JPH06111833A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH06111833A
JPH06111833A JP4256747A JP25674792A JPH06111833A JP H06111833 A JPH06111833 A JP H06111833A JP 4256747 A JP4256747 A JP 4256747A JP 25674792 A JP25674792 A JP 25674792A JP H06111833 A JPH06111833 A JP H06111833A
Authority
JP
Japan
Prior art keywords
fuel cell
ysz
mgo
mgal
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4256747A
Other languages
Japanese (ja)
Inventor
Shuzo Hirata
修三 平田
Takaaki Makino
隆章 槇野
Teruo Kuwajima
輝雄 桑島
Kazutoshi Murata
和俊 村田
Masateru Shimozu
正輝 下津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP4256747A priority Critical patent/JPH06111833A/en
Publication of JPH06111833A publication Critical patent/JPH06111833A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell, having no thermal expansion difference between the composition member of an SOFC and YSZ, electrolyte material, also no distortion and no deformation and excellent in high temperature strength. CONSTITUTION:MgO, MgAl2O4, and YSZ pulverized respectively, then magnesia and spinel are mixed at 1/9-1/1 at a weight ratio, CaO is added by a given % as an assistant, and a resultant is formed by a doctor blade method. Then many single cells 11, in which collecting porous plates 28 abut on both upper and lower electrode surfaces are laminated via gas separators l baked at a constant temperature, to be adopted as fuel cell battery stacks, and the stacks are housed in a given box body to form a solid electrolyte type fuel cell. This provides a fuel cell, inexpensive, light, and moreover excellent in high temperature strength, and having no torsion and a high sealing property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
に係り、特に、歪みをなくし、軽量化および高温強度を
向上させた固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly, it relates to a solid oxide fuel cell which is free from distortion, is light in weight and has improved high temperature strength.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、平板積層型と
円筒型とに大別され、例えば平板積層型の燃料電池スタ
ックは、平板状固体電解質膜の両面に酸素側電極膜およ
び燃料側電極膜がそれぞれ積層された単セルの前記両電
極面に集電用多孔板を当接し、これをインターコネク
タ、セパレータまたはガス流路部材を介して多数積層
し、前記単セルを電気的に接続したものである。一方、
円筒型の燃料電池スタックは、円筒状の基体管の表面
に、例えば燃料側電極膜、固体電解質膜および酸素側電
極膜を順次積層した、それぞれ径の異なる円筒形の単セ
ルをガス流路を確保して同心円状に積層し、これを電気
的に接続したものである。
2. Description of the Related Art Solid oxide fuel cells are roughly classified into a flat plate type and a cylindrical type. For example, a flat plate type fuel cell stack has an oxygen side electrode film and a fuel side electrode on both sides of a flat plate type solid electrolyte membrane. The porous plates for current collection were brought into contact with the both electrode surfaces of the single cells in which the membranes were respectively laminated, and a large number of these were laminated via an interconnector, a separator or a gas flow path member to electrically connect the single cells. It is a thing. on the other hand,
The cylindrical fuel cell stack has, for example, a cylindrical single cell in which a fuel-side electrode film, a solid electrolyte film, and an oxygen-side electrode film are sequentially laminated on the surface of a cylindrical substrate tube, and a cylindrical single cell having a different diameter is used as a gas flow path. It is secured and laminated concentrically, and these are electrically connected.

【0003】このような固体電解質型燃料電池(以下、
SOFCということがある)において、セパレータ、ガ
ス流路部材、基体管等を構成する構成材料として、例え
ばカルシア安定化ジルコニア(CSZ)、アルミナ、L
aCrO3 系のペロブスカイト等が使用されていた。す
なわち、例えば円筒形スタックの基体管にはCSZまた
はアルミナ、平板型セルスタックのガス流路部材には燃
料極材料であるNiO−YSZまたはLaCrO3 系の
ペロブスカイト、さらに燃料電池スタックを収納するガ
スマニホルドにはアルミナがそれぞれ使用されていた。
Such a solid oxide fuel cell (hereinafter,
(Sometimes referred to as SOFC), the constituent materials for the separator, the gas flow path member, the base pipe, etc. are, for example, calcia-stabilized zirconia (CSZ), alumina,
The aCrO 3 type perovskite and the like were used. That is, for example, CSZ or alumina is used for a base tube of a cylindrical stack, a NiO-YSZ or LaCrO 3 system perovskite that is a fuel electrode material is used for a gas flow path member of a flat plate type cell stack, and a gas manifold that stores a fuel cell stack Alumina was used for each.

