JPH0610987B2 - Method for manufacturing electrolyte substrate for molten carbonate fuel cell - Google Patents

Method for manufacturing electrolyte substrate for molten carbonate fuel cell

Info

Publication number
JPH0610987B2
JPH0610987B2 JP62028251A JP2825187A JPH0610987B2 JP H0610987 B2 JPH0610987 B2 JP H0610987B2 JP 62028251 A JP62028251 A JP 62028251A JP 2825187 A JP2825187 A JP 2825187A JP H0610987 B2 JPH0610987 B2 JP H0610987B2
Authority
JP
Japan
Prior art keywords
electrolyte
electrolyte substrate
fuel cell
molten carbonate
carbonate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62028251A
Other languages
Japanese (ja)
Other versions
JPS63198262A (en
Inventor
亘右 岡田
哲夫 中沢
哲夫 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62028251A priority Critical patent/JPH0610987B2/en
Publication of JPS63198262A publication Critical patent/JPS63198262A/en
Publication of JPH0610987B2 publication Critical patent/JPH0610987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融炭酸塩型燃料電池用電解質基板の製造方法
に関する。
The present invention relates to a method for manufacturing an electrolyte substrate for a molten carbonate fuel cell.

〔従来の技術〕[Conventional technology]

溶融炭酸塩型燃料電池は、アノード及びカソードからな
る一対の電極間に電解質板を有する構造からなる。この
電解質板は多孔性であり、その孔の中に電解質を保持し
ている。アノード,カソード及び電解質板を単位電池と
し、この単位電池を複数個積層することにより燃料電池
を製作する。
The molten carbonate fuel cell has a structure having an electrolyte plate between a pair of electrodes composed of an anode and a cathode. The electrolyte plate is porous and holds the electrolyte in its pores. A fuel cell is manufactured by stacking a plurality of unit cells using the anode, cathode and electrolyte plate as a unit cell.

電解質基板は次の性質を満足するものでなければならな
い。
The electrolyte substrate must satisfy the following properties.

1)電解質保持能力が十分であること。1) Sufficient electrolyte retention capacity.

2)割れ,反り等の少ない面精度の良い薄板状のもので
あること。
2) It should be a thin plate with good surface accuracy with little cracking or warping.

3)単位電池積層中に亀裂及び破損しないこと。3) Do not crack or damage during unit cell stacking.

このような電解質基板の製造法としては、多くの技術が
提案されている。例えば、電解質基板の気孔率の確保に
ついては特開昭60-79674号に記載のようにγ−リチウム
アルミネート(γ・LiAlO2)に木材パルプを添加して抄
造、焼成して電解質基板を得る従来技術が存在する。
Many techniques have been proposed as a method for producing such an electrolyte substrate. For example, as for ensuring the porosity of the electrolyte substrate, as described in JP-A-60-79674, γ-lithium aluminate (γ · LiAlO 2 ) is added with wood pulp, papermaking and firing are performed to obtain an electrolyte substrate. Prior art exists.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のように従来の電解質基板の製造には電解質基板マ
トリツクス材料にγ−LiAlO2粉末を用い、これを焼成し
て電解質基板を得ていた。しかし、得られれた電解質基
板の気孔率は最大でも45%前後と小さく、また、焼成
時の寸法変化が大きく10〜20%の収縮変化を示す。
As described above, in the production of the conventional electrolyte substrate, γ-LiAlO 2 powder was used as the electrolyte substrate matrix material, and this was fired to obtain the electrolyte substrate. However, the porosity of the obtained electrolyte substrate is as small as around 45% at the maximum, and the dimensional change during firing is large and the shrinkage change is 10 to 20%.

上記従来技術の他には、電解質基板の気孔率の確保と、
かつ焼成時に起る寸法変化等について十分配慮した従来
技術は見当たらない。
In addition to the above-mentioned conventional technique, ensuring the porosity of the electrolyte substrate,
Moreover, there is no conventional technique that takes into consideration the dimensional changes that occur during firing.

