JPH06109856A - Measuring device for momentum of atomic beam and molecular beam - Google Patents

Measuring device for momentum of atomic beam and molecular beam

Info

Publication number
JPH06109856A
JPH06109856A JP25776092A JP25776092A JPH06109856A JP H06109856 A JPH06109856 A JP H06109856A JP 25776092 A JP25776092 A JP 25776092A JP 25776092 A JP25776092 A JP 25776092A JP H06109856 A JPH06109856 A JP H06109856A
Authority
JP
Japan
Prior art keywords
collision surface
collision
atomic
molecular beam
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25776092A
Other languages
Japanese (ja)
Inventor
Katanobu Yokogawa
賢悦 横川
Takashi Yunogami
隆 湯之上
Tatsumi Mizutani
巽 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25776092A priority Critical patent/JPH06109856A/en
Publication of JPH06109856A publication Critical patent/JPH06109856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure a mean momentum of an atomic beam or a molecular beam by a comparatively simple device structure and without relation to a charged condition of an atom or a molecule. CONSTITUTION:There are arranged a collision face 1 where an atomic beam or a molecular beam executes collision, a mechanism 3 that displaces the collision face 1 by a proportional quantity to a power which the collision face 1 received through a collision of an atom or a molecule, and a mechanism that executes measurement by an optical position detecting device 6 through detecting a displacement of a reflection position of an irradiating laser light 4. As a composition is comparatively simple, an atomic beam or a molecular beam can be measured at an actually moving state and an usage as an acting state monitor of a semiconductor device or a nuclear fusion reaction reactor is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造用のプロセ
ス装置あるいは核融合反応炉等で用いられる方向性を持
った原子線あるいは分子線の運動量を計測する装置であ
り、これにより原子線あるいは分子線の速度、または流
量を評価することができる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the momentum of a directional atomic beam or molecular beam used in a semiconductor manufacturing process device or a nuclear fusion reactor. The present invention relates to a device capable of evaluating the velocity or flow rate of a molecular beam.

【0002】[0002]

【従来の技術】近年、半導体製造プロセスや核融合反応
炉などにおいて、ある一定の運動エネルギーを有する原
子や分子を一定方向に流した原子線や分子線が、しばし
ば用いられるようになってきた。このとき、その原子線
や分子線の作用、効果を評価するために、原子線や分子
線の流量や速度などの物理量を定量的に把握することが
必要である。しかし一般に、原子線や分子線の物理量を
計測する場合、それらがイオンなどの荷電粒子で構成さ
れている場合には、電場や磁場による軌道の変化や検出
器による電流の測定から計測が可能であるが、電荷を持
たない中性粒子の場合にはこれを直接検知する手法がな
く、その計測は極めて困難であった。したがって、通常
は、原子線や分子線の流れの途中に原子や分子をイオン
化する機構を設け、中性粒子を荷電粒子に変換した後に
計測するのが一般的であった。
2. Description of the Related Art In recent years, in a semiconductor manufacturing process, a nuclear fusion reactor, etc., an atom beam or a molecular beam in which an atom or a molecule having a certain kinetic energy is caused to flow in a certain direction has been often used. At this time, in order to evaluate the action and effect of the atomic beam or the molecular beam, it is necessary to quantitatively grasp the physical quantity such as the flow rate or velocity of the atomic beam or the molecular beam. However, in general, when measuring the physical quantity of an atomic beam or molecular beam, if they are composed of charged particles such as ions, it is possible to measure from the change of the orbit due to an electric field or magnetic field or the measurement of the current by a detector. However, in the case of neutral particles that do not have electric charges, there is no method for directly detecting them, and their measurement was extremely difficult. Therefore, generally, a mechanism for ionizing atoms or molecules is provided in the middle of the flow of the atomic beam or the molecular beam, and the neutral particles are generally converted into charged particles before measurement.

