JPH0611106A - Combustion method in heating furnace - Google Patents

Combustion method in heating furnace

Info

Publication number
JPH0611106A
JPH0611106A JP4192965A JP19296592A JPH0611106A JP H0611106 A JPH0611106 A JP H0611106A JP 4192965 A JP4192965 A JP 4192965A JP 19296592 A JP19296592 A JP 19296592A JP H0611106 A JPH0611106 A JP H0611106A
Authority
JP
Japan
Prior art keywords
combustion
oxygen
heating furnace
carbon dioxide
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4192965A
Other languages
Japanese (ja)
Inventor
Masato Fujioka
政人 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4192965A priority Critical patent/JPH0611106A/en
Publication of JPH0611106A publication Critical patent/JPH0611106A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To reduce the unit requirement of fuel in a heating furnace and improve the efficiency of recoverying a carbonic acid gas by utilizing oxygen which is generated at the time of the generation of hydrogen required for the synthetic reaction of an organic compound, and performing combustion under an oxygen-enriched state. CONSTITUTION:The hydrogen generation side of an electrolyzing device 6 for water is connected to an organic compound synthesizing device 13. Further, the oxygen generation side of the electrolyzing device 6 for water is connected to an air pipeline 7 for feeding combustion air to a burner 2 via an oxygen pipeline 8, and oxygen-enriched air is fed to the burner 2. A material 4 to be heated is charged into a heating furnace 1. On the other hand, a carbon- containing fuel, which generates a carbonic acid gas by combustion, and an organic compound are supplied to the burner 2, whereby combustion is performed under an oxygen-enriched state. In this way, the unit requirement of fuel in the heating furnace can be reduced, and the concentrations of the carbonic acid gas and steam contained in a combustion gas become high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスラブ、ビレット等の被
熱物を所定の目標温度に加熱する加熱炉の燃焼方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion method for a heating furnace which heats a heat target such as a slab or billet to a predetermined target temperature.

【0002】[0002]

【従来の技術】地球温暖化の原因物質の一つとして、鉄
鋼加熱炉、発電ボイラ等の炭素含有燃料の燃焼で発生す
る炭酸ガス(CO2)がある。この炭酸ガスの固定化方
法としては、植物、藻・菌類、海洋生物等の光合成を利
用した生物的な固定化方法と、有機化学品合成、ポリマ
ー合成、光触媒、接触水素化法等による化学的な固定化
方法とがある。
2. Description of the Related Art Carbon dioxide (CO 2 ) generated by the combustion of carbon-containing fuel in steel heating furnaces, power generation boilers, etc. is one of the substances causing global warming. This carbon dioxide immobilization method includes a biological immobilization method utilizing photosynthesis of plants, algae / fungi, marine organisms, etc., as well as chemical synthesis by organic chemical synthesis, polymer synthesis, photocatalyst, catalytic hydrogenation method, etc. There are various immobilization methods.

【0003】このうち、接触水素化法は、単位時間、単
位面積当たりの炭酸ガスの固定化能が大きく、大量の炭
酸ガスの処理が可能であり、メタン(CH4)、エタン
(C26)、エチレン(C24)等の低級炭化水素か
ら、オイル、ワックス等の高級炭化水素や、メタノール
(CH3OH)、エタノール(C26O)等のアルコー
ル類までを含めた幅広い有機化合物の合成が可能であ
る。
Of these, the catalytic hydrogenation method has a large ability to immobilize carbon dioxide gas per unit time and unit area and is capable of treating a large amount of carbon dioxide gas, such as methane (CH 4 ), ethane (C 2 H 2 6 ), including lower hydrocarbons such as ethylene (C 2 H 4 ) to higher hydrocarbons such as oil and wax, and alcohols such as methanol (CH 3 OH) and ethanol (C 2 H 6 O). A wide range of organic compounds can be synthesized.