【0004】[0004]

【発明が解決しようとする課題】SOFCは作動温度が
高いために、構成部材の高温強度や熱膨張係数が問題と
なり、特に、各構成部材の熱膨張係数は電解質材料であ
るイットリウム安定化ジルコニア(以下、YSZとい
う)またはその近似物にできる限り近いことが要求され
る。そこで本発明者は、熱膨張係数が前記YSZに近く
て軽量材料である、マグネシア(MgO)とスピネル
(MgAl2 4 )を所定割合で混合した複合セラミッ
クスを構成材料とした固体電解質型燃料電池を提案した
(特願平4−71625号)。
Since the SOFC has a high operating temperature, the high temperature strength and the coefficient of thermal expansion of the constituent members become problems. In particular, the coefficient of thermal expansion of each constituent member is yttrium-stabilized zirconia (electrolytic material). Hereinafter, it is required to be as close as possible to YSZ) or its approximation. Therefore, the present inventor has made a solid oxide fuel cell using a composite ceramic, which is a lightweight material having a thermal expansion coefficient close to that of YSZ and is a lightweight material, in which magnesia (MgO) and spinel (MgAl 2 O 4 ) are mixed at a predetermined ratio. (Japanese Patent Application No. 4-71625).

【0005】しかしながら、上記本発明者の提案による
未公知の複合材料は焼結性が悪く、焼結時の挙動が電解
質材料であるYSZのそれと著しく異なることがその後
の研究の結果判った。また耐水性、耐炭酸ガス性の点に
おいて高い信頼性が得られないという問題があることも
分かった。本発明の目的は、上記先行技術の問題点を解
決し、セパレータ、ガス流路部材、基体管等SOFCの
構成部材と、固体電解質膜であるYSZとの熱膨張差を
なくし、歪みおよび変形がなく、高温強度に優れた固体
電解質型燃料電池を提供することにある。
However, it has been found as a result of subsequent research that the above-mentioned unknown composite material proposed by the present inventor has poor sinterability and the behavior during sintering is significantly different from that of YSZ which is an electrolyte material. It was also found that there is a problem that high reliability cannot be obtained in terms of water resistance and carbon dioxide gas resistance. The object of the present invention is to solve the above-mentioned problems of the prior art, eliminate the difference in thermal expansion between the constituent members of the SOFC such as the separator, the gas flow path member, the base pipe, and the solid electrolyte membrane YSZ, and prevent distortion and deformation. Another object of the present invention is to provide a solid oxide fuel cell excellent in high temperature strength.

【0006】[0006]

【課題を解決するための手段】本発明者は、熱膨張係数
が電解質材料であるYSZの熱膨張係数とほぼ同様であ
る、MgOとMgAl2 4 との複合セラミックスの焼
結挙動について鋭意研究した結果、MgOとMgAl2
4 とを重量比で1/9〜1/1の割合で混合した複合
材料にYSZを混合することにより、該複合材料からな
るセラミックスの高温強度を損なうことなく、その焼結
性を改善でき、例えば前記YSZを、前記MgOとMg
Al2 4 からなる複合材料に対して混合比が20〜8
0wt%になるように混合すると必要な焼結挙動が得ら
れること、および前記複合材料中のMgO粒子、または
前記MgO、MgAl2 4 、YSZからなる複合セラ
ミックスで構成した部材の全体または一部をMgAl2
4 もしくはAl2 3 で被覆することにより、前記部
材の耐水性および信頼性が著しく向上することを見出し
本発明に到達した。
The present inventor has earnestly studied the sintering behavior of a composite ceramic of MgO and MgAl 2 O 4 , the coefficient of thermal expansion of which is substantially the same as that of YSZ which is an electrolyte material. As a result, MgO and MgAl 2
By mixing YSZ with a composite material in which O 4 is mixed in a weight ratio of 1/9 to 1/1, the sinterability can be improved without impairing the high temperature strength of the ceramic made of the composite material. , YSZ, MgO and Mg
The mixing ratio is 20 to 8 with respect to the composite material composed of Al 2 O 4.
The required sintering behavior is obtained by mixing so as to be 0 wt%, and the whole or a part of the member composed of the MgO particles in the composite material or the composite ceramic composed of MgO, MgAl 2 O 4 , and YSZ. To MgAl 2
The inventors have found that coating with O 4 or Al 2 O 3 significantly improves the water resistance and reliability of the member, and has reached the present invention.

