JPH06110092A - Electrooptical element - Google Patents

Electrooptical element

Info

Publication number
JPH06110092A
JPH06110092A JP25776392A JP25776392A JPH06110092A JP H06110092 A JPH06110092 A JP H06110092A JP 25776392 A JP25776392 A JP 25776392A JP 25776392 A JP25776392 A JP 25776392A JP H06110092 A JPH06110092 A JP H06110092A
Authority
JP
Japan
Prior art keywords
electrodes
electro
electric field
pattern
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25776392A
Other languages
Japanese (ja)
Inventor
Koichi Arishima
島 功 一 有
Toshiyuki Shimada
田 俊 之 島
Kenji Yokoyama
山 健 児 横
Takeshi Sukegawa
川 健 助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25776392A priority Critical patent/JPH06110092A/en
Publication of JPH06110092A publication Critical patent/JPH06110092A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the element for controlling the direction of a light beam which is increased in response speed by attaining a grid-shaped electric field distribution in a short period of time within the element and is reduced in size and cost by the simple construction. CONSTITUTION:Transparent pattern electrodes 12 consisting of 'NESA(R)' glass, etc., are formed on a glass substrate 11 and a thin film 13 of a quadratic nonlinear material (e.g. 3RDCVXY) is tightly fitted and formed thereon. The transparent pattern electrodes 12 are constituted of a pair of comb-shaped electrodes 14, 15 and are disposed within the same plane in such a manner that the respective branch electrodes 14b, 15b exist alternately. The refractive index of the thin film 13 of the second order nonlinear material is made into a grid shape by the electric fields between the respective branch electrodes 14b, 15b, by which the incident light beam nearly perpendicularly on the thin film 13 of the second order nonlinear material is diffracted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、2次非線形効果を利
用した電気光学素子、特に光偏向器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electro-optical element utilizing a second-order nonlinear effect, and more particularly to an optical deflector.

【0002】[0002]

【従来の技術】光の進行方向を変える光偏向器には種々
のものがあり、2次非線形材料を用いて電界で屈折率を
制御する方法としては、ホトリフラクティブ効果を用い
た電気光学素子が知られている。これは、無機の結晶、
半導体、有機材料が持つ2次非線形効果とホトボルトメ
トリック作用を利用した電気光学素子である。このよう
な素子においては、2つの光ビームを干渉させて素子中
に明暗のグレーティングを作り、電荷移動により明暗の
グレーティングに応じて電界の格子状の分布が生じる。
この電界により2次非線形材料の屈折率が変化し、格子
状の屈折率分布ができる。この状態に光ビームを照射す
ると、光は偏向されることになる。
2. Description of the Related Art There are various types of optical deflectors that change the traveling direction of light, and as a method for controlling the refractive index by an electric field using a second-order nonlinear material, an electro-optical element using the photorefractive effect is known. Are known. This is an inorganic crystal,
It is an electro-optical element that utilizes the second-order nonlinear effect of semiconductors and organic materials and the Photovoltmetric effect. In such an element, two light beams are interfered with each other to form a bright and dark grating in the element, and a charge-transfer causes a grid-like distribution of an electric field according to the bright and dark grating.
Due to this electric field, the refractive index of the second-order nonlinear material changes, and a lattice-shaped refractive index distribution is formed. When the light beam is irradiated in this state, the light is deflected.

【0003】一方、異なる方式で光偏向を実現している
音響・超音波光学効果を用いたA/O偏向器(変調器)
がある。これは、媒質となる光学結晶に音響または超音
波を伝搬させるトランスジューサ、超音波を発生させる
ドライバ、超音波を吸収するアブソーバーを基本構成と
している。トランスジューサから光学結晶に交流電圧を
印加すると、光学結晶中に超音波が発生し、光学結晶中
に定在した超音波波面により入射光が回折する。
On the other hand, an A / O deflector (modulator) using the acoustic / ultrasonic optical effect that realizes optical deflection by different methods.
There is. This is based on a transducer that propagates sound or ultrasonic waves to an optical crystal that is a medium, a driver that generates ultrasonic waves, and an absorber that absorbs ultrasonic waves. When an alternating voltage is applied from the transducer to the optical crystal, ultrasonic waves are generated in the optical crystal, and the incident light is diffracted by the ultrasonic wave front that is standing in the optical crystal.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者の
ホトリフラクティブ効果を用いた光偏向器では、ホトボ
ルトメトリック作用による電荷移動によって格子状の電
界を生じさせるため、格子を形成する時間が必要とな
る。この時間は材料により異なるが、ミリ秒程度を要
し、応答時間が遅くなる欠点がある。
However, in the former optical deflector using the photorefractive effect, the lattice-shaped electric field is generated by the charge transfer due to the photovoltmetric action, and thus it takes time to form the lattice. . Although this time depends on the material, it takes about milliseconds and has a drawback that the response time becomes slow.