【0004】この接触水素化法を利用した加熱炉の燃焼
方法としては、例えば、「ケミカル・エンジニヤリン
グ」1990年6月号の第47頁〜第49頁に記載の如
く、電気分解装置6にて水を電気分解して酸素(O2
と水素(H2)とを発生させ、この水素と加熱炉1から
排出される排ガス中から炭酸ガス分離装置10で分離し
た濃縮した炭酸ガスとから有機化合物合成装置13にて
有機化合物の燃料を合成し、この有機化合物を燃焼して
被熱物を加熱するものがある(図2参照)。この方法
は、排ガス中の濃縮した炭酸ガスと水素とからメタノー
ル等の有機化合物の燃料を合成して再利用することを目
的とし、酸素は系外で化学原料等として利用するもので
ある。
As a combustion method of a heating furnace utilizing this catalytic hydrogenation method, for example, as described in "Chemical Engineering", June 1990, pages 47 to 49, an electrolyzer 6 is used. Water to electrolyze oxygen (O 2 )
And hydrogen (H 2 ) are generated, and from this hydrogen and the concentrated carbon dioxide gas separated by the carbon dioxide gas separator 10 from the exhaust gas discharged from the heating furnace 1, an organic compound fuel is produced by the organic compound synthesizer 13. There is one that is synthesized and burns this organic compound to heat the object to be heated (see FIG. 2). This method aims at synthesizing and reusing a fuel of an organic compound such as methanol from concentrated carbon dioxide gas and hydrogen in exhaust gas, and oxygen is used outside the system as a chemical raw material or the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この従
来の加熱炉の燃焼方法に於ては、水の電気分解で発生し
た酸素を系外で使用するため、系内の加熱炉で酸素富化
燃焼を行う場合に比して排ガス量、即ち、排ガス損失熱
量が大きく、従って、加熱炉の燃料原単位が高いという
問題があった。これに加えて、空気燃焼のため、酸素富
化燃焼に比して燃焼ガス中の炭酸ガス濃度が低いため、
炭酸ガス分離装置での炭酸ガスの回収効率が低く、炭酸
ガス分離装置が大型化するという問題があった。
However, in this conventional heating furnace combustion method, since oxygen generated by electrolysis of water is used outside the system, oxygen-rich combustion is performed in the heating furnace in the system. There is a problem that the amount of exhaust gas, that is, the amount of heat loss of exhaust gas, is larger than that in the case of carrying out, and therefore the unit fuel consumption of the heating furnace is high. In addition to this, because of the air combustion, the carbon dioxide concentration in the combustion gas is low compared to the oxygen enriched combustion,
There was a problem that the efficiency of carbon dioxide recovery in the carbon dioxide separator was low and the carbon dioxide separator was large.

【0006】本発明は、このような従来技術の問題点を
改善するべく案出されたものであり、その主な目的は、
加熱炉の燃料原単位の低減および炭酸ガスの回収効率の
向上を実現し得る加熱炉の燃焼方法を提供することにあ
る。
The present invention has been devised in order to improve the above problems of the prior art, and its main purpose is to:
It is an object of the present invention to provide a combustion furnace combustion method capable of reducing the fuel consumption rate of the heating furnace and improving the recovery efficiency of carbon dioxide gas.

【0007】[0007]

【課題を解決するための手段】このような目的は、本発
明によれば、水を電気分解して酸素と水素とを発生さ
せ、水素と排ガス中の濃縮した炭酸ガスとから有機化合
物を合成し、該有機化合物を炭素含有燃料と共に燃焼し
て被熱物の加熱を行う加熱炉の燃焼方法に於て、酸素を
バーナの燃焼用空気に混合することによって酸素富化燃
焼を行うことを特徴とする加熱炉の燃焼方法をを提供す
ることによって達成される。特に、顕熱回収後の排ガス
の一部をバーナに循環供給するものとすると良い。
According to the present invention, such an object is obtained by electrolyzing water to generate oxygen and hydrogen, and synthesizing an organic compound from hydrogen and concentrated carbon dioxide gas in exhaust gas. In the combustion method of the heating furnace in which the organic compound is burned with the carbon-containing fuel to heat the object to be heated, the oxygen-enriched combustion is performed by mixing oxygen with the combustion air of the burner. It is achieved by providing a combustion method for a heating furnace. In particular, it is advisable to circulate and supply a part of the exhaust gas after sensible heat recovery to the burner.