【0007】すなわち、本願の第1の発明は、固体電解
質膜としてイットリウム安定化ジルコニア(YSZ)ま
たはその近似物を用いる固体電解質型燃料電池の構成材
料として、マグネシア(MgO)、スピネル(MgAl
2 4 )およびイットリウム安定化ジルコニア(YS
Z)を主成分とし、前記マグネシアとスピネルとの混合
比が重量比で1/9〜1/1であり、該マグネシアとス
ピネルとの複合材料に対して前記イットリウム安定化ジ
ルコニアを混合した複合セラミックスを用いたことを特
徴とする固体電解質型燃料電池に関する。
That is, the first invention of the present application is that magnesia (MgO), spinel (MgAl) is used as a constituent material of a solid oxide fuel cell using yttrium-stabilized zirconia (YSZ) or a similar substance as a solid electrolyte membrane.
2 O 4 ) and yttrium-stabilized zirconia (YS
Z) as a main component, the mixing ratio of the magnesia and spinel is 1/9 to 1/1 by weight, and the yttrium-stabilized zirconia is mixed with the composite material of the magnesia and spinel. And a solid oxide fuel cell.

【0008】第2の発明は、前記第1の発明において、
前記複合材料中のマグネシア(MgO)、または前記マ
グネシア(MgO)、スピネル(MgAl2 4 )およ
びイットリウム安定化ジルコニア(YSZ)の複合セラ
ミックスからなる構成部材をスピネル(MgAl
2 4 )もしくはアルミナ(Al2 3 )でコーティン
グしたことを特徴とする固体電解質型燃料電池に関す
る。
A second invention is the same as the first invention,
A component made of magnesia (MgO) in the composite material or a composite ceramic of magnesia (MgO), spinel (MgAl 2 O 4 ) and yttrium-stabilized zirconia (YSZ) is used as the spinel (MgAl).
The present invention relates to a solid oxide fuel cell characterized by being coated with 2 O 4 ) or alumina (Al 2 O 3 ).

【0009】図1は、MgOとMgAl2 4 とを主成
分とする複合セラミックスにおけるMgOの混合割合
と、1000℃における熱膨張係数との関係を示す図で
ある。図において、MgOの混合割合が10〜50wt
%の範囲で、熱膨張係数が9×10-6〜11×10-6
なり、電解質材料であるYSZの1000℃における熱
膨張係数10.6×10-6と同程度となることが分か
る。すなわち、この複合セラミックスはMgOとMgA
2 4 との混合比を重量比で1/9〜1/1の範囲で
変化させることにより、その熱膨張係数をYSZまたは
その近似物と同程度に調整することができる。このよう
にしてMgOの混合割合を変化させても前記セラミック
スの化学的安定性は変化しない。
FIG. 1 is a diagram showing the relationship between the mixing ratio of MgO in a composite ceramic containing MgO and MgAl 2 O 4 as main components and the thermal expansion coefficient at 1000 ° C. In the figure, the mixing ratio of MgO is 10 to 50 wt.
%, The coefficient of thermal expansion is 9 × 10 −6 to 11 × 10 −6 , which is about the same as the coefficient of thermal expansion of YSZ which is an electrolyte material at 1000 ° C. of 10.6 × 10 −6 . That is, this composite ceramic is made of MgO and MgA.
By changing the mixing ratio with l 2 O 4 in the range of 1/9 to 1/1 in terms of weight ratio, the coefficient of thermal expansion can be adjusted to the same level as YSZ or its approximation. Thus, even if the mixing ratio of MgO is changed, the chemical stability of the ceramic does not change.

