JPH06112104A - Step and repeat exposure system - Google Patents

Step and repeat exposure system

Info

Publication number
JPH06112104A
JPH06112104A JP4257775A JP25777592A JPH06112104A JP H06112104 A JPH06112104 A JP H06112104A JP 4257775 A JP4257775 A JP 4257775A JP 25777592 A JP25777592 A JP 25777592A JP H06112104 A JPH06112104 A JP H06112104A
Authority
JP
Japan
Prior art keywords
wavelength
light
alignment
alignment mark
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4257775A
Other languages
Japanese (ja)
Inventor
Minoru Yoshida
実 吉田
Yasuhiko Nakayama
保彦 中山
Yoshitada Oshida
良忠 押田
Yasuhiro Yoshitake
康裕 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4257775A priority Critical patent/JPH06112104A/en
Publication of JPH06112104A publication Critical patent/JPH06112104A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection-Type Copiers In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain alignment having high accuracy by preventing the detection of asymmetry by an interference even when the thickness of a photo-resist film applied onto an alignment pattern formed onto a substrate such as a wafer is non-uniform and asymmetric and improving resolution and symmetry. CONSTITUTION:In the TTL type alignment detecting optical system of a step and repeat exposure system, light having a wide wavelength band can be used as the illumination light of an alignment mark by a chromatic aberration correcting lens 41, and the alignment mark 31 is lit up by light, in which illumination having a specific wavelength is limited by a wavelength selecting filter 13 and a wavelength limiting filter 14. Reflected light from the alignment mark is image-formed onto an image sensing element 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アライメント検出光学
系に関し、特に、波長帯域の広い光を用いて、投影光学
系を介してウエハ上のマークを検出するTTL(Throug
h The Lens)方式のアライメント検出光学系を備えた縮
小投影露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alignment detecting optical system, and more particularly to a TTL (Throug) for detecting a mark on a wafer through a projection optical system using light having a wide wavelength band.
The present invention relates to a reduction projection exposure apparatus having an alignment detection optical system of the h The Lens) type.

【0002】[0002]

