas supply control device including a mass flow controller and a valve group for supplying a source gas at a predetermined flow rate and time. An apparatus for alternately irradiating two or more kinds of source gases on a substrate crystal, and driving a gas exhaust valve provided in the hermetic container in synchronization with the switching of the source gases to perform crystal growth. A crystal growth apparatus having a structure that enables it.
【請求項2】真空容器内に設置した基板結晶を格納する
ための気密容器と、該気密容器に設けた電子線の入出射
窓と、該気密容器から上記真空容器内にガスを排出する
ためのガス排気弁と、該気密容器からのガスのリーク量
を微調整するための調節弁と、該気密容器内に原料ガス
を導入するための配管と、該気密容器内に格納した基板
結晶を輻射熱で加熱するための加熱装置と、上記真空容
器を高真空に排気するための排気装置と、原料ガスを予
め定めた流量及び時間で供給するマスフローコントロー
ラ及びバルブ群からなる原料ガス供給制御装置とから構
成される結晶成長装置であって、2種類以上の原料ガス
を基板結晶に交互に照射し、かつ、上記原料ガスの切り
替えに同期して上記気密容器に設けたガス排気弁を駆動
して結晶成長を行うことを可能にした構成からなること
を特徴とする結晶成長装置。
2. An airtight container for storing a substrate crystal set in a vacuum container, an electron beam entrance / exit window provided in the airtight container, and a gas for discharging from the airtight container into the vacuum container. A gas exhaust valve, a control valve for finely adjusting the amount of gas leaked from the airtight container, a pipe for introducing a raw material gas into the airtight container, and a substrate crystal stored in the airtight container. A heating device for heating with radiant heat, an exhaust device for exhausting the vacuum container to a high vacuum, a raw material gas supply control device including a mass flow controller and a valve group for supplying a raw material gas at a predetermined flow rate and time. A crystal growth apparatus comprising: a substrate crystal, which is alternately irradiated with two or more kinds of source gases, and a gas exhaust valve provided in the airtight container is driven in synchronization with switching of the source gases. Crystal growth Crystal growing apparatus characterized by having the structure that enables it.
【請求項3】上記電子線の入出射窓の開閉を上記ガス排
気弁の駆動と同期して行うようにした構成からなること
を特徴とする請求項2記載の結晶成長装置。
3. The crystal growth apparatus according to claim 2, wherein the electron beam entrance / exit window is opened / closed in synchronization with the driving of the gas exhaust valve.
JP22847792A 1992-08-27 1992-08-27 Crystal growth equipment Expired - Lifetime JP3168276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22847792A JP3168276B2 (en) 1992-08-27 1992-08-27 Crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22847792A JP3168276B2 (en) 1992-08-27 1992-08-27 Crystal growth equipment

Publications (2)

Publication Number Publication Date
JPH06112130A true JPH06112130A (en) 1994-04-22
JP3168276B2 JP3168276B2 (en) 2001-05-21

Family

ID=16877088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22847792A Expired - Lifetime JP3168276B2 (en) 1992-08-27 1992-08-27 Crystal growth equipment

Country Status (1)

Country Link
JP (1) JP3168276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935014B4 (en) * 1998-07-29 2005-03-17 Nsk Ltd. Sealed rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935014B4 (en) * 1998-07-29 2005-03-17 Nsk Ltd. Sealed rolling bearing

Also Published As

Publication number Publication date
JP3168276B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US4181544A (en) Molecular beam method for processing a plurality of substrates
JP2004529272A (en) Reactor with movable shutter
JPH05275519A (en) Multi-chamber type substrate treating device
JPH02255595A (en) Method and device for vaporizing and supplying organometallic compound
EP3174089B1 (en) Semiconductor manufacturing device, and method of manufacturing semiconductor
TWI674622B (en) Manufacturing device and manufacturing method for epitaxial wafer
JP2670515B2 (en) Vertical heat treatment equipment
JPH06112130A (en) Crystal growth device
JPH0458434B2 (en)
US20080242064A1 (en) Manufacturing method of semiconductor device
KR20220103405A (en) Multi-layer thin film liquid phase epitaxial apparatus and method thereof
KR20090037200A (en) Vacuum keeping apparatus and method thereof within process tube of vertical furnace
US5242666A (en) Apparatus for forming a semiconductor crystal
JP2005056910A (en) Substrate processing system
JP3126163B2 (en) Gas source molecular beam epitaxial growth equipment
JPH05190469A (en) Method of monitoring gas head of cvd apparatus
JPH0513348A (en) Device for manufacturing semiconductor
JP2656029B2 (en) Crystal growth equipment
JP2773772B2 (en) Crystal growth equipment
JPS63938B2 (en)
JPH0574712A (en) Organic metal vapor-growth device
JPS62211912A (en) Device for crystal growth by means of gas source molecular beam
JPH03228318A (en) Semiconductor manufacturing device
KR100424525B1 (en) Apparatus for depositing the organic display device with a large size of substrate and method thereof
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12