【0010】さらに上記セラミックスの複合材料にYS
Zを混合した複合セラミックスは該YSZの混合比を加
減することにより、高温強度を損なうことなく、その焼
結性を調整することができる。本発明において、焼成前
の複合材料中のMgO粒子、または前記複合セラミック
スで形成したSOFCの構成部材の全体もしくは一部を
MgAl2 4 またはAl2 3 でコーティングするこ
とが好ましい。複合材料のうちのMgOは複合セラミッ
クスの熱膨張係数の調整と低コスト化および軽量化を図
るために添加するものであるが、水に溶け易く、構成部
材の信頼性を損なう一因ともなっている。したがって前
記MgO粒子をあらかじめ、またはその複合セラミック
スで形成したSOFCの構成部材をMgAl2 4 もし
くはアルミナAl2 3 でコーティングすることによ
り、構成部材の信頼性および化学的安定性を向上させる
ことができる。
Further, YS is added to the composite material of the above ceramics.
By adjusting the mixing ratio of the YSZ in the composite ceramics mixed with Z, the sinterability can be adjusted without impairing the high temperature strength. In the present invention, it is preferable to coat MgO particles in the composite material before firing, or all or part of the SOFC constituent member formed of the composite ceramics with MgAl 2 O 4 or Al 2 O 3 . Among the composite materials, MgO is added to adjust the coefficient of thermal expansion of the composite ceramics and to reduce the cost and the weight, but it is easily dissolved in water, which is one of the causes of impairing the reliability of the constituent members. . Therefore, the reliability and chemical stability of the constituent member can be improved by coating the constituent member of the SOFC in which the MgO particles are formed in advance or a composite ceramic thereof with MgAl 2 O 4 or alumina Al 2 O 3. it can.

【0011】本発明において、前記MgO粒子、または
複合セラミックスで構成されたSOFC構成部材をMg
Al2 4 もしくはアルミナAl2 3 でコーティング
する方法としては、例えば浸漬法、スピンコート法、C
VD法、PVD法などがあげられ、その被膜の厚さは
0.005〜1μmであることが好ましい。表1は、M
gOとMgAl2 4 とYSZとの混合比を19対31
対50とした複合セラミックスの表面をMgAl2 4
で被覆した試験片の蒸留水に対する浸漬試験の結果を示
すものである。
In the present invention, the SOFC constituent member composed of the MgO particles or the composite ceramic is Mg
Examples of the method for coating with Al 2 O 4 or alumina Al 2 O 3 include dipping method, spin coating method, C
VD method, PVD method and the like can be mentioned, and the thickness of the coating is preferably 0.005 to 1 μm. Table 1 shows M
The mixing ratio of gO, MgAl 2 O 4 and YSZ is 19:31.
The surface of the composite ceramic with a pair of 50 is MgAl 2 O 4
2 shows the results of an immersion test of a test piece coated with 1. in distilled water.

【0012】[0012]

【表1】 表1において、MgAl2 4 で被覆したものは未処理
のものに比べてMgOの溶出量が極めて少なく、安定で
あることが分かる。
[Table 1] In Table 1, it can be seen that the one coated with MgAl 2 O 4 has a much smaller amount of MgO eluted than the untreated one and is stable.

【0013】[0013]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。図2は、本発明の一実施例である平板積層固体電
解質型燃料電池のガスセパレータの斜視図である。この
ガスセパレータは、単セルを積層して燃料電池スタック
を構成する際に、前記単セル相互間に配置される部材で
あり、積層部3およびガス流入出枠4を有するガスセパ
レータ本体と、該ガスセパレータ本体のセパレータ部2
を貫通するように配置された電子流路6と、該電子流路
6相互間に配置された集電体支持部5とから主としてな
り、マグネシア(MgO)、スピネル(MgAl
2 4 )およびイットリウム安定化ジルコニア(YS
Z)を重量比で19対31対50に混合した複合セラミ
ックスで構成されている。
EXAMPLES Next, the present invention will be described in more detail by way of examples. FIG. 2 is a perspective view of a gas separator of a flat plate stacked solid oxide fuel cell according to an embodiment of the present invention. This gas separator is a member that is arranged between the unit cells when the unit cells are stacked to form a fuel cell stack, and includes a gas separator body having a stacking unit 3 and a gas inlet / outlet frame 4, Gas separator body separator 2
Mainly composed of an electron flow path 6 arranged so as to penetrate through and a current collector support portion 5 arranged between the electron flow paths 6, magnesia (MgO), spinel (MgAl)
2 O 4 ) and yttrium-stabilized zirconia (YS
Z) is mixed in a weight ratio of 19:31:50 to form a composite ceramic.

