JPH06110555A - Flow-in water quantity predicting device - Google Patents

Flow-in water quantity predicting device

Info

Publication number
JPH06110555A
JPH06110555A JP28398292A JP28398292A JPH06110555A JP H06110555 A JPH06110555 A JP H06110555A JP 28398292 A JP28398292 A JP 28398292A JP 28398292 A JP28398292 A JP 28398292A JP H06110555 A JPH06110555 A JP H06110555A
Authority
JP
Japan
Prior art keywords
flow
inflow water
water quantity
tuning
water amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28398292A
Other languages
Japanese (ja)
Inventor
Kazue Shimada
和恵 島田
Kazuo Nishimura
和夫 西村
Ryoichi Ichikawa
量一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28398292A priority Critical patent/JPH06110555A/en
Publication of JPH06110555A publication Critical patent/JPH06110555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)

Abstract

PURPOSE:To prevent processing from being made into a black box by clearly expressing the intuition of an operator and to facilitate the tuning of a membership function. CONSTITUTION:This device is provided with a weather information storage means 31 and result flow-in water quantity storage means 32 for storing inputted weather information and the result value of flow-in water quantity, fuzzy rule storage means 34 for preserving relation between the weather information and the flow-in water quantity as a fuzzy rule, predicting means 33 to calculate predictive flow-in water quantity based on the input information by using the fuzzy rule, and output device 4 to show the predicted result. At such a flow-in water quantity predicting device, a tuning means 36 depending on a neural network is added for tuning the membership function by the learning function of the neural network.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子計算機を用いて気
象情報から貯水池や河川への流入水量を予測する流入水
量予測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inflow water amount predicting device for predicting an inflow amount of water into a reservoir or a river from weather information using an electronic computer.

【0002】[0002]

【従来の技術】従来の河川や貯水池への流入予測手法
は、流入水量の予測に用いる気象情報をメンバーシップ
関数で表わし、貯水池への流入水量をファジィ演算で計
算するもの(例えば91年電力技術研究会論文PE−9
1−5)、又、予測にニューラルネットワークを適用
し、過去の実績値である気象情報や流入水量をニューラ
ルネットワークの教師データとして与えてニューラルネ
ットワークに学習させ、流入水量を予測させる手法もあ
る(予測にニューラルネットワークを用いた例として
は、91年電力技術研究会論文PE−91−12,PE
−91−13,PE−91−14,PE−91−1
5)。
2. Description of the Related Art Conventional methods for predicting inflow to rivers and reservoirs represent the meteorological information used to predict the inflow of water by a membership function, and calculate the inflow of water to the reservoir by fuzzy operation (eg, 1991 power technology). Research paper PE-9
1-5) Alternatively, there is also a method in which a neural network is applied to the prediction, and the weather information and the inflow water amount, which are past actual values, are given as teacher data of the neural network to make the neural network learn and predict the inflow water amount ( As an example of using a neural network for prediction, there is a paper of the 91st Power Technology Study Group PE-91-12, PE.
-91-13, PE-91-14, PE-91-1
5).

【0003】[0003]

【発明が解決しようとする課題】貯水池の流入水量予測
のように、経年変化があるモデルについてファジィ演算
で計算する場合、メンバーシップ関数をモデルの経年変
化に従ってチューニングし直す必要がある。しかもこの
種のチューニング作業には、これと言った決め手はな
く、試行錯誤をしなければならず、運用者にとって大き
な負担である。又、ニューラルネットワークを用いた流
入水量の予測は処理のブラックボックス化を招き、過去
に経験しなかったような気象条件の場合、ニューラルネ
ットワークの予測結果の妥当性を保証できないという欠
点があった。本発明は上記事情に鑑みてなされたもので
あり、ファジィ演算を用いることによって運用者の直観
をわかり易く表現して処理のブラックボック化を避ける
と共に、メンバーシップ関数のチューニングを容易にし
た流入水量予測装置を提供することを目的としている。
When a fuzzy operation is used to calculate a model that changes over time, such as when predicting the inflow of a reservoir, it is necessary to retune the membership function according to the change over time of the model. Moreover, this kind of tuning work has no deciding factor and requires trial and error, which is a heavy burden on the operator. Further, the prediction of the inflow of water using the neural network leads to a black box treatment, and there is a drawback that the validity of the prediction result of the neural network cannot be guaranteed under the meteorological condition that has not been experienced in the past. The present invention has been made in view of the above circumstances, and predicts the inflow of water by facilitating the tuning of the membership function while avoiding the black boxing of the processing by expressing the intuition of the operator intelligibly by using the fuzzy operation. The purpose is to provide a device.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明は入力した気象情報と流入水量の実績値を保
存する手段と、気象情報と流入水量との関係をファジィ
ルールとして保存する手段と、ファジィルールを用いて
入力情報をもとに予測流入水量を算出する手段と、予測
結果を提示する出力装置を有する流入水量予測装置にお
いて、過去の実績流入水量と気象情報を与えて、ニュー
ラルネットワークの学習機能によりファジィルールのメ
ンバーシップ関数のチューニングを行なう手段を付加す
るようにした。
In order to achieve the above object, the present invention is a means for storing the input meteorological information and the actual value of the inflow water amount, and a means for storing the relationship between the meteorological information and the inflow water amount as a fuzzy rule. And a means for calculating the predicted inflow water amount based on the input information using the fuzzy rule, and an inflow water amount prediction device having an output device for presenting the prediction result, by giving the past actual inflow water amount and meteorological information to the neural network. A means for tuning the membership function of fuzzy rules is added by the learning function of the network.