【0008】[0008]

【作用】このようにすれば、水の電気分解で発生する酸
素をバーナの燃焼に使用するため、燃焼ガス量が減少し
て燃焼ガス中の炭酸ガス濃度が高濃度化する。このた
め、排ガス損失熱が減少して加熱炉の燃料原単位が低下
すると共に、炭酸ガス分離装置での炭酸ガスの回収効率
が向上し、大気中への炭酸ガスの排出量が低下する。
By doing so, since oxygen generated by electrolysis of water is used for combustion of the burner, the amount of combustion gas is reduced and the concentration of carbon dioxide gas in the combustion gas is increased. Therefore, the heat loss of exhaust gas is reduced, the fuel consumption rate of the heating furnace is reduced, the recovery efficiency of carbon dioxide gas in the carbon dioxide gas separation device is improved, and the emission amount of carbon dioxide gas to the atmosphere is reduced.

【0009】[0009]

【実施例】以下、本発明の好適実施例について添付の図
面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0010】図1は、本発明の一実施例を示す加熱炉の
燃焼方法のシステムフロー図である。
FIG. 1 is a system flow chart of a combustion method for a heating furnace showing an embodiment of the present invention.

【0011】図1に於て、耐火物の炉壁で構成した加熱
炉1には、バーナ2並びに燃焼ガス排出用の煙道3が設
けられており、スラブ、ビレット等の被熱物4をこの加
熱炉1に配置して加熱し得るようになっている。
In FIG. 1, a heating furnace 1 made of a refractory wall is provided with a burner 2 and a flue 3 for discharging combustion gas, and a heated object 4 such as a slab or a billet is provided. It is arranged in this heating furnace 1 so that it can be heated.

【0012】バーナ2には、燃焼して炭酸ガスを生成す
る重油、灯油、LPG、コークス炉ガス等の炭素含有燃
料を供給する燃料配管5aと、後述する有機化合物を供
給する燃料配管5bとが接続されている。
The burner 2 is provided with a fuel pipe 5a for supplying a carbon-containing fuel such as heavy oil, kerosene, LPG, coke oven gas which burns to generate carbon dioxide gas, and a fuel pipe 5b for supplying an organic compound described later. It is connected.

【0013】また、水の電気分解装置6の酸素発生側
が、バーナ2に燃焼用空気を供給する空気配管7に酸素
配管8を介して接続されており、バーナ2に対して酸素
富化空気を供給するようになっている。
Further, the oxygen generating side of the water electrolyzer 6 is connected to an air pipe 7 for supplying combustion air to the burner 2 via an oxygen pipe 8 to supply oxygen-enriched air to the burner 2. It is supposed to be supplied.

【0014】燃焼ガスが流出する煙道3には、排ガスの
排熱回収装置9、炭酸ガス分離装置10、煙突11が、
この順に連接配置されている。これに加えて排熱回収装
置9の出口が排ガス配管12を介してバーナ2に接続さ
れており、排熱回収装置9以降の低温の排ガスをバーナ
2に循環供給するようになっている。
Exhaust gas exhaust heat recovery device 9, carbon dioxide gas separation device 10 and chimney 11 are provided in the flue 3 through which the combustion gas flows.
They are connected and arranged in this order. In addition to this, the outlet of the exhaust heat recovery device 9 is connected to the burner 2 via the exhaust gas pipe 12, and the low temperature exhaust gas after the exhaust heat recovery device 9 is circulated and supplied to the burner 2.