【0005】また、後者のA/O偏向器では、光学素
子、トランスジューサ、ドライバ等の部品が必要であ
り、特にドライバとしては40MHz程度の高周波発振
器が必要である。このため、素子構成が複雑となり、素
子全体が大容積で大型化し、また高価となる。
The latter A / O deflector requires components such as an optical element, a transducer, and a driver, and particularly requires a high frequency oscillator of about 40 MHz as the driver. For this reason, the element structure becomes complicated, and the entire element becomes large in volume and large in size, and is expensive.

【0006】この発明は、前述のような問題点を解消す
べくなされたもので、その目的は、素子に格子状の電界
分布を短時間で実現して応答速度を速めることができ、
しかも簡易な構造とすることができ、小型化、低価格化
を図ることのできる電気光学素子を提供することにあ
る。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to realize a grid-like electric field distribution in an element in a short time to accelerate the response speed.
Moreover, it is an object of the present invention to provide an electro-optical element which can have a simple structure and can be downsized and reduced in price.

【0007】[0007]

【課題を解決するための手段】この発明は前記目的を達
成するために、次のような構成とした。すなわち、電界
による屈折率の変化で光ビームを偏向させる電気光学素
子において、パターン電極上、または2枚のパターン電
極間に2次非線形効果を有する材料(無機の結晶、半導
体、有機材料)を密着して形成し、前記パターン電極に
より前記2次非線形材料に格子状の電界を印加する。パ
ターン電極は、ネサガラス等の透光性の高い材料から構
成し、この透光性パターン電極をパイレックス等の透明
な支持基板上に形成する。また、パターン電極を単独で
設置する場合には、パターン電極を一対の櫛形電極から
構成し、それぞれの枝電極が交互に位置するように同一
平面内に配設し、この一対の櫛形電極間に電圧を印加す
る。パターン電極を2枚設置する場合には、2枚のパタ
ーン電極のうち少なくとも1枚を櫛形電極とし、2枚の
パターン電極間に電圧を印加する。
In order to achieve the above object, the present invention has the following constitution. That is, in an electro-optical element that deflects a light beam by a change in the refractive index due to an electric field, a material (inorganic crystal, semiconductor, organic material) having a quadratic nonlinear effect is adhered on the pattern electrode or between two pattern electrodes. Then, a grid-like electric field is applied to the second-order nonlinear material by the pattern electrode. The pattern electrode is made of a highly translucent material such as Nesa glass, and the translucent pattern electrode is formed on a transparent support substrate such as Pyrex. In addition, when the pattern electrode is installed independently, the pattern electrode is composed of a pair of comb-shaped electrodes, and the branch electrodes are arranged in the same plane so that they are alternately located, and between the pair of comb-shaped electrodes. Apply voltage. When two pattern electrodes are provided, at least one of the two pattern electrodes is a comb electrode and a voltage is applied between the two pattern electrodes.

【0008】[0008]

【作用】前述のような構成において、パターン電極に電
圧を印加すると、電界により2次非線形材料の屈折率が
変化する。この屈折率の変化速度は2次非線形分子の電
子密度の再配置速度に依存するため、応答時間が極めて
速い。パターン電極に応じた電場のグレーティングによ
り、2次非線形材料に格子状の屈折率のパターンが得ら
れる。この屈折率格子により光ビームが回折する。
In the structure as described above, when a voltage is applied to the pattern electrode, the electric field changes the refractive index of the second-order nonlinear material. Since the rate of change of the refractive index depends on the rate of rearrangement of the electron density of the second-order nonlinear molecule, the response time is extremely fast. A grating-like refractive index pattern is obtained in the second-order nonlinear material by the electric field grating corresponding to the pattern electrode. The light beam is diffracted by this refractive index grating.