【作用】まず、気象情報や流入水量の実績値は入力装置
を介して電子計算機に入力されて記憶される。流入水量
の予測は定周期で自動的に又は運用者の要求に従って行
なわれるが、流入水量の予測要求があると予測手段は、
電子計算機に記憶された気象情報と予め定義されて電子
計算機に記憶されているファジィルールを用いて流入水
量を算出し、その結果を出力装置に提示する。対比して
表示された結果、流入水量の予測結果が外れてきた場
合、又は貯水池,河川の流入水量に変化を与える要因が
発生した場合、運用者はメンバーシップ関数のチューニ
ング手段を起動する。起動されたチューニング手段は過
去の実績値である流入水量と気象情報とをニューラルネ
ットワークの学習データとして与え、メンバーシップ関
数のチューニングを行なう。
First, the meteorological information and the actual value of the inflow water amount are input to the electronic computer via the input device and stored. The forecast of the inflow of water is performed automatically at regular intervals or according to the operator's request.
The inflow water amount is calculated by using the meteorological information stored in the electronic computer and the fuzzy rule stored in the electronic computer which is defined in advance, and the result is presented to the output device. As a result of the comparison display, if the predicted result of the inflow water amount deviates, or if a factor that changes the inflow water amount of the reservoir or river occurs, the operator activates the membership function tuning means. The activated tuning means gives the inflow water amount and the meteorological information, which are past performance values, as learning data of the neural network, and tunes the membership function.

【0005】[0005]

【実施例】以下図面を参照して実施例を説明する。図1
は本発明による流入水量予測装置の実施例の構成図であ
る。図において1は気象情報や流入水量に関する情報を
伝送する伝送路、2は入力装置、3は電子計算機、4は
出力装置である。電子計算機は気象情報記憶手段31,実
績流入水量を記憶する実績流入水量記憶手段32,気象情
報記憶手段31に記憶された気象情報と予めファジィルー
ル記憶手段34に定義されているファジィルールとメンバ
ーシップ関数とを用いてファジィ演算を行ない予測流入
水量を算出する予測手段33,予測流入水量を記憶する予
測流入水量記憶手段35,気象情報記憶手段31と実績流入
水量記憶手段32とに保存されている気象情報と流入水量
の実績値とを用いて、ファジィルール記憶手段34に保存
されているメンバーシップ関数のチューニングを行なう
ニューラルネットワークによるチューニング手段36から
なる。
Embodiments will be described below with reference to the drawings. Figure 1
FIG. 1 is a configuration diagram of an embodiment of an inflow water amount prediction device according to the present invention. In the figure, 1 is a transmission line for transmitting weather information and information about the amount of inflow water, 2 is an input device, 3 is an electronic computer, and 4 is an output device. The electronic computer includes a weather information storage unit 31, a record inflow water amount storage unit 32 that stores a record inflow amount, weather information stored in the weather information storage unit 31, fuzzy rules and membership defined in advance in the fuzzy rule storage unit 34. It is stored in the prediction means 33 for performing the fuzzy calculation using the function and to calculate the predicted inflow water quantity, the predicted inflow water quantity storage means 35 for storing the predicted inflow water quantity, the weather information storage means 31, and the actual inflow water quantity storage means 32. The neural network tuning means 36 performs tuning of the membership function stored in the fuzzy rule storage means 34 using the meteorological information and the actual value of the inflow water amount.