【従来の技術】従来、半導体の製造には、ウエハを順次
ステップ移動させながらマスク上の回路パターンの投影
露光を行うステッパが用いられている。半導体素子は、
感光材であるレジストの塗られたウエハ上の回路パター
ンとマスク上の回路パターンを、順次アライメントを行
って重ね合わせ露光をする事により製造される。このア
ライメントは、ウエハ上のアライメントマークを検出す
る事により行われる。高精度なアライメントを行うため
には、露光用の投影光学系を介してマークを検出するT
TL方式が有効である。レジストは、ウエハを回転させ
ながら塗布されるため、図3に示すように、段差のある
下地マーク311の近傍では、レジストの流れによっ
て、検出方向に非対称なレジスト膜厚分布312が生じ
る。一方、波長幅の狭い光をレジストに照射すると、検
出される光強度は、図4(a)に示すように、周期的に
変化する。このため、波長幅の狭い光で、非対称なレジ
スト分布を持つアライメントマークの像検出を行うと、
図4(b)に示すように検出波形も非対称になり、検出
誤差が生じる。一方、波長帯域の広い光で照明すれば、
図5(a)に示すように検出波形が対称となり、高精度
なアライメントが可能となる。しかし、上記TTL方式
と波長幅の広い光による検出の両立には、次の課題を有
する。投影光学系は、微細なパターンを転写するため
に、一般に、露光光に対してのみ収差補正されている。
従って、波長帯域の広い光を用いて、TTL方式で行う
と、各波長の像点がずれる。すなわち、色収差が発生す
るため、検出波形はぼけてしまい、高精度なアライメン
トができない。この課題を解決するため、特開平1ー2
27431号公報に開示されているように、波長帯域の
広い光で生じる色収差を補正する光学系を使用し、上記
の問題を解決して、波長帯域の広い光を照明光として用
いているため、レジスト膜厚変化に対して検出波形を対
称に検出できる方式が提案されている。
2. Description of the Related Art Conventionally, a stepper for projecting and exposing a circuit pattern on a mask while sequentially moving a wafer has been used for manufacturing a semiconductor. The semiconductor element is
It is manufactured by sequentially aligning a circuit pattern on a wafer coated with a resist, which is a photosensitive material, and a circuit pattern on a mask, and exposing them in superposition. This alignment is performed by detecting an alignment mark on the wafer. In order to perform high-accuracy alignment, T that detects a mark through a projection optical system for exposure is used.
The TL method is effective. Since the resist is applied while rotating the wafer, as shown in FIG. 3, the resist flow causes an asymmetric resist film thickness distribution 312 in the detection direction in the vicinity of the stepped base mark 311. On the other hand, when the resist is irradiated with light having a narrow wavelength width, the detected light intensity changes periodically as shown in FIG. Therefore, if the image of the alignment mark having an asymmetric resist distribution is detected with light having a narrow wavelength width,
As shown in FIG. 4B, the detected waveform is also asymmetrical, which causes a detection error. On the other hand, if illuminated with light with a wide wavelength band,
As shown in FIG. 5A, the detected waveforms are symmetric, which enables highly accurate alignment. However, compatibility of the above-mentioned TTL method and detection with light having a wide wavelength width has the following problems. A projection optical system is generally aberration-corrected only for exposure light in order to transfer a fine pattern.
Therefore, when the TTL method is performed using light with a wide wavelength band, the image points of the respective wavelengths are displaced. That is, since chromatic aberration occurs, the detected waveform is blurred and high-precision alignment cannot be performed. In order to solve this problem, Japanese Patent Laid-Open No. 1-2
As disclosed in Japanese Patent No. 27431, an optical system that corrects chromatic aberration caused by light having a wide wavelength band is used to solve the above problem, and light having a wide wavelength band is used as illumination light. A method has been proposed in which the detection waveform can be detected symmetrically with respect to changes in the resist film thickness.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来技
術においては、波長帯域の広い光を照明光として用いて
いるため、塗布されたレジストの厚さ、アライメントマ
ークの段差により、検出する光強度が異なるため、波形
が非対称になる波長域も含まれる。広い波長域を照明す
ることでレジスト膜厚の変化に対して検出光強度の変化
を小さく抑える効果があるが、波形が非対称になる波長
域部分の検出光強度の占める割合が大きい場合、この波
形によって広い波長帯域で検出した波形に影響を及ぼす
ため非対称の波形を検出する事になる。
However, in the above-mentioned prior art, since light having a wide wavelength band is used as illumination light, the detected light intensity depends on the thickness of the applied resist and the step of the alignment mark. Since they are different, the wavelength range in which the waveform is asymmetric is also included. Illuminating a wide wavelength range has the effect of suppressing changes in the detected light intensity with respect to changes in the resist film thickness, but if the ratio of the detected light intensity in the wavelength range where the waveform becomes asymmetric is large, this waveform Therefore, the waveform detected in a wide wavelength band is affected, so that an asymmetrical waveform is detected.

【0004】例えば、図6(a)に示すように、段差の
ある下地マーク311の近傍で、レジストの流れによっ
て、検出方向に非対称なレジスト膜厚分布312が生じ
たアライメントマークを検出する。照明光を、図7
(a)に示すようなバンド幅ΔλSの狭い(数nm)の
単一波長(単色光)λ1、λ2、λ3とすると、各々図
6(b)(c)(d)に示す波形が得られる。このよう
に、単波長で検出した波形は、図4で述べたように波長
が異なると、レジスト膜厚の変化により、検出光強度が
異なるため、それぞれ波形の形状が異なる。しかも、あ
る波長では図6(d)に示すように、レジストの膜厚変化
に対して光強度の変化が大きいと非対称の大きい波形が
検出されることになる。そこで、図7(b)に示すよう
に、この非対称の大きく検出される波長帯域を含んだバ
ンド幅Δλの広い(数十nm)λaからλbの範囲を照
明光とすると、図6(e)に示すように、図6(d)の
波形が影響するため、非対称の波形となってしまう。
For example, as shown in FIG. 6A, an alignment mark having an asymmetric resist film thickness distribution 312 in the detection direction due to the flow of the resist is detected in the vicinity of the stepped base mark 311. Illumination light
When the single wavelengths (monochromatic light) λ1, λ2, and λ3 having a narrow bandwidth (several nm) as shown in FIG. 6A are obtained, the waveforms shown in FIGS. 6B, 6C, and 6D are obtained. . As described above, in the waveform detected with a single wavelength, when the wavelength is different as described with reference to FIG. 4, the detected light intensity is different due to the change in the resist film thickness, so that the waveforms have different shapes. Moreover, at a certain wavelength, as shown in FIG. 6D, a large asymmetry waveform is detected when the change in the light intensity is large with respect to the change in the resist film thickness. Therefore, as shown in FIG. 7B, when the illumination light is in the range from λa to λb having a wide (several tens of nm) bandwidth Δλ including the wavelength band in which the asymmetry is largely detected, FIG. As shown in FIG. 6, the waveform shown in FIG. 6D affects the waveform, resulting in an asymmetrical waveform.