【0009】[0009]

【実施例】以下、この発明を図示する一実施例に基づい
て詳細に説明する。なお、以下に開示する実施例はこの
発明の単なる例示に過ぎず、この発明の範囲を何ら限定
するものではない。図1は第1実施例で、パターン電極
を用いて光ビームを偏向する電気光学素子を示す斜視
図、図3は第2実施例で、対向する一対のパターン電極
を用いて光ビームを偏向する電気光学素子を示す断面図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an illustrated embodiment. The embodiments disclosed below are merely examples of the present invention and do not limit the scope of the present invention. FIG. 1 is a perspective view showing an electro-optical element for deflecting a light beam by using a pattern electrode in the first embodiment, and FIG. 3 is a second embodiment in which a light beam is deflected by using a pair of opposing pattern electrodes. It is sectional drawing which shows an electro-optical element.

【0010】〔実施例1〕図1に示すように、ガラス基
板11の上に、透明ガラスからなるパターン電極12を
形成し、この透明パターン電極12に2次非線形材料薄
膜13を被覆する。パターン電極12は、図2に示すよ
うに、主電極aに多数の枝電極bが形成された櫛形電極
14,15を組み合わせて構成する。これら櫛形電極1
4,15は、枝電極14b,15bが交互に平行に位置
するように同一平面内に配置し、また主電極14a,1
5aに電源16を接続することにより、枝電極14b,
15b間に電界が印加されるようにする。
Example 1 As shown in FIG. 1, a pattern electrode 12 made of transparent glass is formed on a glass substrate 11, and the transparent pattern electrode 12 is covered with a second-order nonlinear material thin film 13. As shown in FIG. 2, the pattern electrode 12 is configured by combining comb-shaped electrodes 14 and 15 in which a large number of branch electrodes b are formed on a main electrode a. These comb-shaped electrodes 1
4, 15 are arranged in the same plane so that the branch electrodes 14b, 15b are alternately positioned in parallel, and the main electrodes 14a, 1
By connecting the power source 16 to 5a, the branch electrodes 14b,
An electric field is applied between 15b.

【0011】このような構成において、パターン電極1
2に電圧を印加する。印加電圧は1V〜数100Vで、
望ましくは10V以上である。櫛形電極13,14に印
加された電圧により、各枝電極14b,15b間に電界
が印加され、2次非線形材料薄膜13にパターン電極1
2に対応した格子状の電界がかかる。この電界により、
2次非線形材料薄膜13の屈折率が変化し、屈折率の格
子が生じる。この屈折率の変化速度は2次非線形分子の
電子密度の再配置速度に依存し、ナノ秒以下であり、従
来のホトリフラクティブ効果を利用した素子と比較して
応答速度を大幅に改善される。
In such a structure, the pattern electrode 1
Voltage is applied to 2. The applied voltage is 1V to several 100V,
It is preferably 10 V or higher. An electric field is applied between the branch electrodes 14b and 15b by the voltage applied to the comb electrodes 13 and 14, and the pattern electrode 1 is applied to the second-order nonlinear material thin film 13.
A grid-shaped electric field corresponding to 2 is applied. By this electric field,
The refractive index of the second-order nonlinear material thin film 13 changes, and a refractive index grating is generated. The rate of change of the refractive index depends on the rearrangement rate of the electron density of the second-order nonlinear molecule, is nanosecond or less, and the response speed is significantly improved as compared with the conventional device utilizing the photorefractive effect.

【0012】このような屈折率格子に光ビームを2次非
線形材料薄膜13の表面に対してほぼ垂直に照射する
と、屈折率格子の間隔に応じて光ビームが回折される。
その1次回折角θは(1)式で与えられる。ここで、λ
は光ビーム波長(μm)、dは格子間隔(μm)であ
る。このように、予め作製したパターン電極の間隔に応
じて回折角が一義的に決まり、光回折素子が実現され
る。
When such a refractive index grating is irradiated with a light beam substantially perpendicularly to the surface of the second-order nonlinear material thin film 13, the light beam is diffracted in accordance with the distance between the refractive index gratings.
The first-order diffraction angle θ is given by the equation (1). Where λ
Is the light beam wavelength (μm), and d is the lattice spacing (μm). In this way, the diffraction angle is uniquely determined according to the interval between the pattern electrodes that are manufactured in advance, and the optical diffraction element is realized.