【0003】たとえば、従来、気相中の原子線や分子線
の速度を評価する手法として、原子や分子の飛行時間を
測定する方法があるが、この場合にも、中性粒子の場合
には装置内でイオン化するために特別の機構を必要と
し、装置構成が複雑となり、かつ大型となっていた。
For example, conventionally, there has been a method of measuring the flight time of atoms or molecules as a method for evaluating the velocity of an atomic beam or a molecular beam in a gas phase. In this case as well, in the case of neutral particles, A special mechanism is required for ionization in the device, resulting in a complicated device configuration and a large size.

【0004】このため、原子線や分子線の実際的な動作
状態、たとえば、原子線や分子線を半導体の加工に用い
ている最中に、上記の飛行時間測定器などの装置で原子
線や分子線を直接計測することは難しく、これらをプロ
セスモニタとして使用することは実用的に不可能に近か
った。
Therefore, while the atomic beam or the molecular beam is in a practical operating state, for example, while the atomic beam or the molecular beam is being used for processing a semiconductor, the atomic beam or the molecular beam is detected by a device such as the time-of-flight measuring device. It is difficult to directly measure the molecular beam, and it is practically impossible to use them as a process monitor.

【0005】[0005]

【発明が解決しようとする課題】上記したように、一般
に電荷を持たない原子線や分子線の物理量を簡単に計測
する手段は見出されておらず、半導体製造用のプロセス
装置や核融合反応炉などで用いられる原子線や分子線の
実用的な動作モニタは、まだ存在していなかった。
As described above, a means for easily measuring the physical quantity of an atomic beam or a molecular beam that generally does not have an electric charge has not been found, and a process device for semiconductor manufacturing or a fusion reaction is not found. Practical motion monitors for atomic and molecular beams used in furnaces have not yet existed.

【0006】本発明は上記の課題を解決するためになさ
れたもので、電荷の有無に関係なく、原子線や分子線の
運動量を計測し、原子線や分子線の速度や流量を簡単に
評価できる装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the momentum of an atomic beam or a molecular beam is measured irrespective of the presence or absence of an electric charge to easily evaluate the velocity and flow rate of the atomic beam or the molecular beam. The object is to provide a device that can.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明は、原子線や分子線を真空容器中に保持され
た板状の衝突面に衝突させ、衝突面が受ける力を衝突面
の位置の変化として検出し、原子線や分子線の平均的な
運動量を計測するものである。
In order to achieve this object, the present invention collides an atomic beam or a molecular beam with a plate-shaped collision surface held in a vacuum container, and the force received by the collision surface is applied to the collision surface. It is detected as a change in the position of, and the average momentum of an atomic beam or a molecular beam is measured.

【0008】まず、衝突面の位置の変化量を衝突面が受
けた力に比例させるために、衝突面をバネで支える。次
に、衝突面の変位量は極く微量であるため、その変位量
を検出する手法として、衝突面で反射したレーザ光の位
置の変化を光位置検出器で測定する、衝突面の裏面に近
接して置かれた電極との間の静電容量の変化で測定す
る、衝突面の裏面に近接して置かれた探針に流れるトン
ネル電流で測定する、あるいは、衝突面を風車のような
構造としてその回転数から測定する、などの機構を設け
る。
First, in order to make the amount of change in the position of the collision surface proportional to the force received by the collision surface, the collision surface is supported by a spring. Next, since the amount of displacement of the collision surface is extremely small, as a method of detecting the amount of displacement, the change in the position of the laser light reflected on the collision surface is measured with an optical position detector. It is measured by the change in the capacitance between the electrodes placed in close proximity, it is measured by the tunnel current flowing in the probe placed close to the back surface of the collision surface, or the collision surface is measured like a windmill. As a structure, a mechanism such as measuring from the number of rotations is provided.

【0009】[0009]

【作用】上記の原子線や分子線の運動量を計測する装置
では、本質的に衝突面が受ける圧力を測定しているの
で、原子線や分子線の荷電状態には関係がなく、中性の
粒子でもイオンでも全く同様に計測することができる。
また、衝突面の受けた圧力は原子や分子の質量、平均速
度、流量の三つの物理量の積で与えられるので、これら
のパラメータのうち二つが既知であれば、容易に他の一
つを求めることができる。
The above-mentioned device for measuring the momentum of an atomic beam or a molecular beam essentially measures the pressure applied to the collision surface. Both particles and ions can be measured in exactly the same way.
Also, since the pressure received by the collision surface is given by the product of three physical quantities of the mass of atoms and molecules, the average velocity, and the flow rate, if two of these parameters are known, the other one can be easily obtained. be able to.

【0010】さらに、上記の衝突面の変位量を測定する
場合、その最小検出感度は、レーザ光を用いる場合はμ
mのオーダであり、探針のトンネル電流を用いる場合は
nmのオーダ、静電容量の場合はその中間であり、それ
ぞれ用途に応じて、これらの測定手段を任意に選ぶこと
ができる。
Further, when measuring the amount of displacement of the collision surface, the minimum detection sensitivity is μ when laser light is used.
The order is m, the order is nm in the case of using the tunnel current of the probe, and the range is intermediate in the case of the electrostatic capacitance, and these measuring means can be arbitrarily selected according to the application.

【0011】[0011]

【実施例】始めに、本発明に係る原子線、分子線の運動
量計測装置の動作原理を図1を用いて説明する。衝突面
1に原子(分子)線2が衝突する場合の様子を、まず原
子(分子)線2中の個々の粒子で考えて見る。質量m
(kg)の粒子1個がu(m/s)の速度で衝突面1に
完全弾性衝突した場合、衝突面の受ける運動量変化は2
muとなる。よって、1秒当たりN個の粒子が同じよう
に衝突面1に入射し完全弾性衝突すると、衝突面の受け
る力は2muN(N)となる。完全弾性衝突しない場合
は、衝突面1に入射する粒子の運動エネルギーの一部が
衝突面1の温度を上昇させる熱エネルギーとなる。しか
し、この熱エネルギーに変換される割合は衝突面の状
態、入射する粒子の種類、入射粒子の速度、及び入射粒
子の内部エネルギーの状態できまる。よって、一定の状
態の原子(分子)線であれば、衝突面1に作用する力は
muNに比例した値となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the operating principle of the atomic beam and molecular beam momentum measuring apparatus according to the present invention will be described with reference to FIG. First, let us consider how the atomic (molecular) beam 2 collides with the collision surface 1 by considering individual particles in the atomic (molecular) beam 2. Mass m
When one particle (kg) collides with the collision surface 1 completely elastically at a velocity of u (m / s), the change in momentum on the collision surface is 2
It will be mu. Therefore, when N particles per second are similarly incident on the collision surface 1 and a perfect elastic collision occurs, the force received by the collision surface is 2 muN (N). If the elastic collision does not occur, a part of the kinetic energy of the particles incident on the collision surface 1 becomes thermal energy that raises the temperature of the collision surface 1. However, the rate of conversion into this thermal energy depends on the state of the collision surface, the type of incident particles, the velocity of the incident particles, and the state of the internal energy of the incident particles. Therefore, if the atom (molecule) beam is in a constant state, the force acting on the collision surface 1 has a value proportional to muN.

【0012】上記より衝突面に作用する力は原子(分
子)線の平均運動量に比例し、その方向は原子(分子)
線の進行方向である。つぎに衝突面1に作用した力を衝
突面の変位に変換するため、図1の装置構成ではバネ3
が設置されている。このバネ3により、衝突面1に作用
した力に比例し、その力の方向へ衝突面を変位させるこ
とができる。なお、この衝突面1は真空容器内に保持さ
れているので、容器内の真空雰囲気のガス圧力をも受け
るが、衝突面1の表裏は同一真空中にあるため、真空雰
囲気のガス圧力は相互にキャンセルされ、衝突面1を変
位させる圧力としては現われてこない。
From the above, the force acting on the collision surface is proportional to the average momentum of the atomic (molecular) ray, and its direction is the atomic (molecular)
The direction of travel of the line. Next, in order to convert the force acting on the collision surface 1 into the displacement of the collision surface, in the device configuration of FIG.
Is installed. With this spring 3, the collision surface can be displaced in the direction of the force in proportion to the force acting on the collision surface 1. Since the collision surface 1 is held in the vacuum container, it receives the gas pressure of the vacuum atmosphere in the container, but since the front and back surfaces of the collision surface 1 are in the same vacuum, the gas pressures of the vacuum atmosphere are mutually different. However, it does not appear as a pressure for displacing the collision surface 1.

【0013】原子(分子)線の衝突による衝突面1の変
位は、一般的に極微量である。この極微量の変位を検出
するため、図1の装置構成では、衝突面1の裏面にレー
ザ光4を照射するレーザ光発振器5およびレーザ光4の
反射光9の変位を検出する光位置検器6が設置されてい
る。図1の構成で衝突面1の変位を検出できる原理を図
2で説明する。衝突面1が原子(分子)線の衝突により
破線で示す位置まで極わずか変位すると、固定されたレ
ーザ光発振器5より発せられたレーザ光4の反射光9
は、衝突面1の変位前に比べ光位置検出器6での到達位
置がずれる。このずれの量を光位置検出器6で検出すれ
ば、衝突面1の変位量を知ることができる。
The displacement of the collision surface 1 due to the collision of the atomic (molecular) beam is generally very small. In order to detect this minute amount of displacement, in the device configuration of FIG. 1, a laser light oscillator 5 that irradiates the back surface of the collision surface 1 with the laser light 4 and an optical position detector that detects the displacement of the reflected light 9 of the laser light 4 are detected. 6 is installed. The principle by which the displacement of the collision surface 1 can be detected with the configuration of FIG. 1 will be described with reference to FIG. When the collision surface 1 is slightly displaced to the position shown by the broken line due to collision of the atomic (molecular) beam, the reflected light 9 of the laser light 4 emitted from the fixed laser light oscillator 5 is generated.
Is displaced from the position reached by the optical position detector 6 before the collision surface 1 is displaced. If the amount of this shift is detected by the optical position detector 6, the amount of displacement of the collision surface 1 can be known.

【0014】図3に衝突面1の変位の検出を、衝突面1
と衝突面の裏面に近接させた電極11との間の静電容量
を検出して行う場合を示す。図3に示されるように、衝
突面の裏面に一定の面積を有する電極11を精度良く平
行に近接させて固定する。衝突面1と電極11との間の
静電容量は、衝突面1と電極11間の距離に反比例す
る。よってこの静電容量を静電容量測定器12で測定す
ることで、衝突面1の変位、すなわち原子(分子)線の
平均運動量を測定することができる。
The displacement of the collision surface 1 is detected in FIG.
The case where the capacitance between the electrode 11 and the electrode 11 that is brought close to the back surface of the collision surface is detected is shown. As shown in FIG. 3, the electrode 11 having a constant area is accurately and parallelly and closely fixed to the back surface of the collision surface. The capacitance between the collision surface 1 and the electrode 11 is inversely proportional to the distance between the collision surface 1 and the electrode 11. Therefore, by measuring this capacitance with the capacitance measuring device 12, the displacement of the collision surface 1, that is, the average momentum of the atomic (molecular) ray can be measured.

【0015】図4に衝突面1の変位の検出を、衝突面1
と衝突面1の裏面に近接させた探針13で行う場合を示
す。探針13を衝突面1の裏面に数オングストロームの
オーダで近接させ探針13と衝突面1との間に電源14
で電圧を印加すると、探針13と衝突面1との間にトン
ネル電流が流れる。このトンネル電流は探針13と衝突
面1の裏面間の距離に依存し、また、探針13と衝突面
1の裏面間の距離は、積層型圧電駆動素子15により任
意に変化させることができる。よって、探針13に流れ
るトンネル電流が一定になるように積層型圧電駆動素子
15を積層型圧電駆動素子コントローラ16で駆動させ
れば、この積層型圧電駆動素子15の駆動量は衝突面1
の変位量を表すことになり、積層型圧電駆動素子15の
駆動に要した電圧等から衝突面1の変位量を測定するこ
とができる。
The displacement of the collision surface 1 is detected in FIG.
And a case where the probe 13 is placed close to the back surface of the collision surface 1. The probe 13 is brought close to the back surface of the collision surface 1 on the order of several angstroms, and a power supply 14 is provided between the probe 13 and the collision surface 1.
When a voltage is applied at, a tunnel current flows between the probe 13 and the collision surface 1. This tunnel current depends on the distance between the probe 13 and the back surface of the collision surface 1, and the distance between the probe 13 and the back surface of the collision surface 1 can be arbitrarily changed by the laminated piezoelectric drive element 15. . Therefore, if the laminated piezoelectric driving element 15 is driven by the laminated piezoelectric driving element controller 16 so that the tunnel current flowing through the probe 13 becomes constant, the driving amount of the laminated piezoelectric driving element 15 is the collision surface 1.
Therefore, the displacement amount of the collision surface 1 can be measured from the voltage required for driving the laminated piezoelectric drive element 15.

【0016】図5は衝突面が受けた力を回転力に変換し
測定する場合を示す。回転軸17に放射状に衝突面を複
数枚設置し、風車18を形成する。一つの衝突面に原子
(分子)線が衝突すると衝突面は回転軸17を中心に図
5に示したように回転し、次の衝突面が原子(分子)線
にさらされる。このように次々と衝突面が原子(分子)
線にさらされることで、風車18は原子(分子)線の流
量、および速度に比例した回転数に収束する。よって、
この風車18の回転数を計数することで原子(分子)線
の平均運動量を計測することができる。
FIG. 5 shows a case where the force received by the collision surface is converted into a rotational force and measured. A plurality of collision surfaces are radially installed on the rotating shaft 17 to form a wind turbine 18. When an atomic (molecular) beam collides with one collision surface, the collision surface rotates about the rotation axis 17 as shown in FIG. 5, and the next collision surface is exposed to the atomic (molecular) ray. In this way, the collision surfaces are atoms (molecules) one after another.
By being exposed to the rays, the wind turbine 18 converges on the rotational speed that is proportional to the flow rate and velocity of the atomic (molecular) ray. Therefore,
By counting the number of rotations of the windmill 18, the average momentum of the atomic (molecular) ray can be measured.

【0017】以上述べたように、これらの原子(分子)
線の運動量計測装置においては、原子や分子の荷電状態
に関係なく、比較的小型で簡単な構成で原子線や分子線
の平均的な運動量が計測できる。したがって、本装置を
半導体製造プロセスや核融合反応炉などで用いられる原
子線や分子線の実用的な動作状態モニタとして、利用す
ることができる。
As mentioned above, these atoms (molecules)
An apparatus for measuring the momentum of a line can measure an average momentum of an atomic beam or a molecular beam with a relatively small and simple structure regardless of the charged state of the atom or the molecule. Therefore, the present apparatus can be used as a practical operating state monitor for atomic beams and molecular beams used in semiconductor manufacturing processes, nuclear fusion reactors, and the like.

【0018】[0018]

【発明の効果】本発明により、原子や分子の荷電状態に
関係なく、また比較的簡単な装置構成で原子線や分子線
の平均運動量を計測することが可能となり、本発明を半
導体製造装置や核融合反応炉などで用いられる原子線や
分子線の実用的な動作状態モニタとして使用できる。
According to the present invention, it is possible to measure the average momentum of an atomic beam or a molecular beam regardless of the charge state of atoms or molecules and with a relatively simple device configuration. It can be used as a practical operating state monitor for atomic and molecular beams used in nuclear fusion reactors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子線、分子線の運動量計測装置
の基本構成図である。
FIG. 1 is a basic configuration diagram of an atomic beam / molecular beam momentum measuring device according to the present invention.

【図2】衝突面の変位をレーザ光の反射で計測する場合
の原理説明図である。
FIG. 2 is an explanatory diagram of the principle of measuring the displacement of the collision surface by reflection of laser light.

【図3】衝突面の変位を静電容量の変化で計測する場合
の装置構成図である。
FIG. 3 is a device configuration diagram in the case of measuring the displacement of a collision surface by a change in electrostatic capacitance.

【図4】衝突面の変位を探針と衝突面間に流れるトンネ
ル電流で計測する場合の装置構成図である。
FIG. 4 is a device configuration diagram in the case of measuring the displacement of the collision surface by a tunnel current flowing between the probe and the collision surface.

【図5】原子(分子)線の平均運動量を衝突面の回転数
で計測する場合の原理説明図である。
FIG. 5 is a principle explanatory view in the case of measuring the average momentum of an atomic (molecular) ray by the rotation speed of the collision surface.

【符号の説明】[Explanation of symbols]

1…衝突面 2…原子(分子)線 3…バネ 4…レーザ光 5…レーザ光発振器 6…光位置検出器 9…反射光 11…電極 12…静電容量測定器 13…探針 14…電源 15…積層型圧電駆動素子 16…積層型圧電駆動素子コントローラ 17…回転軸 18…風車 DESCRIPTION OF SYMBOLS 1 ... Collision surface 2 ... Atom (molecule) beam 3 ... Spring 4 ... Laser light 5 ... Laser light oscillator 6 ... Optical position detector 9 ... Reflected light 11 ... Electrode 12 ... Capacitance measuring instrument 13 ... Probe 14 ... Power supply 15 ... Laminated piezoelectric drive element 16 ... Laminated piezoelectric drive controller 17 ... Rotating shaft 18 ... Windmill

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】原子線、分子線を衝突させる衝突面を真空
容器内に保持し、該衝突面が上記原子線、分子線より受
けた力に比例した量だけ該衝突面を変位させる手段と、
該衝突面の変位量を検出する手段とから構成される原子
線、分子線の運動量計測装置。
1. A means for holding a collision surface for colliding an atomic beam and a molecular beam in a vacuum vessel, and displacing the collision surface by an amount proportional to the force received by the collision surface from the atomic beam and the molecular beam. ,
An atomic beam and molecular beam momentum measuring device comprising means for detecting the amount of displacement of the collision surface.
【請求項2】該衝突面を該衝突面が受けた力に比例した
量だけ変位させる手段が、該衝突面に取り付けられたバ
ネであることを特徴とする請求項1記載の原子線、分子
線の運動量計測装置。
2. The atomic beam and molecule according to claim 1, wherein the means for displacing the collision surface by an amount proportional to the force received by the collision surface is a spring attached to the collision surface. Line momentum measuring device.
【請求項3】該衝突面の変位量を検出する手段が、該衝
突面あるいは該衝突面の裏面にレーザ光を照射し、その
反射光の変位を光位置検出器で検出することを特徴とす
る請求項1記載の原子線、分子線の運動量計測装置。
3. A means for detecting the amount of displacement of the collision surface, irradiating the collision surface or the back surface of the collision surface with laser light, and detecting the displacement of the reflected light by an optical position detector. The atomic beam and molecular beam momentum measuring device according to claim 1.
【請求項4】該衝突面の裏面に電極を近接させ、該衝突
面の裏面と該電極間の静電容量を検出する手段を有し、
該静電容量の変化から該衝突面の変位量を検出すること
を特徴とする請求項1記載の原子線、分子線の運動量計
測装置。
4. A means for bringing an electrode close to the back surface of the collision surface to detect a capacitance between the back surface of the collision surface and the electrode,
2. The atomic beam and molecular beam momentum measuring device according to claim 1, wherein the displacement amount of the collision surface is detected from the change in the electrostatic capacitance.
【請求項5】該衝突面の裏面に探針を近接させ、該衝突
面の裏面と該探針との間に流れるトンネル電流を検出す
る手段を有し、該探針に流れるトンネル電流が一定とな
るような該探針の変位より該衝突面の変位量を検出する
ことを特徴とする請求項1記載の原子線、分子線の運動
量計測装置。
5. A means for detecting a tunnel current flowing between the back surface of the collision surface and the probe by bringing the probe close to the back surface of the collision surface, the tunnel current flowing through the probe is constant. 2. The atomic beam and molecular beam momentum measuring apparatus according to claim 1, wherein the displacement of the collision surface is detected from the displacement of the probe.
【請求項6】該衝突面に原子線、分子線が衝突すること
で該衝突面が受ける力を該衝突面の回転力に変換する手
段を有し、該衝突面の回転数を計数し、原子線、分子線
の運動量を計測することを特徴とする請求項1記載の原
子線、分子線の運動量計測装置。
6. A means for converting a force received by the collision surface by collision of an atomic beam or a molecular beam into the collision surface into a rotational force of the collision surface, counting the number of revolutions of the collision surface, The atomic beam and molecular beam momentum measuring device according to claim 1, which measures the atomic beam and molecular beam momentum.
JP25776092A 1992-09-28 1992-09-28 Measuring device for momentum of atomic beam and molecular beam Pending JPH06109856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25776092A JPH06109856A (en) 1992-09-28 1992-09-28 Measuring device for momentum of atomic beam and molecular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25776092A JPH06109856A (en) 1992-09-28 1992-09-28 Measuring device for momentum of atomic beam and molecular beam

Publications (1)

Publication Number Publication Date
JPH06109856A true JPH06109856A (en) 1994-04-22

Family

ID=17310720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25776092A Pending JPH06109856A (en) 1992-09-28 1992-09-28 Measuring device for momentum of atomic beam and molecular beam

Country Status (1)

Country Link
JP (1) JPH06109856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093304A1 (en) * 2000-05-25 2001-12-06 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for particle detection using a sensor structure having a moveable portion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093304A1 (en) * 2000-05-25 2001-12-06 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for particle detection using a sensor structure having a moveable portion

Similar Documents

Publication Publication Date Title
Mobley Proposed Methods for Producing Short Intense Monoenergetic Ion Pulses
Rutherford The scattering of α and β particles by matter and the structure of the atom
CN114113177B (en) Small-angle neutron scattering microscopic dynamics measurement system
Wall et al. Elastic scattering of 22-MeV alpha particles
JPS6048692B2 (en) mass flow meter
JPH06109856A (en) Measuring device for momentum of atomic beam and molecular beam
KR0151405B1 (en) Surface measuring method and apparatus
Fremerey Apparatus for determination of residual drag torque on small spinning spheres in magnetic suspension
US4924100A (en) Strain and temperature measurement
Castoldi et al. Performance of silicon drift detectors in a magnetic field
Mackinnon et al. Proton moiré fringes for diagnosing electromagnetic fields in opaque materials and plasmas
Fessenden The Astron On‐Line Beam Energy Analyzer
RU2138797C1 (en) Method and device to study physical properties of surface layer of material
US3511079A (en) Method and apparatus for testing bearings
JPH0251134B2 (en)
RU2190864C2 (en) Device registering dust and gas component of own external atmosphere of spacecraft
Blythe et al. Molecular beam scattering
US3311746A (en) Electron beam device for measuring the displacement of one body relative to another
CN113252646B (en) Method and device for judging ablation impulse by using laser ablation plasma emission spectrum information
Hemstreet Three-phase velocity distribution of lycopodium particles on the Masuda panel
Mishina et al. A Laser Doppler Microscope–Its Signal-Analyzing Systems–
Norqvist et al. Isotropic and perpendicular energization of oxygen ions at energies below 1 eV
JPH02173549A (en) Detecting method for fatigue crack in rotary bending endurance test of wheel for automobile
JP2007183186A (en) Charged particle detecting method, charged particle control method using it
Pauly et al. Velocity Measurement and Selection