【0005】本発明の目的は、上記従来技術の問題点を
解決すべく、波長帯域の広い光を用いて検出するアライ
メント検出光学系において、レジストの膜厚の変化に対
して光強度の変化が大きい波長帯域を制限することによ
り、ウェハなどの基板上に設けられたアライメントパタ
ーンの解像度及び対称性を向上させて、高精度のアライ
メントを実現する縮小投影露光装置を提供することにあ
る。
In order to solve the above-mentioned problems of the prior art, an object of the present invention is to detect a change in the light intensity with respect to the change in the resist film thickness in an alignment detection optical system which detects light using a wide wavelength band. An object of the present invention is to provide a reduction projection exposure apparatus that realizes highly accurate alignment by improving the resolution and symmetry of an alignment pattern provided on a substrate such as a wafer by limiting a large wavelength band.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、単一波長のみに対して最適化された投影
レンズを備えた投影式露光装置において、該投影レンズ
を介し投影基板上のアライメントマークを波長帯域の広
い光で照明する照明光学系と、前記アライメントマーク
検出時に前記投影レンズで生じる色収差を補正する色収
差補正検出光学系とを具備したアライメント光学系を設
けたことを特徴とする投影式露光装置である。即ち、色
収差補正検出光学系は、照明光の光路に、例えば特開平
1ー227431号公報に開示されたような方法により
作成可能な、色収差補正レンズ機構により各波長に対応
して焦点距離を調整できる。また、前記照明光学系は波
長帯域の広い範囲の光で照明可能なフィルタと、この波
長帯域内で、ある波長幅の範囲の光を照明しないフィル
タを組み合わせることによって、照明波長の帯域の範囲
を制限することができ、レジストの膜厚の変化に対して
光強度の変化が大きい波長帯域を除くことができるよう
にする。
In order to achieve the above object, the present invention provides a projection type exposure apparatus provided with a projection lens optimized for only a single wavelength, and a projection substrate via the projection lens. An alignment optical system is provided that includes an illumination optical system that illuminates the above alignment mark with light having a wide wavelength band, and a chromatic aberration correction detection optical system that corrects chromatic aberration that occurs in the projection lens when the alignment mark is detected. Is a projection type exposure apparatus. That is, the chromatic aberration correction detection optical system adjusts the focal length corresponding to each wavelength by the chromatic aberration correction lens mechanism that can be created in the optical path of the illumination light by the method disclosed in, for example, JP-A-1-227431. it can. Further, the illumination optical system combines a filter capable of illuminating with light in a wide wavelength band range and a filter that does not illuminate light within a certain wavelength width range within this wavelength band, thereby increasing the range of the illumination wavelength band. It is possible to limit the wavelength band so that the change of the light intensity with respect to the change of the resist film thickness can be excluded.

【0007】[0007]

【作用】上述した手段によれば、照明光路中に、色収差
補正レンズ機構を設けたことにより、アライメントマー
クの照明光として波長帯域の広いものを用いることが可
能である。さらに、この照明光の波長帯域の範囲は、あ
る波長帯域の範囲の光を照明しないことにより、照明波
長の範囲を制限して照明することが可能である。
According to the above-mentioned means, since the chromatic aberration correction lens mechanism is provided in the illumination optical path, it is possible to use the illumination light of the alignment mark having a wide wavelength band. Further, the range of the wavelength band of the illumination light can be illuminated by limiting the range of the illumination wavelength by not illuminating the light in the range of a certain wavelength band.

【0008】以上のような構成とすることにより、レジ
ストの膜厚の変化に対して光強度の変化が大きい波長帯
域での照明光を制限することにより、ウェハなどの基板
上に設けられたアライメントパターンの解像度及び対称
性を向上させて、高精度のアライメントを実現すること
ができる。
With the above configuration, the illumination light in the wavelength band in which the change in the light intensity is large with respect to the change in the film thickness of the resist is limited, so that the alignment provided on the substrate such as the wafer is performed. It is possible to improve the resolution and symmetry of the pattern and realize highly accurate alignment.