本発明の目的は、電解質基板の焼成時に起る寸法変化を
抑え、かつ気孔率が優れた多孔質電解質基板を製造する
方法を提供することにある。
An object of the present invention is to provide a method for producing a porous electrolyte substrate having excellent porosity while suppressing a dimensional change that occurs during firing of the electrolyte substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明は、γ−LiAlO2粉末
に、Al2O3とリチウム塩粉末を添加して電解質基板の形
に焼成し、前記Al2O3とリチウム塩粉末を反応させてLiA
lO2を生成させることを特徴とする溶融炭酸塩型燃料電
池用電解質基板の製造方法である。
In order to achieve the above object, the present invention, γ-LiAlO 2 powder, Al 2 O 3 and lithium salt powder is added and fired in the form of an electrolyte substrate, to react the Al 2 O 3 and lithium salt powder. LiA
A method for producing an electrolyte substrate for a molten carbonate fuel cell, which comprises producing lO 2 .

上記Al2O3はAl2O3の粉末またはその繊維の少なくとも一
種である。
The Al 2 O 3 is at least one of Al 2 O 3 powder and its fibers.

また、上記リチウム塩としては、炭酸リチウムまたは水
酸化リチウムの少なくとも一種であることが好ましい。
しかし、これに限定されるものではない。
The lithium salt is preferably at least one of lithium carbonate and lithium hydroxide.
However, it is not limited to this.

〔作用〕[Action]

電解質基板を上記の手段によつて製造する過程におい
て、電解質基板の焼成時にAl2O3とリチウム塩が反応し
て、焼成過程で電解質基板用マトリツクス材料として望
ましいLiAlO2を生成する。この得られた電解質基板にお
いては、Al2O3と反応するリチウム塩の存在していた部
分は気孔(CO2発生による)となるので気孔率確保は十
分達成され(気孔率60〜65%を達成可能)、かつ焼
成による寸法変化も少ない。
In the process of manufacturing the electrolyte substrate by the above means, Al 2 O 3 and the lithium salt react during firing of the electrolyte substrate to produce LiAlO 2 desirable as a matrix material for the electrolyte substrate in the firing process. In the obtained electrolyte substrate, the portion where the lithium salt that reacts with Al 2 O 3 was present becomes pores (due to the generation of CO 2 ), so that sufficient porosity can be ensured (porosity of 60 to 65%). Achievable) and there is little dimensional change due to firing.

前記本発明において、リチウム塩とAl2O3の添加量は、
リチウム塩/Al2O3のモル比が、0.7〜1.2にあることが
望ましい。0.7より小さいか、1.2より大きいと気孔率を
十分とることができないからである。
In the present invention, the amount of lithium salt and Al 2 O 3 added is
It is desirable that the lithium salt / Al 2 O 3 molar ratio is 0.7 to 1.2. If it is smaller than 0.7 or larger than 1.2, the porosity cannot be sufficiently obtained.

γ−LiAlO2量に対するAl2O3の添加量は、重量比でAl2O3
/γ−LiAlO2が0.1〜0.3であることが望ましい。0.1よ
り小さいと気孔率を十分とることができない。また0.3
より大きいと電解質を保持する気孔径あるいは気孔率等
を適切に制御することが困難となる。
the addition amount of Al 2 O 3 with respect to gamma-LiAlO 2 weight, Al 2 O 3 in a weight ratio of
/ Γ-LiAlO 2 is preferably 0.1 to 0.3. If it is less than 0.1, the porosity cannot be sufficiently obtained. Also 0.3
If it is larger, it becomes difficult to appropriately control the pore diameter or the porosity for holding the electrolyte.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 (1) 溶融炭酸塩型燃料電池の電解質の保持体となる電解質基
板のマトリツクス材としてγ−LiAlO2粉末にAl2O3粉末
とリチウム塩の混合物を添加したものをドクターブレー
ド機で薄板状のシートに成形し、これを1000℃で焼
成した。
Example (1) γ-LiAlO 2 powder as a matrix material of an electrolyte substrate that serves as a carrier for an electrolyte of a molten carbonate fuel cell, a mixture of Al 2 O 3 powder and a lithium salt was added to a thin plate with a doctor blade machine. -Shaped sheet was formed and fired at 1000 ° C.