【0013】[0013]

【数1】 [Equation 1]

【0014】次に、実施例1の光回折素子を作製した具
体例について説明する。ガラス基板11をパイレックス
(Na2 O−B2 3 −SiO2 )から構成し、このパ
イレックス基板11上に、ライン/スペースが2μmの
ネサ(NESA:SnO2 を主成分とする導電性物質)
ガラス製の櫛形パターン電極12を形成し、この上に図
4に示すようなアゾ系色素を側鎖に有する有機材料3R
DCVXYを10μmの厚さにスピンコートして素子を
作製した。
Next, a specific example of manufacturing the optical diffraction element of Example 1 will be described. The glass substrate 11 is composed of Pyrex (Na 2 O—B 2 O 3 —SiO 2 ), and a line / space of 2 μm is formed on the Pyrex substrate 11 (NESA: a conductive substance whose main component is SnO 2 ).
An organic material 3R having a glass comb-shaped pattern electrode 12 formed thereon and having an azo dye in its side chain as shown in FIG.
DCVXY was spin-coated to a thickness of 10 μm to prepare a device.

【0015】このような素子中のパターン電極12に5
0Vを印加し、He−Neレーザ光を素子表面に対して
ほぼ垂直に入射した。この結果、He−Neレーザ光は
約9°の角度で回折され、その回折効率は約30%であ
った。本素子において、電界を印加するドライバは簡単
な定電圧電源でよく、また素子自体もガラス基板上に透
明電極を設けた簡単な構造でよく、従来のA/O偏向器
に比べて大幅に小型化、低廉化を図れる。
The pattern electrode 12 in such an element has 5
0V was applied, and the He—Ne laser light was made incident substantially perpendicular to the device surface. As a result, the He-Ne laser light was diffracted at an angle of about 9 °, and the diffraction efficiency was about 30%. In this device, the driver that applies the electric field may be a simple constant-voltage power supply, and the device itself may have a simple structure in which a transparent electrode is provided on the glass substrate, which is significantly smaller than the conventional A / O deflector. Cost reduction.

【0016】〔実施例2〕図3に示すように、透明パタ
ーン電極22が表面に形成された2枚のガラス基板21
を、2枚の透明パターン電極22が対向するようにスペ
ースをおいて平行に配置し、これらガラス基板21間に
2次非線形材料23を介在させる。対向するパターン電
極22は、両方とも櫛形電極24とし、これら櫛形電極
24間に電圧を印加する。また、ライン/スペースが半
周期ずれるように配設して、電界の間隔が短くなるよう
にする。なお、2枚の透明パターン電極22は、一方を
櫛形電極、他方を平面電極などとしてもよい。
[Embodiment 2] As shown in FIG. 3, two glass substrates 21 each having a transparent pattern electrode 22 formed on the surface thereof.
Are arranged in parallel with a space so that the two transparent pattern electrodes 22 face each other, and the quadratic nonlinear material 23 is interposed between these glass substrates 21. The pattern electrodes 22 facing each other are both comb-shaped electrodes 24, and a voltage is applied between the comb-shaped electrodes 24. Further, the lines / spaces are arranged so as to be shifted by a half cycle so that the electric field interval is shortened. The two transparent pattern electrodes 22 may be comb-shaped electrodes on one side and flat electrodes on the other side.

【0017】このような構成において、パターン電極2
2に電圧を印加すると、上下の枝電極14b,14b間
に電界が印加され、2次非線形材料23にパターン電極
22に対応した電界がかかる。この電界により2次非線
形材料23の屈折率が変化し、実施例1と同様に屈折率
の格子が生じる。
In such a structure, the pattern electrode 2
When a voltage is applied to 2, an electric field is applied between the upper and lower branch electrodes 14b, 14b, and an electric field corresponding to the pattern electrode 22 is applied to the second-order nonlinear material 23. Due to this electric field, the refractive index of the second-order nonlinear material 23 changes, and a refractive index grating is generated as in the first embodiment.