【0009】[0009]

【実施例】以下本発明の実施例を図面を用いて具体的に
説明する。図1は、本発明の一実施例である縮小投影式
露光装置を示す要部の斜視図である。マスク1上の回路
パターン100は、縮小投影レンズ2を介してウェハ3
上に転写される。縮小投影レンズ2は、露光光6を用い
た時に回路パターン100がもっとも良好に解像できる
ように設計されている。波長帯域の広い光を照明できる
照明光源11を出射した光は、光ファイバ12により導
光され、波長選択フィルタ13と波長制限フィルタ14
を透過し、照明用レンズ15、ビームスプリッタ16、
一対の色収差補正レンズ41、折り曲げミラー17によ
り、照明光の中心が縮小投影レンズ2の入射瞳21の中
心と一致するように照明光を入射し、縮小投影レンズ2
を介してウェハ3上のアライメントマーク31を照明す
る。アライメントマーク31で反射した光は、縮小投影
レンズ2、折り曲げミラー17、色収差補正レンズ4
1、ビームスプリッタ16、結像レンズ42、を介して
撮像素子5に入射する。アライメントマーク31の像
は、縮小投影レンズ2、色収差補正レンズ41、結像レ
ンズ42によって撮像素子5上に結ばれる。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a perspective view of an essential part showing a reduction projection type exposure apparatus which is an embodiment of the present invention. The circuit pattern 100 on the mask 1 is transferred to the wafer 3 via the reduction projection lens 2.
Transcribed on. The reduction projection lens 2 is designed so that the circuit pattern 100 can be resolved best when the exposure light 6 is used. The light emitted from the illumination light source 11 capable of illuminating light having a wide wavelength band is guided by the optical fiber 12, and the wavelength selection filter 13 and the wavelength limiting filter 14 are provided.
Through the illumination lens 15, the beam splitter 16,
By the pair of chromatic aberration correction lenses 41 and the bending mirror 17, the illumination light enters so that the center of the illumination light coincides with the center of the entrance pupil 21 of the reduction projection lens 2, and the reduction projection lens 2
The alignment mark 31 on the wafer 3 is illuminated via. The light reflected by the alignment mark 31 is reduced by the reduction projection lens 2, the bending mirror 17, and the chromatic aberration correction lens 4.
The light enters the image sensor 5 through the beam splitter 16, the image forming lens 42, and the beam splitter 16. The image of the alignment mark 31 is formed on the image sensor 5 by the reduction projection lens 2, the chromatic aberration correction lens 41, and the imaging lens 42.

【0010】次に図2により、波長選択フィルタ13と
波長制限フィルタ14の透過特性を説明する。(a)
は、波長選択フィルタ13の透過特性を示し、波長λa
からλbの範囲の光を透過可能である。(b)は、波長
制限フィルタ14の透過特性を示し、波長λcからλd
の範囲の光を遮光可能である。すなわち、波長選択フィ
ルタ13と波長制限フィルタ14の2枚のフィルタを透
過する光は、(c)に示すようになり、ある波長域だけ
の光の透過を制限することが可能である。この波長制限
フィルタ14の透過特性を変化させたフィルタを数種作
成して、波長選択フィルタ13と組み合わせれば、透過
を制限する範囲や、中心波長の変更が可能であり、各種
の透過特性を持たせた波長で照明可能である。
Next, referring to FIG. 2, the transmission characteristics of the wavelength selection filter 13 and the wavelength limiting filter 14 will be described. (A)
Indicates the transmission characteristic of the wavelength selection filter 13, and the wavelength λa
To λb can be transmitted. (B) shows the transmission characteristics of the wavelength limiting filter 14, and is from wavelengths λc to λd.
It is possible to block light in the range. That is, the light transmitted through the two filters of the wavelength selection filter 13 and the wavelength limiting filter 14 is as shown in (c), and it is possible to limit the transmission of light in a certain wavelength range. If several kinds of filters having different transmission characteristics of the wavelength limiting filter 14 are created and combined with the wavelength selection filter 13, it is possible to change the range of limiting the transmission and the central wavelength, and various transmission characteristics can be obtained. It is possible to illuminate with the given wavelength.

【0011】以上の構成において、動作を説明する。ウ
ェハ3は、検出方向のアライメントを行うために、縮小
レンズ2の所定位置に設置される。照明光源11からの
光は、波長選択フィルタ13と波長制限フィルタ14に
より特定の波長の照明を制限した光でアライメントマー
ク31に照明される。アライメントマークからの反射光
は、縮小レンズ2及び色収差補正レンズ41、結像レン
ズ42により撮像素子5上にアライメントマーク31の
像が結像され、アライメントマークの位置が検出され
る。図8にアライメントマーク31の一例を示す。
(a)は、アライメントマーク31の断面形状を示す。
段差のある下地マーク311の近傍で、レジストの流れ
によって、検出方向に非対称なレジスト膜厚分布312
が生じている。このアライメントマーク31を上記構成
の検出装置によって得られた検出波形を同図(b)に示
す。波長選択フィルタ13と波長制限フィルタ14によ
りレジスト312の膜厚の変化に対して光強度の変化が
大きい波長域を制限することにより、(b)に示すよう
に解像度及び対称性の高い検出が出来る。レジスト膜厚
の変化や、アライメントマーク31の段差によって検出
波形が非対称となる場合は、波長制限フィルタ14の透
過特性を変化させたフィルタを変更して、波長選択フィ
ルタ13と組み合わせ、対称となる波形を求める。この
検出波形を図示しない方法で中心位置を求め、ウェハ3
の位置を検出してアライメントを行う。
The operation of the above configuration will be described. The wafer 3 is installed at a predetermined position of the reduction lens 2 in order to perform alignment in the detection direction. The light from the illumination light source 11 illuminates the alignment mark 31 with light whose illumination of a specific wavelength is limited by the wavelength selection filter 13 and the wavelength limiting filter 14. The reflected light from the alignment mark forms an image of the alignment mark 31 on the image sensor 5 by the reduction lens 2, the chromatic aberration correction lens 41, and the imaging lens 42, and the position of the alignment mark is detected. FIG. 8 shows an example of the alignment mark 31.
(A) shows the cross-sectional shape of the alignment mark 31.
Near the stepped base mark 311, due to the flow of the resist, the resist film thickness distribution 312 is asymmetric in the detection direction.
Is occurring. A detection waveform of the alignment mark 31 obtained by the detection device having the above configuration is shown in FIG. By limiting the wavelength range in which the change of the light intensity is large with respect to the change of the film thickness of the resist 312 by the wavelength selection filter 13 and the wavelength limiting filter 14, detection with high resolution and symmetry can be performed as shown in FIG. . When the detected waveform becomes asymmetric due to the change of the resist film thickness or the step of the alignment mark 31, the filter having the changed transmission characteristics of the wavelength limiting filter 14 is changed and combined with the wavelength selection filter 13 so that the waveform becomes symmetrical. Ask for. The center position of this detected waveform is obtained by a method not shown, and the wafer 3
The position is detected and alignment is performed.

【0012】なお、本実施例では、波長選択フィルタ1
3と波長制限フィルタ14は、2枚で波長の制限を行っ
たが、一枚のフィルタで透過率を変化させても同様の効
果が得られる。また、図9に示すように、波長選択フィ
ルタ13と波長制限フィルタ14は、照明側に設置しな
くとも、撮像素子5の前に配置しても同様の効果が得ら
れる。さらに、図10に示すように、照明光源11内
に、波長選択フィルタ13と波長制限フィルタ14を配
置して、波長を制限した光を照明しても同様の効果が得
られる。
In this embodiment, the wavelength selection filter 1
Although the wavelength limiting filter 3 and the wavelength limiting filter 14 limit the wavelength with two sheets, the same effect can be obtained by changing the transmittance with one filter. Further, as shown in FIG. 9, even if the wavelength selection filter 13 and the wavelength limiting filter 14 are not installed on the illumination side, they may be arranged in front of the image pickup element 5 to obtain the same effect. Further, as shown in FIG. 10, the same effect can be obtained by arranging the wavelength selection filter 13 and the wavelength limiting filter 14 in the illumination light source 11 and illuminating the light whose wavelength is limited.