第1図にγ−LiAlO2粉末80wt%にAl2O3粉末とリチ
ウム塩(Li2CO3)の混合物を20wt%添加した場合の
Li2CO3/Al2O3量と気孔率との関係を示す。Li2CO3/Al2
O3のモル比0.7〜1.2でLi2CO3を添加したものでは気孔率
60〜65%の多孔質の電解質基板を得ることができ
た。また、第2図に1000℃焼成後の電解質基板の寸
法変化を示す。Li2CO3/Al2O3のモル比0.7〜1.2のもの
では1.5〜2.0の膨張にすぎない非常に寸法変化が小さい
電解質基板が得られた。
FIG. 1 shows the case where 20 wt% of a mixture of Al 2 O 3 powder and lithium salt (Li 2 CO 3 ) is added to 80 wt% of γ-LiAlO 2 powder.
The relationship between the amount of Li 2 CO 3 / Al 2 O 3 and the porosity is shown. Li 2 CO 3 / Al 2
When Li 2 CO 3 was added at a molar ratio of O 3 of 0.7 to 1.2, a porous electrolyte substrate having a porosity of 60 to 65% could be obtained. Further, FIG. 2 shows the dimensional change of the electrolyte substrate after firing at 1000 ° C. With the Li 2 CO 3 / Al 2 O 3 molar ratio of 0.7 to 1.2, an electrolyte substrate having a very small dimensional change of only 1.5 to 2.0 expansion was obtained.

実施例 (2) γ−LiAl2粉末80wt%にAl2O3繊維とリチウム塩(Li
2CO3)の混合物を20wt%添加(ただしLi2CO3/Al2O
3繊維=1.0(モル比))した組成のものをドクターブレ
ード機で薄板状のシートに成形し、これを1000℃で
焼成した。焼成後の電解質基板の気孔率は62%と多孔
質で、寸法変化は約1.2%膨張と非常に寸法変化の小さ
い電解質基板を得ることができた。なお、Al2O3繊維は
電解質基板を強化する作用を有するが、これをLiAlO2
変換してから添加すると繊維が脆くなってしまい強化作
用が発揮されない。しかし、本発明のようにAl2O3の形
態で電解質基板を形成した後、基板中でLiAlO2に変換す
ることでAl2O3の強化作用を十分に発揮することができ
る。
Example (2) 80 wt% of γ-LiAl 2 powder and Al 2 O 3 fiber and lithium salt (Li
20 wt% of a mixture of 2 CO 3 ) (however, Li 2 CO 3 / Al 2 O
A composition having 3 fibers = 1.0 (molar ratio) was formed into a thin sheet with a doctor blade machine, and the sheet was fired at 1000 ° C. The porosity of the electrolyte substrate after firing was 62%, which was porous, and the dimensional change was about 1.2% expansion, and an electrolyte substrate with a very small dimensional change could be obtained. The Al 2 O 3 fiber has a function of strengthening the electrolyte substrate, but if it is added after being converted into LiAlO 2 , the fiber becomes brittle and the strengthening effect is not exhibited. However, by forming an electrolyte substrate in the form of Al 2 O 3 as in the present invention and then converting it into LiAlO 2 in the substrate, the strengthening effect of Al 2 O 3 can be sufficiently exerted.

比較のために従来技術で行われているγ−LiAlO2粉末の
みで成形したシートについて同様の処理をした結果、気
孔率は45%、また、寸法変化は1000℃焼成で約1
0%の収縮を示した。
As a result of performing the same process on a sheet formed only by γ-LiAlO 2 powder, which is used in the prior art for comparison, the porosity is 45%, and the dimensional change is about 1 at 1000 ° C. firing.
It showed 0% shrinkage.