【0018】次に、実施例2の光回折素子を作製した具
体例について説明する。パイレックス製のガラス基板2
1上に、ライン/スペースが4μmのネサガラス製の櫛
形パターン電極22を形成する。このガラス基板22を
100μmのスペーサを挟んで平行に配置し、このスペ
ース内に実施例1と同様の3RDCVXYを流し込ん
で、光回折素子を作製した。
Next, a specific example of manufacturing the optical diffraction element of Example 2 will be described. Pyrex glass substrate 2
A comb-shaped pattern electrode 22 made of Nesa glass and having a line / space of 4 μm is formed on the substrate 1. This glass substrate 22 was arranged in parallel with a 100 μm spacer interposed therebetween, and 3RDCVXY similar to that of Example 1 was poured into this space to manufacture an optical diffraction element.

【0019】このような素子中のパターン電極22に1
00Vを印加し、Arレーザ光を素子表面に対してほぼ
垂直に入射した。この結果、Arレーザ光は約3.7°
の角度で回折され、その回折効率は約45%であった。
For the pattern electrode 22 in such a device,
00 V was applied, and Ar laser light was made to enter the device surface almost perpendicularly. As a result, the Ar laser light is about 3.7 °.
The diffraction efficiency was about 45%.

【0020】なお、以上は2次非線形材料に有機材料3
RDCVXYを用いた例を示したが、その他の材料を使
用できることはいうまでもない。また、パターン電極も
種々の形状の電極を使用できる。
The above is the organic material 3 as the second-order nonlinear material.
Although an example using RDCVXY is shown, it goes without saying that other materials can be used. Further, as the pattern electrode, electrodes having various shapes can be used.

【0021】[0021]

【発明の効果】前述の通り、この発明は、パターン電極
を用いて2次非線形材料に電界を印加し、格子状の屈折
率変化を形成するようにしたため、格子状の電界分布を
短時間で実現することができ、応答速度を速めることが
できる。また、ドライバは定電圧電源でよく、また素子
自体もガラス基板上に透明電極を設けた簡単な構造でよ
いため、簡易かつ小型で低価格な光偏向器を得ることが
できる。
As described above, according to the present invention, the electric field is applied to the second-order nonlinear material by using the pattern electrode to form the lattice-shaped change in the refractive index. It can be realized and the response speed can be increased. Further, since the driver may be a constant voltage power source and the element itself may have a simple structure in which a transparent electrode is provided on a glass substrate, a simple, small-sized and low-priced optical deflector can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の電気光学素子の第1実施例を示す斜
視図である。
FIG. 1 is a perspective view showing a first embodiment of an electro-optical element according to the present invention.

【図2】図1における電気光学素子のパターン電極の例
を示す概略平面図である。
2 is a schematic plan view showing an example of a pattern electrode of the electro-optical element in FIG.

【図3】この発明の電気光学素子の第2実施例を示す側
面図である。
FIG. 3 is a side view showing a second embodiment of the electro-optical element according to the present invention.

【図4】この発明の2次非線形材料の一例を示す構造式
の説明図である。
FIG. 4 is an explanatory diagram of a structural formula showing an example of the second-order nonlinear material of the present invention.

【符号の説明】[Explanation of symbols]