【0013】[0013]

【発明の効果】本発明によれば、照明光路中に、色収差
補正レンズ機構を設け、アライメントマークの照明光と
して波長帯域の広い光を用い、さらに、この照明光の波
長範囲は、ある波長幅の範囲の光を照明しないように、
波長範囲を組み合わせて照明することによって、レジス
トの膜厚の変化に対して光強度の変化が大きい波長帯域
を制限することが可能である。このため、ウェハなどの
基板上に設けられたアライメントパターンに塗布された
フォトレジスト膜厚が不均一かつ非対称である場合に
も、干渉による非対称の検出を防止でき、解像度及び対
称性を向上させて、高精度のアライメントを実現するこ
とができる。
According to the present invention, a chromatic aberration correction lens mechanism is provided in the illumination optical path, and light having a wide wavelength band is used as the illumination light for the alignment mark. Further, the wavelength range of this illumination light is within a certain wavelength range. Not to illuminate light in the range
By combining and illuminating the wavelength ranges, it is possible to limit the wavelength band in which the change in the light intensity is large with respect to the change in the resist film thickness. Therefore, even if the photoresist film thickness applied to the alignment pattern provided on the substrate such as a wafer is non-uniform and asymmetric, detection of asymmetry due to interference can be prevented, and resolution and symmetry can be improved. It is possible to realize highly accurate alignment.

【図面の簡単な説明】[Brief description of drawings]

【図1】投影露光装置用アライメント検出系の一実施例
の要部斜視図である。
FIG. 1 is a perspective view of a main part of an embodiment of an alignment detection system for a projection exposure apparatus.

【図2】波長選択フィルタと波長制限フィルタの透過率
の関係を示す図である。
FIG. 2 is a diagram showing a relationship between transmittances of a wavelength selection filter and a wavelength limiting filter.

【図3】下地マークの断面図と非対称なレジスト膜厚分
布を示す図である。
FIG. 3 is a diagram showing a cross-sectional view of a background mark and an asymmetric resist film thickness distribution.

【図4】狭い波長幅の光を照射した場合のレジスト膜厚
と検出強度の関係および検出波形図である。
FIG. 4 is a relationship between a resist film thickness and a detection intensity and a detection waveform diagram when light with a narrow wavelength width is irradiated.

【図5】広い波長幅の光を照射した場合のレジスト膜厚
と検出強度の関係および検出波形図である。
5A and 5B are a relationship between a resist film thickness and detection intensity and a detection waveform diagram when light with a wide wavelength width is irradiated.

【図6】非対称なレジスト膜厚分布を有したアライメン
トマークの断面図と単波長で検出したときの検出波形図
である。
FIG. 6 is a cross-sectional view of an alignment mark having an asymmetric resist film thickness distribution and a detection waveform diagram when detection is performed with a single wavelength.

【図7】図6検出時の照明波長の関係図である。FIG. 7 is a relational diagram of illumination wavelengths at the time of detection in FIG.

【図8】非対称なレジスト膜厚分布を有したアライメン
トマークの断面図と本実施例で検出したときの検出波形
図である。
8A and 8B are a cross-sectional view of an alignment mark having an asymmetric resist film thickness distribution and a detection waveform diagram when it is detected in this embodiment.

【図9】投影露光装置用アライメント検出系の別の実施
例の要部斜視図である。
FIG. 9 is a perspective view of a main part of another embodiment of the alignment detection system for the projection exposure apparatus.

【図10】投影露光装置用アライメント検出系の別の実
施例の要部斜視図である。
FIG. 10 is a perspective view of a main part of another embodiment of the alignment detection system for the projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1…マスク、2…縮小投影レンズ、3…ウェハ、5…撮
像素子、11…照明光源、12…光ファイバ、13…波
長選択フィルタ、14…波長制限フィルタ、16…ビー
ムスプリッタ、17…折り曲げミラー、31…アライメ
ントマーク、41…色収差補正レンズ、42…結像レン
ズ、311…下地マーク、312…非対称なレジスト膜
厚分布。
DESCRIPTION OF SYMBOLS 1 ... Mask, 2 ... Reduction projection lens, 3 ... Wafer, 5 ... Imaging element, 11 ... Illumination light source, 12 ... Optical fiber, 13 ... Wavelength selection filter, 14 ... Wavelength limiting filter, 16 ... Beam splitter, 17 ... Bending mirror , 31 ... Alignment mark, 41 ... Chromatic aberration correction lens, 42 ... Imaging lens, 311 ... Underground mark, 312 ... Asymmetric resist film thickness distribution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉武 康裕 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasuhiro Yoshitake 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単一波長のみに対して最適化された投影レ
ンズと該投影レンズを介し投影基板上のアライメントマ
ークを波長帯域の広い光で照明する照明光学系と前記ア
ライメントマーク検出時に前記投影レンズで生じる色収
差を補正する色収差補正検出光学系を具備したアライメ
ントマーク検出光学系を設けたことを特徴とする縮小投
影式露光装置。
1. A projection lens optimized for only a single wavelength, an illumination optical system for illuminating an alignment mark on a projection substrate with light having a wide wavelength band through the projection lens, and the projection when the alignment mark is detected. A reduction projection exposure apparatus comprising an alignment mark detection optical system including a chromatic aberration correction detection optical system for correcting chromatic aberration generated in a lens.
【請求項2】前記の照明光学系は、照明しない特定の波
長帯域を設け、その帯域幅を任意に設定可能としたこと
を特徴とする請求項1記載の縮小投影式露光装置。
2. The reduction projection exposure apparatus according to claim 1, wherein the illumination optical system is provided with a specific wavelength band which is not illuminated and the bandwidth can be set arbitrarily.
【請求項3】前記の照明光学系は、照明しない特定の波
長帯域の中心波長を任意に設定可能にしたことを特徴と
する請求項1記載の縮小投影式露光装置。
3. The reduction projection exposure apparatus according to claim 1, wherein the illumination optical system is capable of arbitrarily setting a center wavelength of a specific wavelength band not illuminated.
JP4257775A 1992-09-28 1992-09-28 Step and repeat exposure system Pending JPH06112104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4257775A JPH06112104A (en) 1992-09-28 1992-09-28 Step and repeat exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4257775A JPH06112104A (en) 1992-09-28 1992-09-28 Step and repeat exposure system