実施例 (3) 次の第1表に示す組成で電解質基板用シートを成形後、
1000℃で焼成した電解質板に電解質を含浸させて溶
融炭酸塩型燃料電池用電解質基板とした。これらを電池
に組込んで性能試験を行つた。その結果を第3図に示
す。この結果は発電試験開始後500時間経過時のもの
であるが、本発明によるNo.1〜No.4の電解質基板を用い
た電池の性能は、従来技術による電解質基板(No.5)使
用の比較例よりも優れていることが認められる。
Example (3) After forming a sheet for an electrolyte substrate with the composition shown in Table 1 below,
An electrolyte plate fired at 1000 ° C. was impregnated with an electrolyte to obtain an electrolyte substrate for a molten carbonate fuel cell. A performance test was conducted by incorporating these into a battery. The results are shown in FIG. Although the results are obtained after 500 hours have passed from the start of the power generation test, the performance of the battery using the No. 1 to No. 4 electrolyte substrate according to the present invention is the same as that of the conventional electrolyte substrate (No. 5). It is recognized that it is superior to the comparative example.

なお、電解質を含浸させる方法としては、電解質板用グ
リーンシートを本実施例のように焼成後、電池組立前に
電池外部で含浸する方法に限定されるものでなく、電解
質板用グリーンシートを電池に組込んで電池内部でバイ
ンダーを分解除去しながら電解質を含浸する方法でも本
実施例と同様に良好な結果が得られた。
The method for impregnating the electrolyte is not limited to the method of impregnating the electrolyte sheet green sheet outside the battery after firing the electrolyte sheet green sheet as in this example and before assembling the battery. In the same manner as in this example, good results were obtained by the method of impregnating with electrolyte while decomposing and removing the binder inside the battery.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明にかかる溶融炭酸塩型燃料電
池用電解質基板の製造方法によれば、気孔率が十分確保
される結果、電解質の保持量が増える。したがつて、本
発明にかかる電解質基板を利用すれば電池性能を向上で
きる。
As described above, according to the method for producing an electrolyte substrate for a molten carbonate fuel cell according to the present invention, a sufficient porosity is ensured, and as a result, the amount of electrolyte retained increases. Therefore, the battery performance can be improved by using the electrolyte substrate according to the present invention.

また、電解質板の焼成過程における寸法変化が少ない。
したがつて面精度が良くなり、電池組立時における電解
質板の破損を防止できる。
Further, the dimensional change during the firing process of the electrolyte plate is small.
Therefore, the surface accuracy is improved, and damage to the electrolyte plate during battery assembly can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の一実施例のγ−LiAlO280
wt%にAl2O3粉末とリチウム塩(Li2CO3)の混合物を
20wt%添加した場合のLi2CO3/Al2O3量と気孔率及
び寸法変化率との関係を示すグラフ、第3図は本発明の
一実施例の電解質板を電池に組込んで電池性能を測定し
た場合の発電試験開始後500時間経過時の結果を示す
グラフである。
1 and 2 show γ-LiAlO 2 80 of one embodiment of the present invention.
A graph showing the relationship between the amount of Li 2 CO 3 / Al 2 O 3 and the porosity and dimensional change rate when 20 wt% of a mixture of Al 2 O 3 powder and lithium salt (Li 2 CO 3 ) was added to wt%. FIG. 3 is a graph showing the results of 500 hours after the start of the power generation test when the battery performance was measured by incorporating the electrolyte plate of one example of the present invention into the battery.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】γ−LiAlO2粉末に、該γ−LiAlO2との重量
比が0.1〜0.3の範囲であるAl2O3、及び該Al2O3とのモル
比が0.7〜1.2の範囲であるリチウム塩粉末を添加して電
解質基板の形に成形後焼成し、前記Al2O3とリチウム塩
粉末を反応させてLiAlO2を生成させることを特徴とする
溶融炭酸塩型燃料電池用電解質基板の製造方法。
To 1. A gamma-LiAlO 2 powder, the range of molar ratio 0.7 to 1.2 of Al 2 O 3, and the Al 2 O 3 weight ratio of the gamma-LiAlO 2 in the range of 0.1 to 0.3 Lithium salt powder is added to form an electrolyte substrate and then fired, and the Al 2 O 3 and the lithium salt powder are reacted to produce LiAlO 2, which is an electrolyte for a molten carbonate fuel cell. Substrate manufacturing method.
【請求項2】前記Al2O3は、Al2O3粉末またはAl2O3繊維
の少なくとも一種であることを特徴とする特許請求の範
囲第1項記載の溶融炭酸塩型燃料電池用電解質基板の製
造方法。
2. The molten carbonate fuel cell electrolyte according to claim 1, wherein the Al 2 O 3 is at least one of Al 2 O 3 powder and Al 2 O 3 fibers. Substrate manufacturing method.
【請求項3】前記リチウム塩として炭酸リチウムまたは
水酸化リチウムを用いることを特徴とする特許請求の範
囲第1項記載の溶融炭酸塩型燃料電池用電解質基板の製
造方法。
3. The method for producing an electrolyte substrate for a molten carbonate fuel cell according to claim 1, wherein lithium carbonate or lithium hydroxide is used as the lithium salt.
JP62028251A 1987-02-12 1987-02-12 Method for manufacturing electrolyte substrate for molten carbonate fuel cell Expired - Fee Related JPH0610987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028251A JPH0610987B2 (en) 1987-02-12 1987-02-12 Method for manufacturing electrolyte substrate for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028251A JPH0610987B2 (en) 1987-02-12 1987-02-12 Method for manufacturing electrolyte substrate for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS63198262A JPS63198262A (en) 1988-08-16
JPH0610987B2 true JPH0610987B2 (en) 1994-02-09