【0014】ガスセパレータ本体は、MgO、MgAl
2 4 およびYSZをそれぞれ0.1μm〜10μmに
粉砕した後、重量比で19:31:50になるように混
合し、助剤として、例えばCaOを0.2wt%添加
し、これをドクターブレード法で成形し、その後100
0〜1600℃で5時間焼成したものである。このガス
セパレータ本体の1000℃における熱膨張係数は、1
0.6×10 -6 であり、固体電解質材料であるYSZ
の1000℃における熱膨張係数10.6×10-6とほ
ぼ同様であった。また1000℃における曲げ強度は2
2kg/mm2 であり、十分な高温強度を有し、焼成の
際の挙動も良好であった。
The gas separator body is made of MgO, MgAl
2OFourAnd YSZ to 0.1 μm to 10 μm respectively
After crushing, mix so that the weight ratio is 19:31:50.
In addition, 0.2 wt% of CaO, for example, is added as an auxiliary agent
Then, this is molded by the doctor blade method, and then 100
It was baked at 0 to 1600 ° C. for 5 hours. This gas
The thermal expansion coefficient of the separator body at 1000 ° C is 1
0.6 x 10 -6 And a solid electrolyte material, YSZ
Expansion coefficient at 1000 ℃ of 10.6 × 10-6Toho
It was the same. The bending strength at 1000 ° C is 2
2 kg / mm2And has sufficient high temperature strength and
The behavior at the time was also good.

【0015】図3は、上記ガスセパレータ本体に電子流
路6を嵌合したガスセパレータ1を用いて単セル11を
多数積層した燃料電池スタックの構成を示す説明図であ
る。図において、上下両面にそれぞれ集電用多孔板28
が当接された単セル11が前記ガスセパレータ1を介し
て多数積層されている。この単セル積層体は所定の箱体
に収納されて固体電解質型燃料電池となる。
FIG. 3 is an explanatory view showing the structure of a fuel cell stack in which a large number of single cells 11 are stacked by using the gas separator 1 in which the electronic flow path 6 is fitted in the gas separator body. In the figure, the current collecting perforated plates 28 are provided on the upper and lower surfaces respectively.
A large number of single cells 11 contacted with each other are stacked via the gas separator 1. This single cell laminated body is housed in a predetermined box to form a solid oxide fuel cell.

【0016】本実施例によれば、MgOとMgAl2
4 とからなる複合材料に、さらにYSZを混合した複合
材料からなるセラミックスを用いてガスセパレータを構
成したことにより、該ガスセパレータと単セルとの熱膨
張係数の差を極力小さくすることができるので、焼結時
における歪みおよび高温作動時における変形を防止し、
セルとの密着性およびガスシール性が高くなるうえ、高
温強度に優れた燃料電池が得られる。
According to this embodiment, MgO and MgAl 2 O
A composite material consisting of 4 which, by further configured gas separator with a ceramic made of a composite material obtained by mixing a YSZ, since the difference in thermal expansion coefficient between the gas separator and the single cell can be reduced as much as possible Prevents distortion during sintering and deformation during high temperature operation,
It is possible to obtain a fuel cell having excellent high temperature strength as well as high adhesion to cells and gas sealability.

【0017】本実施例において、MgO、MgAl2
4 およびYSZからなる複合セラミックスで構成された
ガスセパレータの表面にMgAl2 4 またはAl2
3 をAlの有機化合物の形で塗布、焼成してコーティン
グすることにより、MgOの溶出を防止してより信頼性
の高い燃料電池を得ることができる。また、前記複合材
料のうち焼成前のMgO粒子をAlの有機化合物溶液中
に浸漬、焼成してMgAl2 4 またはAl2 3 をコ
ーティングしても同様の効果を得ることができる。
In this embodiment, MgO, MgAl 2 O
MgAl 2 O 4 or Al 2 O on the surface of a gas separator composed of a composite ceramic of 4 and YSZ.
By applying 3 and 3 in the form of an organic compound of Al and baking and coating, elution of MgO can be prevented and a more reliable fuel cell can be obtained. Further, the same effect can be obtained by immersing MgO particles of the composite material before firing in an organic compound solution of Al and firing it to coat MgAl 2 O 4 or Al 2 O 3 .