Publications (1)

Publication Number Publication Date
JPH06112104A true JPH06112104A (en) 1994-04-22

Family

ID=17310933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4257775A Pending JPH06112104A (en) 1992-09-28 1992-09-28 Step and repeat exposure system

Country Status (1)

Country Link
JP (1) JPH06112104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783342A (en) * 1994-12-28 1998-07-21 Matsushita Electric Industrial Co., Ltd. Method and system for measurement of resist pattern
JP2003149827A (en) * 2001-11-16 2003-05-21 Ushio Inc Microscope for detecting pattern
JP2005167139A (en) * 2003-12-05 2005-06-23 Canon Inc Wavelength selection method, position detection method and apparatus, and exposure apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783342A (en) * 1994-12-28 1998-07-21 Matsushita Electric Industrial Co., Ltd. Method and system for measurement of resist pattern
JP2003149827A (en) * 2001-11-16 2003-05-21 Ushio Inc Microscope for detecting pattern
JP2005167139A (en) * 2003-12-05 2005-06-23 Canon Inc Wavelength selection method, position detection method and apparatus, and exposure apparatus
JP4677183B2 (en) * 2003-12-05 2011-04-27 キヤノン株式会社 Position detection apparatus and exposure apparatus

Similar Documents

Publication Publication Date Title
US5684565A (en) Pattern detecting method, pattern detecting apparatus, projection exposing apparatus using the same and exposure system
US7248349B2 (en) Exposure method for correcting a focal point, and a method for manufacturing a semiconductor device
JP2940553B2 (en) Exposure method
US5631773A (en) Image projection method and semiconductor device manufacturing method using the same
US6563573B1 (en) Method of evaluating imaging performance
US5381210A (en) Exposing apparatus
JP3123548B2 (en) Exposure method and exposure apparatus
US20020195539A1 (en) Focus monitoring method, focus monitoring apparatus, and method of manufacturing semiconductor device
JP4032501B2 (en) Method for measuring imaging characteristics of projection optical system and projection exposure apparatus
JP2002071514A (en) Inspection apparatus, exposure apparatus provided with the inspection apparatus and production method of micro device
US5371570A (en) Refractive/diffractive optical system for broad-band through-the-lens imaging of alignment marks on substrates in stepper machines
JPH06112104A (en) Step and repeat exposure system
JP2961919B2 (en) Position detection device
JP2692660B2 (en) Projection exposure apparatus and projection exposure method
JPH06120116A (en) Best focus measuring method
JP2000021761A (en) Exposure method and apparatus
JP2004119663A (en) Position detection device, position detection method, aligner and exposure method
JP2695767B1 (en) Reduction projection exposure equipment
JP3590825B2 (en) Projection exposure equipment
JP3010875B2 (en) Reduction projection type exposure equipment
JP2000021754A (en) Exposure method and apparatus
TWI798581B (en) Exposure device and article manufacturing method
JP2702496B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0159733B2 (en)
JP3603880B2 (en) Overlay exposure method