JPH0610842B2 - Resistance change detection circuit - Google Patents

Resistance change detection circuit

Info

Publication number
JPH0610842B2
JPH0610842B2 JP58148082A JP14808283A JPH0610842B2 JP H0610842 B2 JPH0610842 B2 JP H0610842B2 JP 58148082 A JP58148082 A JP 58148082A JP 14808283 A JP14808283 A JP 14808283A JP H0610842 B2 JPH0610842 B2 JP H0610842B2
Authority
JP
Japan
Prior art keywords
resistance change
current
detection circuit
transistors
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58148082A
Other languages
Japanese (ja)
Other versions
JPS6040504A (en
Inventor
直喜 佐藤
善久 加茂
泰裕 加藤
稔 小菅
紳一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58148082A priority Critical patent/JPH0610842B2/en
Priority to US06/639,093 priority patent/US4716306A/en
Publication of JPS6040504A publication Critical patent/JPS6040504A/en
Publication of JPH0610842B2 publication Critical patent/JPH0610842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/9517Proximity switches using a magnetic detector using galvanomagnetic devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • G11B2005/0016Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、外部要因により自身の抵抗が変化する素子、
たとえば磁気抵抗効果型素子の抵抗変化を検出する回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Use of the Invention] The present invention relates to an element whose resistance changes due to an external factor,
For example, it relates to a circuit for detecting a resistance change of a magnetoresistive effect element.

〔発明の背景〕[Background of the Invention]

圧力、熱、磁界などの外部要因により自身の抵抗が変化
する抵抗変化素子の中に磁気抵抗効果型素子がある。こ
の磁気抵抗効果型素子は、外部磁界により比抵抗が変化
する素子であり、磁気カード読取機、磁気テープ、磁気
デイスクの磁気記憶装置等の読取用ヘツドとして用いら
れる。
There is a magnetoresistive effect element among resistance change elements whose resistance changes due to external factors such as pressure, heat, and magnetic field. This magnetoresistive effect element is an element whose specific resistance is changed by an external magnetic field, and is used as a reading head for a magnetic card reader, a magnetic tape, a magnetic storage device of a magnetic disk, or the like.

たとえば磁気抵抗効果型磁気ヘツドの抵抗変化検出回路
としては、第1図に示す回路がある(特開昭52-13570
6)。第1図において1は2端子型磁気抵抗効果型磁気
ヘツドであり、2はセンス電流源である。磁気抵抗効果
型磁気ヘツド1にはセンス電流源2による電流が流さ
れ、記憶媒体上の磁化からの漏れ磁界が変化することに
よつて、磁気抵抗効果型磁気ヘツド1の抵抗値が変化
し、磁界の変化に応じた高周波信号電圧となつて、派生
電圧源13を通つて前置増幅器7により増幅さる。この
とき磁気抵抗効果型磁気ヘツド1に流れるセンス電流I
MRは、磁気ヘツド1自体の抵抗値RMRとの積で発生する
電圧IMR・RMRが派生電圧源13の派生電圧VOSと等し
くなるように前置増幅器7およびフイードバツク回路1
9によつて制御される。
For example, there is a circuit shown in FIG. 1 as a resistance change detection circuit of a magnetoresistive effect type magnetic head (Japanese Patent Laid-Open No. 52-13570).
6). In FIG. 1, 1 is a two-terminal type magnetoresistive effect magnetic head, and 2 is a sense current source. A current from the sense current source 2 is passed through the magnetoresistive head 1 and the leakage magnetic field from the magnetization on the storage medium changes, so that the resistance value of the magnetoresistive head 1 changes. The high frequency signal voltage corresponding to the change of the magnetic field is amplified by the preamplifier 7 through the derived voltage source 13. At this time, the sense current I flowing through the magnetoresistive head 1
MR is the magnetic head 1 itself in the resistance voltage I MR · R MR is derived voltage source to be equal to the derived voltage V OS of 13 preamplifier 7 and fed back circuit 1 for generating the product of the R MR
Controlled by 9.