【0006】次に作用について説明する。気象情報や流
入水量の情報は伝送路1によって伝送され、入力装置2
を介して電子計算機3の気象情報記憶手段31と実績流入
水量記憶手段32に保存される。予測手段33の作用につい
て図2のファジィルールの一例と図3,図4のメンバー
シップ関数の一例とを用いて説明する。図2において、
“冬1”のルールはもし気温が低く、かつ平年との気温
差が負(マイナス)ならば、予測流入水量は平年よりや
や少ないことを意味する。気温が低い、平年との気温差
が負(マイナス)、流入水量が平年よりやや少ないこと
を表わすメンバーシップ関数の一例は図3に示す通りと
する。ここで流入水量が平年よりやや少ないは図4の予
測流入水量差のメンバーシップ関数の減3に相当する。
予測手段の処理の流れを図5の流れ図に従って説明す
る。ステップS1でまず、気象情報記憶手段31にある予
測降水量,前旬積雪深(10日単位で算出),気温につ
いて過去の平年値との差を算出する。ステップS2では
ステップS1で算出した予測降水量,前旬積雪深,気温
の平年値との差と気温を各ファジィルールの前件部if部
の入力情報とし、後件部then部の予測流入水量の平年値
との差を例えばmax −min 合成法を用いて算出する。こ
れを全ファジィルールについて算出し、重心法等を用い
て後件部の非ファジィ化を行ない、予測流入水量につい
ての平年値との差を求める。ステップS3ではステップ
S2で求めた平年値との差分に平年値を合計して予測流
入水量を算出する。算出した予測流入水量を出力装置4
に提示する。出力装置4への提示は予測値と実績値とが
対比して出力される。
Next, the operation will be described. The weather information and the inflow water information are transmitted through the transmission line 1, and the input device 2
It is stored in the weather information storage means 31 and the actual inflow water storage means 32 of the electronic computer 3 via. The operation of the predicting means 33 will be described using an example of the fuzzy rule of FIG. 2 and an example of the membership function of FIGS. 3 and 4. In FIG.
The rule of "Winter 1" means that if the temperature is low and the temperature difference from the normal year is negative, the predicted inflow is slightly less than the normal year. An example of a membership function that indicates that the temperature is low, the temperature difference from the normal year is negative (minus), and the amount of inflow water is slightly smaller than the normal year is as shown in FIG. The fact that the amount of inflow is slightly smaller than that of the normal year corresponds to the decrease 3 of the membership function of the predicted inflow difference shown in FIG.
The processing flow of the prediction means will be described with reference to the flowchart of FIG. In step S1, first, the difference between the predicted precipitation amount, the early snow depth (calculated in units of 10 days), and the temperature in the meteorological information storage means 31 from the past average value is calculated. In step S2, the predicted precipitation amount, the amount of snowfall in early season, the difference between the normal temperature value and the temperature calculated in step S1 are used as the input information of the antecedent if part of each fuzzy rule, and the predicted inflow of the consequent part then is calculated. The difference from the normal value of is calculated using, for example, the max-min composition method. This is calculated for all fuzzy rules, and the consequent part is defuzzified using the center of gravity method, etc., and the difference from the normal value for the predicted inflow is calculated. At step S3, the normal value is added to the difference from the normal value obtained at step S2 to calculate the predicted inflow water amount. Output device 4 with calculated predicted inflow
To present. In the presentation to the output device 4, the predicted value and the actual value are compared and output.

【0007】次に、予測値と実績値が合わなくなったと
きのニューラルネットワークによるチューニング手段36
の処理の流れを図6のフローに従って説明する。まず、
ステップSn1でファジィルール記憶手段にあるファジィ
ルールとメンバーシップ関数をニューラルネットワーク
に展開する。ネットワークに展開する際には、前件部は
台形型をシグモイド型で、三角形型を釣り鐘型で夫々近
似し後件部は台形型のメンバーシップ関数を利用できる
ようにする。近似した前件部メンバーシップ関数を図7
に示す。図2のルールをネットワークに展開したものを
図8に示す。図8のネットワークでは、中間第3層から
出力層にかけて、非ファジィ化されて出力が求められ
る。なお、図8において黒丸はしきい値ユニット、斜線
丸は後件部の台形型メンバーシップ関数対応ユニットで
ある。ステップSn2では気象情報記憶手段と実績流入水
量記憶手段に記憶されている実績の流入水量と気温と降
水量と積雪深データから平年値との差を求め、図8のニ
ューラルネットワークに流入水量の平年値との差,気
温,気温の平年値との差,降水量の平年値との差,積雪
深の平年値との差を学習の教示データとして与え、バッ
クプロバゲーション法等によって学習させる。ステップ
Sn3ではステップSn2によって位置の変化したメンバー
シップ関数をシグモイド型は台形に、釣り鐘型は三角形
型に変換する。上記実施例によれば、流入水量の予測は
運用者にとってわかり易いファジィルールを用いたファ
ジィ演算で行ない、又、煩雑なメンバーシップ関数のチ
ューニングはニューラルネットワークの学習機能を用い
て運用者の手による試行錯誤を繰り返すことなく、自動
的に行なうことができる。
Next, the tuning means 36 by the neural network when the predicted value and the actual value do not match
The flow of the process will be described according to the flow of FIG. First,
In step Sn1, the fuzzy rules and membership functions stored in the fuzzy rule storage means are expanded into a neural network. When developing into a network, the antecedent part is approximated by a sigmoid type for the trapezoid type and the bell type is approximated for a triangular type, and the consequent part can use the trapezoidal membership function. Figure 7 shows the approximate antecedent membership function.
Shown in. FIG. 8 shows an expansion of the rule of FIG. 2 in the network. In the network shown in FIG. 8, the output is defuzzified from the middle third layer to the output layer. In FIG. 8, black circles are threshold units, and shaded circles are trapezoidal membership function corresponding units of the consequent part. In step Sn2, the difference between the average influent water amount, the temperature, the rainfall amount, and the snow depth data stored in the meteorological information storage means and the actual inflow water amount storage means is calculated from the normal value, and the neural network in FIG. The difference with the value, temperature, the difference with the normal value of the temperature, the difference with the normal value of the precipitation, and the difference with the normal value of the snow depth are given as the teaching data of learning, and it learns by the back-propagation method. In step Sn3, the membership function whose position has been changed in step Sn2 is converted into a trapezoid for the sigmoid type and a triangle type for the bell type. According to the above-mentioned embodiment, the inflow water amount is predicted by the fuzzy calculation using the fuzzy rule which is easy for the operator to perform, and the complicated membership function tuning is tried by the operator by using the learning function of the neural network. It can be done automatically without repeating mistakes.

【0008】又、以下に示す実施例も考えられる。気象
情報や流入水量の情報を伝送路で伝送して入力装置によ
って入力するのではなく、対話型の入出力装置を用いて
運用者が気象情報や流入水量を入力するようにしてもよ
い。更に、予測手段とニューラルネットワークによるチ
ューニング手段を異なった電子計算機で行なうことも可
能である。
The following embodiments are also possible. Instead of transmitting the weather information and the inflow water amount through the transmission path and inputting the input device, the operator may input the weather information and the inflow water amount using an interactive input / output device. Further, the predicting means and the tuning means by the neural network can be performed by different electronic computers.

【0009】[0009]

【発明の効果】以上説明したように、本発明によれば貯
水池の流入水量予測は運用者にとってわかり易いファジ
ィルールを用いたファジィ演算処理で行なうことができ
るので、運用者にとって安心感のある流入水量の予測装
置を提供することが可能である。又、運用者にとって煩
わしいメンバーシップ関数のチューニングは流入水量予
測装置の自動的なチューニング機能によって行なわれる
ので、運用者はチューニング作業から解放された上で、
経年変化によって変わった貯水池,河川のモデルに適合
した精度の高い予測結果を得ることができる。
As described above, according to the present invention, the inflow water amount of a reservoir can be predicted by fuzzy arithmetic processing using a fuzzy rule which is easy for the operator to understand, so that the inflow water amount is safe for the operator. It is possible to provide the prediction device of. Moreover, since the tuning of the membership function which is troublesome for the operator is performed by the automatic tuning function of the inflow water amount predicting device, the operator is freed from the tuning work,
It is possible to obtain highly accurate prediction results that match the reservoir and river models that have changed over time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による流入水量予測装置の一実施例の構
成図。
FIG. 1 is a configuration diagram of an embodiment of an inflow water amount prediction device according to the present invention.

【図2】ファジィルールの一例。FIG. 2 shows an example of fuzzy rules.

【図3】予測降水量差,前旬積雪深差,気温,気温差の
メンバーシップ関数の一例。
[Fig. 3] An example of a membership function of predicted precipitation difference, early snow depth difference, temperature, and temperature difference.

【図4】予測流入水量差のメンバーシップ関数の一例。FIG. 4 is an example of a membership function of a predicted inflow water amount difference.

【図5】予測手段の処理フロー。FIG. 5 is a processing flow of a prediction unit.

【図6】ニューラルネットワークによるチューニング手
段の処理フロー。
FIG. 6 is a processing flow of a tuning means using a neural network.