11 ガラス基板 12 透明パターン電極 13 2次非線形材料薄膜 14,15 櫛形電極 16 電源 21 ガラス基板 22 透明パターン電極 23 2次非線形材料 24 櫛形電極 26 電源 11 Glass Substrate 12 Transparent Pattern Electrode 13 Secondary Nonlinear Material Thin Film 14, 15 Comb Electrode 16 Power Supply 21 Glass Substrate 22 Transparent Pattern Electrode 23 Secondary Nonlinear Material 24 Comb Electrode 26 Power Supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 助 川 健 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Ken Sukegawa 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電界による屈折率の変化で光ビームを偏
向させる電気光学素子であって、パターン電極上に2次
非線形効果を有する材料を密着して形成し、前記パター
ン電極により前記2次非線形材料に格子状の電界を印加
することを特徴とする電気光学素子。
1. An electro-optical element for deflecting a light beam by changing a refractive index by an electric field, wherein a material having a quadratic nonlinear effect is closely formed on a pattern electrode, and the quadratic nonlinear element is formed by the pattern electrode. An electro-optical element characterized by applying a grid-like electric field to a material.
【請求項2】 電界による屈折率の変化で光ビームを偏
向させる電気光学素子であって、2枚のパターン電極間
に2次非線形効果を有する材料を密着して形成し、前記
パターン電極により前記2次非線形材料に格子状の電界
を印加することを特徴とする電気光学素子。
2. An electro-optical element for deflecting a light beam by a change in refractive index due to an electric field, wherein a material having a quadratic nonlinear effect is closely formed between two pattern electrodes, and the pattern electrodes are used for forming the material. An electro-optical element characterized by applying a grid-shaped electric field to a second-order nonlinear material.
【請求項3】 請求項1または請求項2において、パタ
ーン電極を透光性の高い材料から構成し、この透光性パ
ターン電極を透明な支持基板上に形成したことを特徴と
する電気光学素子。
3. The electro-optical element according to claim 1 or 2, wherein the pattern electrode is made of a highly transparent material and the transparent pattern electrode is formed on a transparent support substrate. .
【請求項4】 請求項1において、パターン電極は、一
対の櫛形電極をそれぞれの枝電極が交互に位置するよう
に同一平面内に配設し、この一対の櫛形電極間に電圧を
印加することを特徴とする電気光学素子。
4. The pattern electrode according to claim 1, wherein the pair of comb-shaped electrodes are arranged in the same plane such that the branch electrodes are alternately located, and a voltage is applied between the pair of comb-shaped electrodes. An electro-optical element characterized by.
【請求項5】 請求項2において、2枚のパターン電極
のうち少なくとも1枚を櫛形電極とし、2枚のパターン
電極間に電圧を印加することを特徴とする電気光学素
子。
5. The electro-optical element according to claim 2, wherein at least one of the two pattern electrodes is a comb electrode, and a voltage is applied between the two pattern electrodes.
JP25776392A 1992-09-28 1992-09-28 Electrooptical element Pending JPH06110092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25776392A JPH06110092A (en) 1992-09-28 1992-09-28 Electrooptical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25776392A JPH06110092A (en) 1992-09-28 1992-09-28 Electrooptical element

Publications (1)

Publication Number Publication Date
JPH06110092A true JPH06110092A (en) 1994-04-22

Family

ID=17310760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25776392A Pending JPH06110092A (en) 1992-09-28 1992-09-28 Electrooptical element

Country Status (1)

Country Link
JP (1) JPH06110092A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172171A (en) * 1996-12-06 1998-06-26 Nec Corp Aperture restricting element and optical head device utilizing the same
WO2024135263A1 (en) * 2022-12-22 2024-06-27 浜松ホトニクス株式会社 Optical device, and optical apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172171A (en) * 1996-12-06 1998-06-26 Nec Corp Aperture restricting element and optical head device utilizing the same
WO2024135263A1 (en) * 2022-12-22 2024-06-27 浜松ホトニクス株式会社 Optical device, and optical apparatus

Similar Documents

Publication Publication Date Title
Ninomiya Ultrahigh resolving electrooptic prism array light deflectors
US7557979B2 (en) Electro-optic crystal, diffraction-based, beam-steering element
US8620117B2 (en) Optical device, optical deflection device, and optical modulation device
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
CN112255724A (en) Waveguide array based on lithium niobate and manufacturing method thereof
JP2003233094A (en) Light deflecting element and its driving method
JPH06110092A (en) Electrooptical element
US4285569A (en) CCD Driven integrated optical modulator array
US5657152A (en) Acoustooptic device
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
US20070296303A1 (en) Acoustic transducers having localized ferroelectric domain inverted regions
JPH05188343A (en) Light direction control element
CN102183851A (en) Reflection type intensity-tunable electric control diffraction grating and preparation method thereof
JPS6186724A (en) Grating type optical controlling element
Ninomiya High S/N-ratio electrooptic prism-array light deflectors
JPH0445478A (en) Laser display
JP3884197B2 (en) Fabrication method of domain-inverted structure
JPH06110024A (en) Light reflector
CN214067429U (en) Waveguide array based on lithium niobate
JPH025032A (en) Wavelength conversion element and its production
US6762874B2 (en) Polarization inversion method of ferroelectrics and fabrication method of optical wavelength conversion device
JPH0375730A (en) Optical deflector
JPH11281831A (en) Grating coupler
JPH0315831A (en) Light deflecting element
JP2881183B2 (en) Waveguide-type electro-optical element and method of manufacturing the same