この回路では、磁気抵抗効果型磁気ヘツド1の一端子9
が交流的な接地であるのに対し、もう一方の端子8が高
インピーダンスの信号ラインとなるため、磁気ヘツド1
の両端子に加わる外来ノイズに対しては、端子9に対し
て端子8に雑音が加わり易く、雑音が差動成分として残
り、信号のS/Nが低下する。また派生電圧VOSは、実
施例では前置増幅器7の入力部分のトランジスタを異な
るエミツタ電流でバイアスすることによつてベース・エ
ミツタ間電圧VBEの差として得ており、このために大き
なVOSを得るのが難しい、などの欠点があつた。
In this circuit, one terminal 9 of the magnetoresistive head 1
Is an AC ground, while the other terminal 8 is a high-impedance signal line, so the magnetic head 1
With respect to the external noise applied to both terminals, noise is easily added to the terminal 8 with respect to the terminal 9, the noise remains as a differential component, and the S / N of the signal decreases. The derived voltage V OS is obtained as the difference between the base-emitter voltage V BE by biasing the transistors in the input part of the preamplifier 7 with different emitter currents in the embodiment, and for this reason, a large V OS. It was difficult to obtain, etc.

〔発明の目的〕[Object of the Invention]

本発明の目的は、広帯域な大規模集積回路化に適し、か
つ抵抗変化素子に流れる電流の電流密度を一定に保つて
抵抗変化素子の長寿命化を図るとともに、耐外来ノイズ
性に優れた抵抗変化検出回路を提供することにある。
An object of the present invention is to realize a large-scale integrated circuit with a wide band, and to keep the current density of the current flowing through the resistance change element constant to prolong the life of the resistance change element and to have a resistance excellent in external noise resistance. It is to provide a change detection circuit.

〔発明の概要〕[Outline of Invention]

本発明では、磁気抵抗効果型磁気ヘツドの両端に、ベー
ス電位を異ならせた1対のベース接地トランジスタのエ
ミツタ端子を接続し、磁気抵抗効果型磁気ヘツドの両端
の電位を一定に保つ。従つて磁気抵抗効果型磁気ヘツド
の抵抗値が変化しても電流密度は初期値と変わらない。
また、記憶媒体上の漏れ磁界が変化することによる磁気
抵抗効果型磁気ヘツドの抵抗値の変化は、流れる電流値
の変化となつて現われ、これは前記一対のベース接地ト
ランジスタのコレクタ電流の互いに逆位相の変化とな
る。この際、電流の供給はインピーダンスの高い電流源
で行なうので、磁気抵抗効果型磁気ヘツド両端のインピ
ーダンスは等しく、差動増幅が可能となる。従つて同相
の外来ノイズが除去でき、信号のS/Nを良くすること
ができる。
According to the present invention, the emitter terminals of a pair of base-grounded transistors having different base potentials are connected to both ends of the magnetoresistive effect magnetic head to keep the potential at both ends of the magnetoresistive effect magnetic head constant. Therefore, the current density does not change from the initial value even if the resistance value of the magnetoresistive head is changed.
Further, the change in the resistance value of the magnetoresistive head due to the change in the leakage magnetic field on the storage medium appears as the change in the flowing current value, which is the reverse of the collector currents of the pair of base-grounded transistors. The phase changes. At this time, since the current is supplied by the current source having a high impedance, the impedances at both ends of the magnetoresistive effect magnetic head are equal and differential amplification is possible. Therefore, in-phase external noise can be removed, and the signal S / N can be improved.

〔発明の実施例〕 以下、本発明の一実施例を第2図により説明する。第2
図において、1は磁気抵抗効果型磁気ヘツド、13,1
4は1対のベース接地トランジスタ、15,16は負荷
抵抗、7は前置増幅器、2はトランジスタ17とエミツ
タ抵抗18からなる電流源、および19は、端子9,1
0の直流電位が等しくなるように電流源2を端子21で
制御するフイードバツク回路であり例えば差動増幅回路
とローパスフイルタから構成される。第2図において、
磁気抵抗効果型磁気ヘツド1の初期値をRMR、電流値を
MR、ベース接地トランジスタ13,14のコレクタ負
荷抵抗15,16をR、各々のコレクタ電流をI
とする。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. Second
In the figure, 1 is a magnetoresistive head, 13, 1
4 is a pair of grounded base transistors, 15 and 16 are load resistors, 7 is a preamplifier, 2 is a current source consisting of a transistor 17 and an emitter resistor 18, and 19 is terminals 9 and 1.
This is a feed back circuit that controls the current source 2 at the terminal 21 so that the DC potential of 0 becomes equal, and is composed of, for example, a differential amplifier circuit and a low pass filter. In FIG.
The initial value of the magnetoresistive head 1 is R MR , the current value is I MR , the collector load resistances 15 and 16 of the base-grounded transistors 13 and 14 are RC , and the collector currents of each are I 1 and I MR , respectively.
I 2

ベース接地トランジスタ13,14のベース電位は各々
電源Vref+,Vref-に接続される。また、フイードバツ
ク回路19の出力21(電位V)は、電流源トランジ
スタ17のコレクタ電流Iを制御しており、電流I
は接続点8からセンス回路系に入力される。
The base potentials of the grounded base transistors 13 and 14 are connected to the power supplies V ref + and V ref- , respectively. Further, the output 21 (potential V B ) of the feedback circuit 19 controls the collector current I 3 of the current source transistor 17, and the current I 3
Is input to the sense circuit system from the connection point 8.