【図7】メンバーシップ関数をシグモイド関数と釣り鐘
型の関数に変換したもの。
FIG. 7 shows the membership function converted into a sigmoid function and a bell-shaped function.

【図8】ファジィルールをネットワークに展開したも
の。
FIG. 8 shows fuzzy rules deployed on a network.

【符号の説明】[Explanation of symbols]

1 伝送路 2 入力装置 3 電子計算機 4 出力装置 31 気象情報記憶手段 32 実績流入水量記憶手段 33 予測手段 34 ファジィルール記憶手段 35 予測流入水量記憶手段 36 ニューラルネットワークによるチューニング手段 1 Transmission Line 2 Input Device 3 Electronic Computer 4 Output Device 31 Meteorological Information Storage Means 32 Actual Inflow Water Storage Means 33 Prediction Means 34 Fuzzy Rule Storage Means 35 Predicted Inflow Water Storage Means 36 Neural Network Tuning Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力した気象情報と流入水量の実績値を
保存する手段と、気象情報と流入水量との関係をファジ
ィルールとして保存する手段と、ファジィルールを用い
て入力情報をもとに予測流入水量を算出する手段と、予
測結果を提示する出力装置を有する流入水量予測装置に
おいて、ニューラルネットワークの学習機能によりファ
ジィルールのメンバーシップ関数のチューニングを行な
う手段を付加したことを特徴とする流入水量予測装置。
1. A means for storing the input meteorological information and the actual value of the inflow water amount, a means for storing the relationship between the meteorological information and the inflow water amount as a fuzzy rule, and a prediction based on the input information using the fuzzy rule. An inflow water amount predicting device having a means for calculating the inflow water amount and an output device for presenting a prediction result, wherein a means for tuning a membership function of a fuzzy rule by a learning function of a neural network is added. Prediction device.
JP28398292A 1992-09-29 1992-09-29 Flow-in water quantity predicting device Pending JPH06110555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28398292A JPH06110555A (en) 1992-09-29 1992-09-29 Flow-in water quantity predicting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28398292A JPH06110555A (en) 1992-09-29 1992-09-29 Flow-in water quantity predicting device

Publications (1)

Publication Number Publication Date
JPH06110555A true JPH06110555A (en) 1994-04-22

Family

ID=17672757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28398292A Pending JPH06110555A (en) 1992-09-29 1992-09-29 Flow-in water quantity predicting device

Country Status (1)

Country Link
JP (1) JPH06110555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329713A (en) * 2001-02-07 2002-11-15 Eni Technologies Inc Method for characterizing semiconductor plasma treatment and system of characterization of adaptive plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329713A (en) * 2001-02-07 2002-11-15 Eni Technologies Inc Method for characterizing semiconductor plasma treatment and system of characterization of adaptive plasma

Similar Documents

Publication Publication Date Title
Jantzen Foundations of fuzzy control: a practical approach
Ibánez et al. Expert system for predicting buildings service life under ISO 31000 standard. Application in architectural heritage
JP4807565B2 (en) Flow prediction device
JP2886112B2 (en) Process operation support method and system
US5265222A (en) Symbolization apparatus and process control system and control support system using the same apparatus
Hasebe et al. Reservoir operation using the neural network and fuzzy systems for dam control and operation support
CN114511043B (en) Image understanding method, device, equipment and medium
CN116476863A (en) Automatic driving transverse and longitudinal integrated decision-making method based on deep reinforcement learning
JP2007226450A (en) Apparatus, method and program for predicting flow rate
Ding et al. Neural network based models for forecasting
KR100701439B1 (en) Integrated system and method for small-scale sewage treatment plant
JPH06110555A (en) Flow-in water quantity predicting device
JPH05346807A (en) Pump plant operation control device
CN115761511A (en) SAR image target detection method combined with high-confidence knowledge distillation
JPH0887303A (en) Plant prediction controller
JPH07119184A (en) Operating apparatus for water supply and sewerage system
Chau A prototype knowledge-based system on unsteady open channel flow in water resources management
JPH06119291A (en) Water supply prediction device
Adnan et al. Type-2 mamdani fuzzy inference system based model for rainfall forecasting
Raimondi et al. Short-time fuzzy DAP predictor for air pollution due to vehicular traffic
JP2698692B2 (en) Water distribution flow prediction system
US20240135805A1 (en) Apparatus for Predicting Traffic Flow on New Road and Method Thereof
Simonovic A knowledge‐based advisory system for single multipurpose reservoir management
Gonwa Efficient real-time control and operation of interconnected wastewater collection systems
JP3247407B2 (en) Water distribution pattern prediction device