【0015】水の電気分解装置6の水素発生側は、有機
化合物合成装置13に対して水素配管14を介して接続
されている。そして有機化合物合成装置13は、炭酸ガ
ス分離装置10に対して炭酸ガス配管15を介して接続
されている。
The hydrogen generation side of the water electrolyzer 6 is connected to the organic compound synthesizer 13 via a hydrogen pipe 14. The organic compound synthesizer 13 is connected to the carbon dioxide gas separator 10 via a carbon dioxide gas pipe 15.

【0016】尚、各配管には、ブロワー、ブースター、
バルブ等が設けられるが、ここでは図示省略している。
Each pipe has a blower, a booster,
Although a valve and the like are provided, they are not shown here.

【0017】次に上記実施例の作動機能について説明す
る。
Next, the operation function of the above embodiment will be described.

【0018】先ず、被熱物4をバッチまたは連続で加熱
炉1内に装入する。
First, the objects to be heated 4 are charged into the heating furnace 1 in batch or continuously.

【0019】一方、燃焼して炭酸ガスを発生する炭素含
有燃料および有機化合物を各燃料配管5a・5bを介し
てバーナ2に供給し、酸素富化燃焼を行う。これによ
り、酸素富化空気中の窒素(N2)分が減少して燃焼排
ガス量が減少する。そのため、加熱炉1の燃料原単位が
低下すると共に、燃焼ガス中の炭酸ガス及び水蒸気が高
濃度となり、加熱炉1内のガス放射能が増加して被熱物
4の放射伝熱量が増加する。
On the other hand, a carbon-containing fuel that burns to generate carbon dioxide and an organic compound are supplied to the burner 2 through the respective fuel pipes 5a and 5b to perform oxygen-rich combustion. As a result, the nitrogen (N 2 ) content in the oxygen-enriched air is reduced, and the amount of combustion exhaust gas is reduced. Therefore, the fuel consumption rate of the heating furnace 1 decreases, and the carbon dioxide gas and steam in the combustion gas become high in concentration, the gas radioactivity in the heating furnace 1 increases, and the radiative heat transfer amount of the object to be heated 4 increases. .

【0020】これに加えて、排熱回収装置9以降の低温
の排ガスの一部がバーナ2に循環し、排ガス希釈燃焼が
行われる。これにより、バーナ2の燃焼ガス量が増加し
て酸素富化燃焼時の高温の火炎温度が低下するため、被
熱物が均一ソフト加熱され、しかも窒素酸化物の生成が
抑制される。
In addition to this, a part of the low-temperature exhaust gas after the exhaust heat recovery device 9 is circulated in the burner 2 and exhaust gas diluted combustion is performed. As a result, the combustion gas amount of the burner 2 increases and the high flame temperature at the time of oxygen-enriched combustion decreases, so that the object to be heated is uniformly soft-heated, and the generation of nitrogen oxides is suppressed.

【0021】被熱物4を加熱した燃焼ガスは、煙道3か
ら排ガスとなって流出するが、排熱回収装置9によって
排ガスの顕熱が回収された後、低温の排ガスとなって一
部は排ガス管12を介してバーナ2に再循環供給され
る。そして残りの排ガスは、物理吸収法、化学吸収法、
膜分離法等の炭酸ガス分離装置10によって炭酸ガスが
分離された後、低濃度の炭酸ガスを含有した排ガスとな
って煙突11から大気中へ放出される。
The combustion gas, which has heated the object to be heated 4, flows out as an exhaust gas from the flue 3, but after the sensible heat of the exhaust gas is recovered by the exhaust heat recovery device 9, it becomes a low temperature exhaust gas. Is recirculated and supplied to the burner 2 via the exhaust gas pipe 12. And the remaining exhaust gas, physical absorption method, chemical absorption method,
After the carbon dioxide gas is separated by the carbon dioxide gas separation device 10 such as a membrane separation method, it is discharged into the atmosphere from the chimney 11 as an exhaust gas containing a low concentration of carbon dioxide gas.

【0022】尚、排熱回収装置9で回収された熱は、図
1には示されていないが、燃焼用空気の予熱、あるいは
蒸気の発生等に利用される。
Although not shown in FIG. 1, the heat recovered by the exhaust heat recovery device 9 is used for preheating combustion air or for generating steam.

【0023】他方、原子力発電、太陽光発電等の炭酸ガ
スを発生しない電気エネルギーを利用した電気分解装置
6によって水の電気分解(反応式:2H2O→2H2+O
2)が行われ、酸素と水素とが発生する。
On the other hand, electrolysis of water (reaction formula: 2H 2 O → 2H 2 + O) is performed by the electrolysis device 6 using electric energy such as nuclear power generation and solar power generation that does not generate carbon dioxide gas.
2 ) is performed and oxygen and hydrogen are generated.

【0024】この酸素は、酸素配管8を介して空気配管
7に供給され、酸素富化空気としてバーナ2に供給され
て酸素富化燃焼が行われる。
This oxygen is supplied to the air pipe 7 through the oxygen pipe 8 and is supplied to the burner 2 as oxygen-enriched air for oxygen-enriched combustion.

【0025】また、水素は、炭酸ガス分離装置10で濃
縮した炭酸ガスと共に有機化合物合成装置13に供給さ
れる。ここでは接触水素化法でメタン、エタン、メタノ
ール等の有機化合物が合成されるが、特にメタノール
は、他の有機化合物の合成に比して水素の消費量が少な
いため、最も経済的である。
Further, hydrogen is supplied to the organic compound synthesizer 13 together with the carbon dioxide gas concentrated in the carbon dioxide gas separator 10. Here, organic compounds such as methane, ethane, and methanol are synthesized by the catalytic hydrogenation method. In particular, methanol is the most economical because it consumes less hydrogen than the synthesis of other organic compounds.

【0026】この種の有機化合物の合成反応に於ては、
一般に触媒および一定の温度、圧力が必要であり、例え
ば、Cu−ZnO−La23を触媒に使用したメタノー
ルの合成反応では(反応式:CO2+3H2→CH3OH
+H2O)、300℃、110atmの反応条件で炭酸
ガスの転換率が約30%で純度99.9%のメタノール
が合成できる。
In the synthetic reaction of this kind of organic compound,
Generally, a catalyst and a constant temperature and pressure are required. For example, in a synthesis reaction of methanol using Cu—ZnO—La 2 O 3 as a catalyst (reaction formula: CO 2 + 3H 2 → CH 3 OH).
+ H 2 O), 300 ° C., 110 atm reaction conditions, the conversion of carbon dioxide gas is about 30%, and methanol of 99.9% purity can be synthesized.

【0027】この有機化合物を燃料としてバーナ2に供
給して炭素含有燃料の補助燃料として使用することによ
り、炭素含有燃料の使用量が低減する。この結果、加熱
炉の燃料使用量が低減すると共に炭酸ガスの排出量が減
少するため、地球の温暖化抑制に役立つ。
By supplying this organic compound as a fuel to the burner 2 and using it as an auxiliary fuel for the carbon-containing fuel, the amount of the carbon-containing fuel used is reduced. As a result, the amount of fuel used in the heating furnace is reduced and the amount of carbon dioxide gas emitted is reduced, which is useful for suppressing global warming.

【0028】次に本発明の効果を試算して求めた結果を
例示する。
Next, the results obtained by trial calculation of the effect of the present invention will be illustrated.

【0029】燃料原単位が400×103Kcal/
t、排ガス損失熱が100×103Kcal/tのコー
クス炉ガス専焚の鋼材加熱炉を試算のベース条件とし、
従来技術のメタノール合成で空気燃焼(O2=21%)
を行うケースと、本発明技術のメタノール合成と酸素富
化燃焼(O2=50%)とを併用するケースについて、
加熱炉の燃料原単位、コークス炉ガスの使用量、及び炭
酸ガスの大気放出量の低減効果を試算した。
Fuel consumption rate is 400 × 10 3 Kcal /
t, a coke oven gas-exclusive steel material heating furnace having an exhaust gas heat loss of 100 × 10 3 Kcal / t is used as a base condition for trial calculation,
Air combustion by conventional methanol synthesis (O 2 = 21%)
And a case of using the methanol synthesis of the present technology and oxygen-rich combustion (O 2 = 50%) in combination.
The effect of reducing the fuel consumption rate of the heating furnace, the amount of coke oven gas used, and the amount of carbon dioxide released into the atmosphere was calculated.

【0030】尚、コークス炉ガスの燃焼は、理論酸素比
1.0とし、メタノール合成量は従来技術と本発明技術
とで同一とした。
The coke oven gas was burned at a theoretical oxygen ratio of 1.0, and the amount of methanol synthesized was the same between the prior art and the present invention.

【0031】試算に使用したコークス炉ガス並びにメタ
ノールの燃料特性を表1に、また、試算結果を表2に示
す。
The fuel characteristics of the coke oven gas and methanol used in the trial calculation are shown in Table 1, and the trial calculation results are shown in Table 2.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】この結果、従来技術によると、試算のベー
ス条件に対し、燃料原単位は同レベルであり、コークス
炉ガスおよび炭酸ガスの大気放出量は約28%まで低減
できることが分かった。
As a result, according to the prior art, it was found that the fuel consumption rate was at the same level as the base condition of the trial calculation, and the amount of coke oven gas and carbon dioxide released into the atmosphere could be reduced to about 28%.

【0035】これに対し、本発明技術によると、試算の
ベース条件に対し、燃料原単位は約87%まで、コーク
ス炉ガスおよび炭酸ガスの大気放出量は約16%まで低
減できるという結果が得られた。即ち、従来技術に比し
て加熱炉の燃料原単位並びに炭酸ガスの大気放出量の低
減に極めて大きな効果が得られることが分かる。
On the other hand, according to the technique of the present invention, the fuel consumption rate can be reduced to about 87%, and the amount of coke oven gas and carbon dioxide released into the atmosphere can be reduced to about 16% based on the base calculation conditions. Was given. That is, it can be seen that an extremely great effect can be obtained in reducing the fuel consumption rate of the heating furnace and the amount of carbon dioxide released into the atmosphere as compared with the conventional technique.

【0036】尚、本実施例に於ては、有機化合物合成時
の経済性および燃料としての取扱い易さを勘案し、常
温、常圧で液体のメタノールを用いるものとしたが、メ
タン、エタン、エタノール等、他の有機化合物を合成し
て燃料とすることも、また、負荷変動調整のために酸
素、水素、有機化合物燃料等の貯蔵タンクを配管の途中
に設けること等も勿論可能であり、本発明の要旨を逸脱
しない範囲で種々の変更を加えることが可能なことは言
うまでもない。
In this example, liquid methanol was used at room temperature and atmospheric pressure in consideration of economy in synthesizing organic compounds and ease of handling as a fuel, but methane, ethane, Of course, it is also possible to synthesize other organic compounds such as ethanol and use them as fuels, or to provide a storage tank for oxygen, hydrogen, organic compound fuels, etc. in the middle of the piping for load fluctuation adjustment. It goes without saying that various changes can be made without departing from the scope of the present invention.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
による加熱炉の燃焼方法によれば、 有機化合物の合成反応に必要な水素製造時に発生する
酸素を利用して酸素富化燃焼を行うため、燃焼ガス量が
減少して炭酸ガスが高濃度化し、被熱物の伝熱量が促進
されると共に、排ガス損失熱が減少して加熱炉の燃料原
単位を低減できる。 排ガス中の炭酸ガス濃度が高いため、炭酸ガス分離装
置での炭酸ガスの回収効率が高く、従って、炭酸ガスの
大気排出量が減少して地球の温暖化を抑制できる。 被熱物の加熱炉、水の電気分解装置、有機化合物合成
装置を一体システムで構成したため、装置の運転管理が
容易である。 等の優れた効果がある。
As is apparent from the above description, according to the combustion furnace combustion method of the present invention, oxygen-enriched combustion is performed by utilizing oxygen generated during hydrogen production necessary for the synthesis reaction of organic compounds. Therefore, the amount of combustion gas is reduced, the concentration of carbon dioxide is increased, the heat transfer amount of the object to be heated is promoted, the heat loss of exhaust gas is reduced, and the fuel consumption rate of the heating furnace can be reduced. Since the concentration of carbon dioxide in the exhaust gas is high, the efficiency of carbon dioxide recovery in the carbon dioxide separator is high, and therefore the amount of carbon dioxide released into the atmosphere is reduced, and global warming can be suppressed. Since the heating furnace for the object to be heated, the electrolyzer for water, and the organic compound synthesizer are configured as an integrated system, operation management of the device is easy. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す加熱炉の燃焼方法のシ
ステムフロー図。
FIG. 1 is a system flow diagram of a combustion furnace combustion method according to an embodiment of the present invention.

【図2】従来技術による加熱炉の燃焼方法のシステムフ
ロー図。
FIG. 2 is a system flow diagram of a combustion method for a heating furnace according to the related art.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 バーナ 3 煙道 4 被熱物 5a・5b 燃料配管 6 電気分解装置 7 空気配管 8 酸素配管 9 排熱回収装置 10 炭酸ガス分離装置 11 煙突 12 排ガス配管 13 有機化合物合成装置 14 水素配管 15 炭酸ガス配管 1 Heating Furnace 2 Burner 3 Flue 4 Heated Material 5a ・ 5b Fuel Pipe 6 Electrolyzer 7 Air Pipe 8 Oxygen Pipe 9 Exhaust Heat Recovery Device 10 Carbon Dioxide Separator 11 Chimney 12 Exhaust Gas Pipe 13 Organic Compound Synthesizer 14 Hydrogen Pipe 15 Carbon dioxide piping

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水を電気分解して酸素および水素を発生
させ、前記水素と排ガス中の濃縮した炭酸ガスとから有
機化合物を合成し、該有機化合物を炭素含有燃料と共に
燃焼して被熱物の加熱を行う加熱炉の燃焼方法に於て、 前記酸素をバーナの燃焼用空気に混合することによって
酸素富化燃焼を行うことを特徴とする加熱炉の燃焼方
法。
1. Electrolysis of water to generate oxygen and hydrogen, an organic compound is synthesized from the hydrogen and concentrated carbon dioxide gas in the exhaust gas, and the organic compound is burned with a carbon-containing fuel to be heated. In the method for combustion in a heating furnace for heating, the oxygen-enriched combustion is performed by mixing the oxygen with the combustion air of the burner.
【請求項2】 顕熱回収後の排ガスの一部をバーナに循
環供給することを特徴とする請求項1に記載の加熱炉の
燃焼方法。
2. The method for combustion in a heating furnace according to claim 1, wherein a part of the exhaust gas after sensible heat recovery is circulated and supplied to the burner.
JP4192965A 1992-06-25 1992-06-25 Combustion method in heating furnace Pending JPH0611106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4192965A JPH0611106A (en) 1992-06-25 1992-06-25 Combustion method in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4192965A JPH0611106A (en) 1992-06-25 1992-06-25 Combustion method in heating furnace

Publications (1)

Publication Number Publication Date
JPH0611106A true JPH0611106A (en) 1994-01-21

Family

ID=16299992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4192965A Pending JPH0611106A (en) 1992-06-25 1992-06-25 Combustion method in heating furnace

Country Status (1)

Country Link
JP (1) JPH0611106A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874955A (en) * 1988-05-17 1989-10-17 Nkk Corporation Method and apparatus for measuring a three-dimensional curved surface shape
KR20010109224A (en) * 2001-08-25 2001-12-08 임홍수 The trash burnmer available water fuel
US6761558B1 (en) * 2000-08-22 2004-07-13 Sang-Nam Kim Heating apparatus using thermal reaction of brown gas
US20160138799A1 (en) * 2014-11-13 2016-05-19 Clearsign Combustion Corporation Burner or boiler electrical discharge control
EP3417209A4 (en) * 2016-02-18 2019-10-02 Soletair Power Oy Method and apparatus for separating carbon dioxide and for utilizing carbon dioxide
CN116518406A (en) * 2023-05-25 2023-08-01 佛山市莫森环境工程有限公司 Hydrogen alcohol fuel supply system suitable for kiln

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874955A (en) * 1988-05-17 1989-10-17 Nkk Corporation Method and apparatus for measuring a three-dimensional curved surface shape
US6761558B1 (en) * 2000-08-22 2004-07-13 Sang-Nam Kim Heating apparatus using thermal reaction of brown gas
KR20010109224A (en) * 2001-08-25 2001-12-08 임홍수 The trash burnmer available water fuel
US20160138799A1 (en) * 2014-11-13 2016-05-19 Clearsign Combustion Corporation Burner or boiler electrical discharge control
EP3417209A4 (en) * 2016-02-18 2019-10-02 Soletair Power Oy Method and apparatus for separating carbon dioxide and for utilizing carbon dioxide
US11192065B2 (en) 2016-02-18 2021-12-07 Soletair Power Oy Method and apparatus for separating carbon dioxide and for utilizing carbon dioxide
EP4177530A1 (en) * 2016-02-18 2023-05-10 Soletair Power Oy Method and apparatus for separating carbon dioxide and for utilizing carbon dioxide
CN116518406A (en) * 2023-05-25 2023-08-01 佛山市莫森环境工程有限公司 Hydrogen alcohol fuel supply system suitable for kiln
CN116518406B (en) * 2023-05-25 2024-03-15 佛山厚普氢能科技有限公司 Hydrogen alcohol fuel supply system suitable for kiln

Similar Documents

Publication Publication Date Title
CN1037941C (en) Method of and apparatus for utilizing and recovering CO2 in combustion exhaust gas
CN1407948A (en) Hydrogen production from carbonaceous material
RU2127720C1 (en) Synergistic method for methanol production (versions)
JP2007254180A (en) Self-sustained lower hydrocarbon direct decomposition process and process system thereof
JP2008512336A (en) Method for producing hydrogen and / or carbon monoxide
CN1834535B (en) Smokeless coal burning boiler
CN1318798C (en) Burning method of fuel reforming appts.
RU96113201A (en) SYNERGETIC METHOD PRODUCTION METHOD
RU2001105617A (en) METHOD FOR PRODUCING SYNTHESIS GAS, APPLICABLE FOR SYNTHESIS OF GASOLINE, KEROSIN AND GAS OIL (OPTIONS)
JP2006216412A (en) Microwave heating device and carbon dioxide decomposition method using it
CN101155753B (en) Combustion device that produces hydrogen with re-use of captured Co2
US20220081295A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
CN1321136A (en) Apparatus for producing hydrogen gas and fuel cell system using same
JPH0611106A (en) Combustion method in heating furnace
JPH06293890A (en) Method for producing combustible substance particularly solid fuel from industrial waste and domestic rubbish and gasification plant for producing the same
EP3906356A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
PL240266B1 (en) Method for producing nitrogen compounds from organic waste and the system for producing nitrogen compounds from organic waste
CN102502943A (en) Heat accumulating type burning supercritical water gasification and oxidation device
US20120085710A1 (en) Method and apparatus for providing and using hydrogen-based methanol for denitrification purposes
JPH10185170A (en) Combustion apparatus
JP4227775B2 (en) Carbon dioxide fixation method and apparatus
RU72418U1 (en) SYSTEM FOR PRODUCING HYDROGEN FROM BIOGAS
JP2003221204A (en) Method of driving for power generation and others by digestion gas and system for the same
JP6574183B2 (en) Process of combustion in a heat engine of solid, liquid or gaseous hydrocarbon (HC) raw materials, heat engine and system for producing energy from hydrocarbon (HC) material
RU2233987C1 (en) Method of delivery of natural gas to technological power plant of ammonia production process

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000229