Family

ID=12243355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028251A Expired - Fee Related JPH0610987B2 (en) 1987-02-12 1987-02-12 Method for manufacturing electrolyte substrate for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0610987B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760090B2 (en) * 1989-10-13 1998-05-28 松下電器産業株式会社 Solid electrolyte

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121679A (en) * 1983-12-02 1985-06-29 Toppan Printing Co Ltd Manufacturing method of electrolytic tile for fuel cell
JPS6110057A (en) * 1984-06-25 1986-01-17 株式会社 富士電機総合研究所 Manufacture of lithium aluminate

Also Published As

Publication number Publication date
JPS63198262A (en) 1988-08-16

Similar Documents

Publication Publication Date Title
US7678470B2 (en) Reinforced matrix for molten carbonate fuel cell using porous aluminum support and method for preparing the molten carbonate fuel cell comprising the reinforced matrix
US5356731A (en) Molten cabonate fuel cell with sintered LiCoO2 electrode
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
JP3079098B2 (en) Method for producing positive electrode for molten carbonate fuel cell
EP0508745B1 (en) Fuel cell with a molten carbonate electrolyte retained in a matrix
JPH0610987B2 (en) Method for manufacturing electrolyte substrate for molten carbonate fuel cell
EP0111052B1 (en) Fuel cell electrode structure and method of making it
JP3445453B2 (en) Molten carbonate fuel cell
KR20140075526A (en) an electrode having conductive material integral structure and a secondary battery using thereof
JP3297610B2 (en) Manufacturing method of solid oxide fuel cell
JPS6316568A (en) Manufacture of electrolyte substrate for fused carbonate fuel cell
KR102590588B1 (en) Solid oxide fuel cells
EP3944406B1 (en) Composite solid electrolyte separator using inorganic fibers, and secondary battery using same
JP2799842B2 (en) Method for producing electrolyte plate for molten carbonate fuel cell and electrolyte plate for molten carbonate fuel cell
JPH0222505B2 (en)
JPH0576746B2 (en)
KR102117739B1 (en) Method of preparing anode-supported solid oxide fuel cell
JP2944097B2 (en) Molten carbonate fuel cell
US3567517A (en) Process for preparing cadmium electrodes
JPS62176063A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JP4511357B2 (en) Method for producing electrolyte matrix for molten carbonate fuel cell
JPH09320618A (en) Manufacture of gamma-lithium aluminate powder
CN113104831A (en) Lithium iron phosphate anode material, preparation method thereof, battery anode and lithium ion battery
CN115893521A (en) Ternary cathode material, preparation method thereof and lithium ion battery
JP2517750B2 (en) Method for producing molten salt fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees