JPH06109640A - Manufacture of optical fiber opt0-load - Google Patents

Manufacture of optical fiber opt0-load

Info

Publication number
JPH06109640A
JPH06109640A JP25960792A JP25960792A JPH06109640A JP H06109640 A JPH06109640 A JP H06109640A JP 25960792 A JP25960792 A JP 25960792A JP 25960792 A JP25960792 A JP 25960792A JP H06109640 A JPH06109640 A JP H06109640A
Authority
JP
Japan
Prior art keywords
optical fiber
thin film
vacuum chamber
holder
optrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25960792A
Other languages
Japanese (ja)
Inventor
Osamu Toyama
修 遠山
Shigeo Maeda
重雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP25960792A priority Critical patent/JPH06109640A/en
Publication of JPH06109640A publication Critical patent/JPH06109640A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an optical fiber opto-load having a functional film of high quality at its tip, with no trained skill required, easily and at low costs. CONSTITUTION:An end of long optical fiber F is introduced in a film forming vacuum bath X so that its end face 2 at least exposes itself in the bath X, while a sealing means 3 is also provided. Then, by a film farming means, a functional film is formed on the end face 2 of the optical fiber F. It is recommended that an end of the long optical fiber F is inserted into a cylindrical holder, and the gap between the inner periphery wall of the holder and the optical fiber F is sealed up far air-tight. Then the holder is inserted into an opening provided at a vacuum bath A for fixing, and the end face 2 of the optical fiber F is introduced into the film forming vacuum bath X.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱、磁界、電界等の物
理量、イオンや濃度等の化学量等の測定量を検出の対象
とし、これらに反応して状態変化を生じ、光の強さ、位
相、周波数等の検出信号を得ることが可能な機能薄膜を
光ファイバの先端面に形成してなる光ファイバオプトロ
ードの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended for detection of physical quantities such as heat, magnetic field and electric field, and measured quantities such as chemical quantities such as ions and concentrations. The present invention relates to a method for manufacturing an optical fiber optrode in which a functional thin film capable of obtaining detection signals such as phase, frequency, etc. is formed on the tip surface of an optical fiber.

【0002】[0002]

【従来の技術】特定のイオンや温度変化等に反応して自
らが状態変化を起こす薄膜(以下、機能薄膜という)を
光ファイバの先端部に設けて、該変化を光学的変化とし
て検知する光ファイバオプトロードは公知である。
2. Description of the Related Art A thin film (hereinafter, referred to as a functional thin film) that changes its state in response to a specific ion or temperature change is provided at the tip of an optical fiber, and the change is detected as an optical change. Fiber optrodes are known.

【0003】一方、薄膜の形成方法として、例えばスパ
ッタリング等の公知の薄膜形成法においては、その加工
プロセスにガスや真空を用いるために真空槽が必要であ
る。しかし、これらの方法で光ファイバの先端面に機能
薄膜の形成を行なう場合、長尺の光ファイバ本体全部を
真空槽内に入れてその先端部に機能薄膜を形成すること
は困難であるため、別途形成した機能薄膜を長尺の光フ
ァイバの先端面に接着する方法や、真空槽内に収納可能
な長さに切断した短尺光ファイバの先端面に上記方法で
機能薄膜を形成した後、これを長尺ファイバ本体に融着
する方法等が知られている。
On the other hand, as a thin film forming method, for example, in a known thin film forming method such as sputtering, a vacuum chamber is required in order to use gas or vacuum in the processing process. However, when the functional thin film is formed on the tip surface of the optical fiber by these methods, it is difficult to put the entire long optical fiber main body in the vacuum chamber and form the functional thin film on the tip portion. A method of adhering a separately formed functional thin film to the tip surface of a long optical fiber, or forming a functional thin film on the tip surface of a short optical fiber cut to a length that can be stored in a vacuum chamber by the above method, and then There is known a method of fusing the fiber to the long fiber body.

【0004】しかし、前者の方法は熟練した技能を必要
とするうえに歩留りが低く、コストが高くついてその生
産性に問題がある。また、後者の方法では上記問題に加
えて光ファイバ端面の鏡面研磨を短尺の先端面だけでな
く、短尺と長尺の接合面に対しても行なう必要があるた
めに工程が多く、さらに接合面に融着損失が発生すると
いう品質上の問題がある。
However, the former method requires a skilled skill, has a low yield, is expensive, and has a problem in productivity. Further, in the latter method, in addition to the above problems, it is necessary to perform mirror polishing of the end face of the optical fiber not only on the short tip surface but also on the short and long joint surfaces, so that there are many steps. However, there is a quality problem that fusion loss occurs.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
問題を解消し、熟練技能を必要とせず簡単に、かつ、低
コストで、高品質の機能薄膜を先端部に有する光ファイ
バオプトロードの製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to easily and inexpensively require no skill, and to provide an optical fiber optrode having a high-quality functional thin film at its tip. Is to provide a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明者等は、薄膜形成用の真空槽内への光ファイ
バのセッティング方法に着目し、長尺光ファイバの先端
面のみを真空槽内に導入して露出させ、該光ファイバの
導入部に封止手段を施し、真空槽を気密に保持するとと
もに、該光ファイバを支持し、薄膜形成手段によって容
易に光ファイバ先端面に機能薄膜を形成できることを見
出し本発明を完成した。
In order to achieve the above object, the inventors of the present invention focused on a method of setting an optical fiber in a vacuum chamber for forming a thin film, and examined only the end face of the long optical fiber. The optical fiber is introduced into the vacuum chamber and exposed, and a sealing means is applied to the introduction part of the optical fiber to keep the vacuum chamber airtight and the optical fiber is supported, and the thin film forming means facilitates the optical fiber tip surface. The present invention has been completed by finding that a functional thin film can be formed.

【0007】即ち、本発明の光ファイバオプトロードの
製造方法は、長尺光ファイバの一端部を薄膜形成用の真
空槽内に、その先端面が少なくとも上記槽内に露出する
ように封止手段を付設して導入し、次いで上記光ファイ
バの先端面に薄膜形成手段によって機能薄膜を形成する
もので、望ましくは、長尺光ファイバの一端部を筒状の
ホルダーに挿通すると共に、ホルダー内周壁と光ファイ
バとの間隙を気密封止し、このホルダーを真空槽に設け
た開口部に密嵌合させることにより、薄膜形成用の真空
槽内に光ファイバの先端面を導入するものである。
That is, in the method of manufacturing an optical fiber optrode of the present invention, a sealing means is provided so that one end of a long optical fiber is exposed in a vacuum chamber for forming a thin film and its tip end surface is exposed at least in the chamber. Is attached and introduced, and then a functional thin film is formed on the distal end face of the optical fiber by a thin film forming means. Desirably, one end of the long optical fiber is inserted into a cylindrical holder and the inner wall of the holder is inserted. The gap between the optical fiber and the optical fiber is hermetically sealed, and the holder is tightly fitted in the opening provided in the vacuum chamber to introduce the tip end surface of the optical fiber into the vacuum chamber for thin film formation.

【0008】本発明の光ファイバの先端面に形成する機
能薄膜は、熱、磁界、電界等の物理量、イオンや濃度等
の化学量などの測定量を検出の対象とし、これらによっ
て該薄膜の光学的特性が変化し、光の強さ、位相、周波
数等の変化として各測定量を検知するものである。具体
的に例示すると、例えばGaAs薄膜は、温度変化によ
ってその光学的特性が変化するので、熱が検出できる。
また、SiO2 やSi3 4 薄膜は、水素イオンに反応
してその光学的特性が変化するので、水素イオンの存在
が検出できる。その他の機能薄膜用物質と、その検出対
象、薄膜形成方法を、下記表1に示す。
The functional thin film formed on the front end surface of the optical fiber of the present invention is used for detection of physical quantities such as heat, magnetic field and electric field and measured quantities such as chemical quantities such as ions and concentrations. The physical characteristics change, and each measured amount is detected as a change in light intensity, phase, frequency, or the like. More specifically, for example, a GaAs thin film has optical characteristics that change with changes in temperature, so that heat can be detected.
Further, since the SiO 2 and Si 3 N 4 thin films react with hydrogen ions and change their optical characteristics, the presence of hydrogen ions can be detected. Table 1 below shows other functional thin film substances, their detection targets, and thin film forming methods.

【0009】[0009]

【表1】 [Table 1]

【0010】以下、本発明の光ファイバオプトロードの
製造方法について詳細に説明する。図1は、長尺光ファ
イバの先端面に機能薄膜を形成する基本的な方法を示す
模式断面図である。同図において、Fは光ファイバで、
その一端部を真空槽A内に、その先端面2が少なくと
も上記槽内に露出するように導入され、封止手段3を
付設して固定されている。本発明では、この光ファイバ
Fの先端面2に、薄膜形成手段(図示せず)を施して、
上記機能薄膜を形成して光ファイバオプトロードを製造
する。
The method of manufacturing the optical fiber optrode of the present invention will be described in detail below. FIG. 1 is a schematic cross-sectional view showing a basic method for forming a functional thin film on the tip surface of a long optical fiber. In the figure, F is an optical fiber,
The one end portion in the vacuum chamber A within X, the front end surface 2 is introduced so as to be exposed to at least the tank X, and is fixed by attaching a sealing means 3. In the present invention, a thin film forming means (not shown) is applied to the front end surface 2 of the optical fiber F,
An optical fiber optrode is manufactured by forming the functional thin film.

【0011】上記製造方法によると、長尺光ファイバF
がスプールに巻き取られた状態であっても、その一端部
を真空槽内へ導入し、その先端面2に直接機能薄膜を
形成することができるようになる。
According to the above manufacturing method, the long optical fiber F
Even when the film is wound on the spool, one end of the film can be introduced into the vacuum chamber X and the functional thin film can be directly formed on the tip surface 2.

【0012】上記封止手段3としては、光ファイバの一
端部を真空槽内に気密に固定できる手段であればよく、
例えば、シリコン系真空グリス等のゲル状のグリース封
止材やこのグリース封止材とスペーサとの組合せ等が使
用できる。
The sealing means 3 may be any means capable of hermetically fixing one end of an optical fiber in a vacuum chamber.
For example, a gel-like grease sealing material such as silicon vacuum grease or a combination of this grease sealing material and a spacer can be used.

【0013】本発明で使用できる薄膜形成手段として
は、前記したスパッタリングの他、CVD法、真空蒸着
法、分子線エピタキシャル法、イオン化蒸着法などが挙
げられる。本発明では、前記機能薄膜を、0.1〜10
μm、好ましくは1〜5μmの厚さに形成する。この機
能薄膜の厚さが0.1μm未満であれば、薄膜の粒界や
欠陥の影響が大きくなり、一方10μmを越えると、光
透過性の悪化、膜内残留応力増大となって好ましくな
い。
Examples of the thin film forming means that can be used in the present invention include the CVD method, the vacuum vapor deposition method, the molecular beam epitaxial method, the ionization vapor deposition method and the like, in addition to the above-mentioned sputtering. In the present invention, the functional thin film is 0.1-10
It is formed to a thickness of μm, preferably 1 to 5 μm. If the thickness of this functional thin film is less than 0.1 μm, the influence of grain boundaries and defects in the thin film becomes large, while if it exceeds 10 μm, the light transmittance is deteriorated and the residual stress in the film increases, which is not preferable.

【0014】なお、本発明では、図2に示すように、筒
状のホルダー(以下、キャピラリーとよぶ)4を真空槽
Aに密嵌合させ、このキャピラリー4内に長尺光ファイ
バFの一端部を挿通して槽内に光ファイバの先端面2
を導入し、キャピラリー4の内周壁と光ファイバFとの
間隙に封止手段3を施すようにしてもよい。上記キャピ
ラリー4を用いると、光ファイバの先端面2を、真空槽
に容易に露出させた状態で固定できるようになり好
ましい。
In the present invention, as shown in FIG. 2, a cylindrical holder (hereinafter referred to as a capillary) 4 is tightly fitted in a vacuum chamber A, and one end of a long optical fiber F is placed in the capillary 4. The end face 2 of the optical fiber in the bath X
May be introduced, and the sealing means 3 may be provided in the gap between the inner peripheral wall of the capillary 4 and the optical fiber F. The use of the above-mentioned capillary 4 is preferable because the tip end surface 2 of the optical fiber can be easily fixed in the vacuum chamber X while being exposed.

【0015】また、本発明では、図3に示すように、複
数個のキャピラリー4を密嵌合した光ファイバホルダ6
を、真空槽Aに設けた開口部7に着脱自在に、気密に固
定する構成とすることもできる。この方法によれば、一
度に複数の光ファイバの先端面2を、真空槽内に容易
に固定できるようになり好ましい。
Further, in the present invention, as shown in FIG. 3, an optical fiber holder 6 in which a plurality of capillaries 4 are tightly fitted is provided.
Can be detachably and airtightly fixed to the opening 7 provided in the vacuum chamber A. According to this method, the tip surfaces 2 of a plurality of optical fibers can be easily fixed in the vacuum chamber X at one time , which is preferable.

【0016】したがって、光ファイバオプトロードが大
量に生産できるようになって、作業効率を大幅に向上さ
せることが可能となる。
Therefore, the optical fiber optrode can be mass-produced, and the working efficiency can be greatly improved.

【0017】また、本発明では、上記光ファイバホルダ
6に光ファイバを固定する他の方法として、図4に示す
ように、光ファイバホルダ6に密嵌合させた大口径のキ
ャピラリー4内に、複数の光ファイバを高真空用ゴム5
およびグリース3で気密に固定する構成とすることもで
きる。この方法によれば、複数の光ファイバを一本のキ
ャピラリー内に固定できるようになり、作業効率を大幅
に向上させるとともに、コスト低減が可能となる。
Further, in the present invention, as another method of fixing the optical fiber to the optical fiber holder 6, as shown in FIG. 4, in a large-diameter capillary 4 tightly fitted to the optical fiber holder 6, Rubber for high vacuum with multiple optical fibers 5
Alternatively, the grease 3 may be used to hermetically fix it. According to this method, a plurality of optical fibers can be fixed in a single capillary, work efficiency can be significantly improved, and cost can be reduced.

【0018】[0018]

【作用】上記製造方法によれば、長尺光ファイバがスプ
ールに巻き取られた状態であっても、その一端部を真空
槽内へ導入し、その先端面に直接機能薄膜を形成するこ
とができるようになる。また、光ファイバをキャピラリ
ーを用いて固定するので、光ファイバの先端面を真空槽
内に、容易に露出させて固定することができるようにな
る。
According to the above-mentioned manufacturing method, even when the long optical fiber is wound on the spool, one end of the long optical fiber can be introduced into the vacuum chamber and the functional thin film can be directly formed on the tip surface thereof. become able to. Further, since the optical fiber is fixed using the capillary, the tip end surface of the optical fiber can be easily exposed and fixed in the vacuum chamber.

【0019】また、複数のキャピラリーを密嵌合した光
ファイバホルダを用いるので、一度に複数の光ファイバ
の先端面を真空槽内に、容易に露出させて固定すること
ができるようになり、作業効率が大幅に向上する。さら
に、光ファイバホルダに大口径のキャピラリーを密嵌合
し、これに複数の光ファイバを気密に固定するので、作
業効率が大幅に向上するとともに、コスト低減が図れ
る。
Further, since the optical fiber holder in which a plurality of capillaries are tightly fitted is used, the tip surfaces of a plurality of optical fibers can be easily exposed and fixed in the vacuum chamber at one time. Greatly improves efficiency. Furthermore, since a large-diameter capillary is tightly fitted to the optical fiber holder and a plurality of optical fibers are airtightly fixed to this, working efficiency is greatly improved and cost can be reduced.

【0020】[0020]

【実施例】以下、実施例を示し、本発明をより具体的に
説明する。なお、本発明がこの実施例に限定されるもの
でないことはいうまでもない。 (光ファイバの固定)まず、直径150μm(コア径1
00μm)のステップインデックス型光ファイバの先端
面を鏡面研磨した後、これを孔径0.5mmのキャピラ
リー4に挿通し、シリコン系真空グリス3を上記キャピ
ラリー4と光ファイバFとの間隙に充填し固定した。つ
いで上記キャピラリー4を20個密嵌合した、鋼製ディ
スク型ホルダ6を真空槽Aに設けた開口部7にボルトで
気密に取着し、20本の光ファイバの先端面2を真空槽
に露出した状態で固定した。
EXAMPLES Hereinafter, the present invention will be described more specifically by showing examples. Needless to say, the present invention is not limited to this embodiment. (Fixation of optical fiber) First, diameter 150 μm (core diameter 1
(00 μm) step-index type optical fiber is mirror-polished at its tip and then inserted into a capillary 4 having a hole diameter of 0.5 mm, and silicon-based vacuum grease 3 is filled and fixed in the gap between the capillary 4 and the optical fiber F. did. Then, a steel disk-shaped holder 6 in which 20 capillaries 4 were tightly fitted was airtightly attached to the opening 7 provided in the vacuum chamber A with bolts, and the tip surfaces 2 of the 20 optical fibers were placed in the vacuum chamber. It was fixed while being exposed to X.

【0021】(薄膜形成)上記ディスクホルダ6を高周
波電源(図示せず)に接続して、平行平板型スパッタ装
置Aの下部電極を兼ねるようにした。また、ターゲット
にはGaAsを用いた。この状態で密閉槽内部を2.0
×10-7Torrまで真空引きし、さらに予め25gの
砒素金属が挿入されているエフュージョンセルを260
°Cに加熱して、1.6×10-6Torrの砒素圧をか
けた。これは、GaAsスパッタ時に堆積膜からのAs
抜けを防ぐためである。この後、アルゴンガスを密閉槽
内部に導入し、槽内圧力を3.6×10-2Torrに維
持し、陽極電圧1.5KV、進行波電力110W、反射
波電力10W、陽極電流100mAでプラズマを発生さ
せ、シャッターを閉じた状態でプリスパッタを20分間
行なった後シャッターを開き、本スパッタを3時間行っ
た。この操作によって、光ファイバの各先端面2に厚さ
約3μmのGaAs薄膜を形成した、20本の光ファイ
バオプトロードが製造できた。
(Formation of Thin Film) The disk holder 6 was connected to a high frequency power source (not shown) so as to also serve as the lower electrode of the parallel plate type sputtering apparatus A. Further, GaAs was used as the target. In this state, the inside of the closed tank is 2.0
Vacuum down to × 10 -7 Torr, and then use an effusion cell 260 in which 25 g of arsenic metal is previously inserted.
It was heated to ° C and an arsenic pressure of 1.6 x 10 -6 Torr was applied. This is because As from the deposited film during GaAs sputtering.
This is to prevent omission. After that, argon gas was introduced into the sealed tank, the pressure in the tank was maintained at 3.6 × 10 -2 Torr, plasma was generated at an anode voltage of 1.5 KV, traveling wave power of 110 W, reflected wave power of 10 W, and anode current of 100 mA. Was generated, pre-sputtering was performed for 20 minutes with the shutter closed, the shutter was opened, and main sputtering was performed for 3 hours. By this operation, 20 optical fiber optrodes in which a GaAs thin film having a thickness of about 3 μm was formed on each tip surface 2 of the optical fiber could be manufactured.

【0022】(光ファイバオプトロードの機能試験)光
ファイバオプトロードの反対端から、光源としてAlA
sGaLED光(波長0.86μm)を入射し、オプト
ロードを通過し反射した光の強度を測定した。上記作製
した一本のオプトロードを恒温槽に入れ、この恒温槽の
温度を50℃から100℃に変えたところ、GaAs薄
膜の光吸収端が長波長側にシフトして反射光の強度が減
少した。
(Functional Test of Optical Fiber Optrode) From the opposite end of the optical fiber optrode, AlA is used as a light source.
The sGaLED light (wavelength 0.86 μm) was incident, and the intensity of light reflected by passing through the optrode was measured. When one optrode prepared above was placed in a thermostat and the temperature of the thermostat was changed from 50 ° C to 100 ° C, the light absorption edge of the GaAs thin film shifted to the long wavelength side and the intensity of reflected light decreased. did.

【0023】この結果、実施例で得られた光ファイバオ
プトロードが、液体の温度変化を検知できるものである
ことが確認された。
As a result, it was confirmed that the optical fiber optrode obtained in the example can detect the temperature change of the liquid.

【0024】なお、上記実施例では、キャピラリーを用
いて光ファイバを密閉槽に固定したが、キャピラリーな
しに光ファイバの先端面を真空槽内に、露出させて固定
する方法によっても、同様の光ファイバオプトロードが
得られた。また、上記実施例では、温度変化を検知でき
るGaAs薄膜の例を示したが、前記表1に示す他の機
能薄膜を形成しても、それぞれの検出対象物を検知でき
た。
In the above embodiment, the optical fiber is fixed to the closed chamber by using the capillary. However, the same optical property can be obtained by exposing and fixing the end face of the optical fiber in the vacuum chamber without the capillary. A fiber optrode was obtained. Further, in the above-mentioned embodiment, the example of the GaAs thin film capable of detecting the temperature change is shown, but even if the other functional thin films shown in Table 1 are formed, the respective detection objects can be detected.

【0025】[0025]

【発明の効果】本発明の光ファイバオプトロードの製造
方法は、長尺光ファイバがスプールに巻き取られた状態
であっても、その一端部を真空槽内へ導入し、その先端
面に直接機能薄膜を形成することができるようになる。
また、光ファイバをキャピラリーを用いて固定するの
で、光ファイバの先端面を真空槽内に、容易に露出させ
て固定することができるようになる。また、複数のキャ
ピラリーを密嵌合した光ファイバホルダを用いるので、
一度に複数の光ファイバの先端面を真空槽内に、容易に
露出させて固定することができるようになり、作業効率
が大幅に向上する。さらに、光ファイバホルダに大口径
のキャピラリーを密嵌合し、これに複数の光ファイバを
気密に固定するので、作業効率が大幅に向上するととも
に、コスト低減が図れる。
According to the manufacturing method of the optical fiber optrode of the present invention, even if the long optical fiber is wound on the spool, one end of the long optical fiber is introduced into the vacuum chamber and is directly attached to the front end surface thereof. It becomes possible to form a functional thin film.
Further, since the optical fiber is fixed using the capillary, the tip end surface of the optical fiber can be easily exposed and fixed in the vacuum chamber. Moreover, since an optical fiber holder in which a plurality of capillaries are tightly fitted is used,
The tip surfaces of a plurality of optical fibers can be easily exposed and fixed in the vacuum chamber at one time, and work efficiency is significantly improved. Furthermore, since a large-diameter capillary is tightly fitted to the optical fiber holder and a plurality of optical fibers are airtightly fixed to this, working efficiency is greatly improved and cost can be reduced.

【0026】したがって、長尺の光ファイバ先端面に機
能薄膜を形成する工程に、従来のような熟練技能や光フ
ァイバの接合を必要とせず、高品質で安定した光ファイ
バオプトロードが安価で大量に製造できるようになる。
Therefore, the step of forming a functional thin film on the end face of a long optical fiber does not require the conventional skill and splicing of the optical fiber, and a high-quality and stable optical fiber optrode is inexpensive and large in volume. Can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的製造方法を示す模式断面図であ
る。
FIG. 1 is a schematic cross-sectional view showing a basic manufacturing method of the present invention.

【図2】キャピラリーを用いる方法を示す模式断面図で
ある。
FIG. 2 is a schematic cross-sectional view showing a method using a capillary.

【図3】複数のキャピラリーを用いる方法を示す模式断
面図である。
FIG. 3 is a schematic cross-sectional view showing a method using a plurality of capillaries.

【図4】一本のキャピラリーに複数の光ファイバを固定
する方法を示す模式断面図である。
FIG. 4 is a schematic cross-sectional view showing a method of fixing a plurality of optical fibers to one capillary.

【符号の説明】[Explanation of symbols]

A 真空槽 F 光ファイバ 真空槽内 1 導入部 2 先端面 3 封止手段A vacuum chamber F optical fiber X inside of vacuum chamber 1 introduction part 2 tip surface 3 sealing means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // G01N 21/00 Z 7370−2J G01R 33/032 8203−2G ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // G01N 21/00 Z 7370-2J G01R 33/032 8203-2G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長尺光ファイバの一端部を薄膜形成用の
真空槽内に、その先端面が少なくとも上記槽内に露出す
るように封止手段を付設して導入し、次いで上記光ファ
イバの先端面に薄膜形成手段によって機能薄膜を形成す
ることを特徴とする光ファイバオプトロードの製造方
法。
1. An end portion of a long optical fiber is introduced into a vacuum chamber for forming a thin film, with a sealing means attached so that its tip surface is exposed at least in the chamber, and then the optical fiber of the optical fiber is introduced. A method for manufacturing an optical fiber optrode, characterized in that a functional thin film is formed on the front end surface by a thin film forming means.
【請求項2】 長尺光ファイバの一端部を筒状のホルダ
ーに挿通すると共にホルダー内周壁と光ファイバとの間
隙を気密封止し、このホルダーを真空槽に設けた開口部
に密嵌合させることにより、薄膜形成用の真空槽内に光
ファイバの先端面を導入することを特徴とする請求項1
記載の光ファイバオプトロードの製造方法。
2. An end portion of a long optical fiber is inserted into a cylindrical holder, a gap between an inner peripheral wall of the holder and the optical fiber is hermetically sealed, and the holder is tightly fitted in an opening provided in a vacuum chamber. The leading end surface of the optical fiber is introduced into the vacuum chamber for thin film formation by performing the above.
A method for manufacturing the optical fiber optrode described.
JP25960792A 1992-09-29 1992-09-29 Manufacture of optical fiber opt0-load Pending JPH06109640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25960792A JPH06109640A (en) 1992-09-29 1992-09-29 Manufacture of optical fiber opt0-load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25960792A JPH06109640A (en) 1992-09-29 1992-09-29 Manufacture of optical fiber opt0-load

Publications (1)

Publication Number Publication Date
JPH06109640A true JPH06109640A (en) 1994-04-22

Family

ID=17336441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25960792A Pending JPH06109640A (en) 1992-09-29 1992-09-29 Manufacture of optical fiber opt0-load

Country Status (1)

Country Link
JP (1) JPH06109640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004691A1 (en) * 2005-06-30 2007-01-11 Nec Corporation Electric field/magnetic field sensor and method for fabricating them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004691A1 (en) * 2005-06-30 2007-01-11 Nec Corporation Electric field/magnetic field sensor and method for fabricating them
US8153955B2 (en) 2005-06-30 2012-04-10 Nec Corporation Electric field sensor and method for fabricating the same
US8519323B2 (en) 2005-06-30 2013-08-27 Nec Corporation Electric field/magnetic field sensors and methods of fabricating the same

Similar Documents

Publication Publication Date Title
KR101277905B1 (en) Apparatus for determining a temperature of a substrate and methods therefor
US11150285B2 (en) Photonic-crystal vapor cells for imaging of electromagnetic fields
US3803958A (en) Ultra thin sectioning with ultra sharp diamond edge at ultra low temperature
JP2912842B2 (en) Thin film forming equipment
Palisaitis Use of cleaved wedge geometry for plan‐view transmission electron microscopy sample preparation
JPH06109640A (en) Manufacture of optical fiber opt0-load
Shefer et al. Laboratory production of efficient alkali-antimonide photocathodes
JPS6064228A (en) Method and apparatus for preparing sample for transmission type electron microscope
US3646841A (en) Apparatus using ultrasharp diamond edge for ultrathin sectioning
Rivière The work function of uranium
JP4247347B2 (en) Sample positioning jig for glow discharge optical emission spectrometry, glow discharge optical emission spectrometer equipped with the jig, and sample positioning method using the jig
JPS61130848A (en) Ion milling apparatus with electron beam end point detection mechanism
Dunegan et al. Passive pressure transducer utilizing acoustic emission
Curren et al. Secondary electron emission characteristics of molybdenum-masked, ion-textured OFHC copper
JPH04136746A (en) Plasma spectroscope and forming apparatus for thin film
SU1675968A1 (en) Method of joint adjustment of electron and ion guns in auger spectrometers
JPH08166342A (en) Raman microspectroscopic measuring apparatus
CN116429806A (en) Method for measuring etching rate of film layer
JPH06102180A (en) Glow discharge spectral analysis device
Gillott A simple specimen airlock for field-ion microscopes
JPS5897203A (en) Method of forming transparent conductive film
JPS6010154A (en) Sample holding method and sample holder for analysis of metal surface
Marcus et al. A high vacuum large volume specimen chamber for an electron microscope
CN115424912A (en) Ultrafast scanning electron microscope system and using method thereof
JPS55163441A (en) Fluorescent analyzing method