【0018】本実施例においては、SOFCの構成部材
としてガスセパレータについて説明したが、他の構成部
材、例えばインターコネクタ、ガス流路部材等も同様に
MgO、MgAl2 4 およびYSZからなる複合セラ
ミックスで構成することができる。
In the present embodiment, the gas separator has been described as a constituent member of the SOFC, but other constituent members such as the interconnector and the gas flow path member are similarly composed of MgO, MgAl 2 O 4 and YSZ. Can be composed of

【0019】[0019]

【発明の効果】本願の第1の発明によれば、MgOとM
gAl2 4 とからなる複合材料に、さらにYSZを混
合した複合セラミックスを用いてSOFCの構成部材を
構成したことにより、安価で軽量、しかも高温強度に優
れた、ガスシール性の高い燃料電池が得られる。
According to the first invention of the present application, MgO and M
By forming the SOFC constituent member by using a composite ceramic in which YSZ is mixed with a composite material composed of gAl 2 O 4 , a fuel cell that is inexpensive, lightweight, excellent in high temperature strength, and has a high gas sealing property can be obtained. can get.

【0020】本願の第2の発明によれば、複合材料のう
ちMgO粒子をあらかじめMgAl 2 4 またはAl2
3 で被覆するか、または複合セラミックスで形成した
SOFC構成部材の表面をMgAl2 4 もしくはAl
2 3 で被覆したことにより、前記第1の発明の効果に
加え、構成部材からのMgOの溶出を防止して安定性、
信頼性の高い燃料電池が得られる。
According to the second invention of the present application, the composite material
The MgO particles should be replaced with MgAl 2OFourOr Al2
O3Coated with or formed of composite ceramics
The surface of the SOFC component is MgAl2OFourOr Al
2O3By being coated with, the effect of the first invention can be obtained.
In addition, it prevents the elution of MgO from the constituent members and stabilizes it.
A highly reliable fuel cell can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示す説明図。FIG. 1 is an explanatory diagram showing the principle of the present invention.

【図2】本発明の一実施例におけるガスセパレータを示
す斜視図。
FIG. 2 is a perspective view showing a gas separator according to an embodiment of the present invention.

【図3】本発明の一実施例である燃料電池スタックの構
成を示す図。
FIG. 3 is a diagram showing a configuration of a fuel cell stack that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ガスセパレータ、2…セパレータ部、3…積層部、
4…ガス流入枠、5…集電体支持部、6…電子流路、1
1…単セル、28…集電用多孔板。
1 ... Gas separator, 2 ... Separator part, 3 ... Laminated part,
4 ... Gas inflow frame, 5 ... Current collector support part, 6 ... Electron flow path, 1
1 ... Single cell, 28 ... Perforated plate for current collection.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 和俊 岡山県玉野市玉3丁目1番1号 三井造船 株式会社玉野事業所内 (72)発明者 下津 正輝 岡山県玉野市玉3丁目1番1号 三井造船 株式会社玉野事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazutoshi Murata 3-1-1 Tam, Tamano-shi, Okayama Mitsui Engineering & Shipbuilding Co., Ltd. Tamano Works (72) Inventor Masateru Shimozu 3-1-1 Tamama, Tamano-shi, Okayama Mitsui Engineering & Shipbuilding Co., Ltd., Tamano Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質膜としてイットリウム安定化
ジルコニア(YSZ)またはその近似物を用いる固体電
解質型燃料電池の構成材料として、マグネシア(Mg
O)、スピネル(MgAl2 4 )およびイットリウム
安定化ジルコニア(YSZ)を主成分とし、前記マグネ
シアとスピネルとの混合比が重量比で1/9〜1/1で
あり、該マグネシアとスピネルとの複合材料に前記イッ
トリウム安定化ジルコニアを混合した複合セラミックス
を用いたことを特徴とする固体電解質型燃料電池。
1. Magnesia (Mg) is used as a constituent material of a solid oxide fuel cell using yttrium-stabilized zirconia (YSZ) or its approximation as a solid electrolyte membrane.
O), spinel (MgAl 2 O 4 ) and yttrium-stabilized zirconia (YSZ) as main components, and the mixing ratio of magnesia and spinel is 1/9 to 1/1 by weight. 7. A solid oxide fuel cell, characterized in that a composite ceramic, in which the yttrium-stabilized zirconia is mixed, is used as the composite material.
【請求項2】 前記複合材料中のマグネシア(Mg
O)、または前記マグネシア(MgO)、スピネル(M
gAl2 4 )およびイットリウム安定化ジルコニア
(YSZ)の複合セラミックスからなる構成部材をスピ
ネル(MgAl2 4 )もしくはアルミナ(Al
2 3 )でコーティングしたことを特徴とする請求項1
記載の固体電解質型燃料電池。
2. Magnesia (Mg) in the composite material
O), or the above magnesia (MgO), spinel (M
gAl2OFour) And yttrium-stabilized zirconia
A component member made of a composite ceramic of (YSZ) is spun.
Flannel (MgAl2O Four) Or alumina (Al
2O3) Coating.
The solid oxide fuel cell described.
JP4256747A 1992-09-25 1992-09-25 Solid electrolyte type fuel cell Withdrawn JPH06111833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4256747A JPH06111833A (en) 1992-09-25 1992-09-25 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4256747A JPH06111833A (en) 1992-09-25 1992-09-25 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH06111833A true JPH06111833A (en) 1994-04-22

Family

ID=17296886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4256747A Withdrawn JPH06111833A (en) 1992-09-25 1992-09-25 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH06111833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077598A1 (en) * 2003-02-28 2004-09-10 Forschungszentrum Jülich GmbH Electrolyte for a high-temperature fuel cell, the production thereof, and its use
JP2005187241A (en) * 2003-12-24 2005-07-14 Ngk Spark Plug Co Ltd Composite ceramic and solid electrolyte fuel cell
KR101306593B1 (en) * 2012-03-30 2013-09-10 (주) 세라컴 Manufacturing method of support for solid oxide fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077598A1 (en) * 2003-02-28 2004-09-10 Forschungszentrum Jülich GmbH Electrolyte for a high-temperature fuel cell, the production thereof, and its use
JP2005187241A (en) * 2003-12-24 2005-07-14 Ngk Spark Plug Co Ltd Composite ceramic and solid electrolyte fuel cell
KR101306593B1 (en) * 2012-03-30 2013-09-10 (주) 세라컴 Manufacturing method of support for solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US5342705A (en) Monolithic fuel cell having a multilayer interconnect
US6630267B2 (en) Solid oxide fuel cells with symmetric composite electrodes
US5993986A (en) Solide oxide fuel cell stack with composite electrodes and method for making
US7767358B2 (en) Supported ceramic membranes and electrochemical cells and cell stacks including the same
US5358735A (en) Method for manufacturing solid oxide film and method for manufacturing solid oxide fuel cell using the solid oxide film
US5356730A (en) Monolithic fuel cell having improved interconnect layer
KR101162806B1 (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JP3151933B2 (en) Solid oxide fuel cell
US20070111069A1 (en) Method and materials for bonding electrodes to interconnect layers in solid oxide fuel cell stacks
EP0552055B1 (en) A process for producing solid oxide fuel cells
EP0785587B1 (en) Layered sintered body for electrochemical cell, electrochemical cell including it and process for its manufacture
WO2006050071A2 (en) Ceramic laminate structures
JPH1092446A (en) Solid electrolyte type fuel cell
JPH1021935A (en) Solid electrolyte fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JPH06111833A (en) Solid electrolyte type fuel cell
JPH05275106A (en) Solid electrolyte fuel cell
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JPH09245813A (en) Manufacture of solid electrolyte fuel cell
JPH07320756A (en) Solid electrolytic fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP2005216619A (en) Fuel battery cell and fuel battery
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JPH065293A (en) Gas flow route material for solid electrolytic fuel cell and its manufacture
JP3667141B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130