以下、本実施例の動作を説明する。磁気抵抗効果型磁気
ヘツド1の両端の電位差は、1対のベース接地トランジ
スタ13,14のエミツタ端子間電圧で決まり、常に一
定となる。従つて磁気抵抗効果型磁気ヘツド1に流れる
電流IMRはトランジスタ13のコレクタ電流Iに等し
く、 IMR=(Vref+−Vref-)/RMR=I (1) となる。
The operation of this embodiment will be described below. The potential difference across the magnetoresistive head 1 is determined by the voltage across the emitter terminals of the pair of base-grounded transistors 13 and 14, and is always constant. Therefore, the current I MR flowing through the magnetoresistive head 1 is equal to the collector current I 1 of the transistor 13, and I MR = (V ref + −V ref− ) / R MR = I 1 (1).

このときトランジスタ14のコレクタ電流Iは、フイ
ードバツク回路19を通して前置増幅器7の入力端子
9,10の直流電位差が零となるように電流源2によつ
て制御される。負荷抵抗15,16は共にRと等しい
ので、コレクタ電流IもIに等しくなるように、電
流源2の供給電流Iが I=I+I=2IMR (2) と制御される。
At this time, the collector current I 2 of the transistor 14 is controlled by the current source 2 through the feedback circuit 19 so that the DC potential difference between the input terminals 9 and 10 of the preamplifier 7 becomes zero. Since the load resistance 15 and 16 are both equal to R C, as the collector current I 2 becomes equal to I 1, the supply current I 3 of the current source 2 I 3 = I 1 + I 2 = 2I MR (2) and the control To be done.

いま、記憶媒体の磁化により磁気抵抗効果型磁気ヘツド
1の抵抗値がRMRから(RMR+ΔRMR)に変化した場合
を考えると、磁気抵抗効果型磁気ヘツド1の両端の電位
差は、一対のベース接地トランジスタ13,14のそれ
ぞれのエミツタで固定されているために電流がIMRから
(IMR+ΔIMR)に変化する。ここでΔIMRは ΔIMR=IMR×(ΔRMR/RMR) (3) である。このとき電流源2からの供給電流Iは変化し
ないので、この電流変化は逆位相でトランジスタ14の
コレクタ電流Iの変化になつてあらわれる。すなわ
ち、 I=IMR+ΔIMR (4) I=IMR−ΔIMR (5) である。従つて前置増幅器7の入力端子間信号電圧は、
端子9,10の電位をそれぞれ、V,Vとすると、 |V−V|=2ΔIMR・R (6) となる。前置増幅器7の増幅率をGとすると式(3)よ
り、回路全体での信号出力振幅Eは、 となる。
Now, considering the case where the resistance value of the magnetoresistive head 1 changes from R MR to (R MR + ΔR MR ) due to the magnetization of the storage medium, the potential difference across the magnetoresistive head 1 is The current changes from I MR to (I MR + ΔI MR ) because the grounded base transistors 13 and 14 are fixed by the respective emitters. Here, ΔI MR is ΔI MR = I MR × (ΔR MR / R MR ) (3). At this time, since the current I 3 supplied from the current source 2 does not change, this current change appears in the opposite phase as the collector current I 2 of the transistor 14. That is, I 1 = I MR + ΔI MR (4) I 2 = I MR −ΔI MR (5) Therefore, the signal voltage between the input terminals of the preamplifier 7 is
When the potentials of the terminals 9 and 10 are V 1 and V 2 , respectively, | V 1 −V 2 | = 2ΔI MR · R C (6) Assuming that the amplification factor of the preamplifier 7 is G, from the equation (3), the signal output amplitude E 0 in the whole circuit is Becomes

本実施例によれば、磁気抵抗効果型磁気ヘツドの端子間
電圧は一対のベース接地トランジスタのベース電位差で
決まり一定であるために、磁気抵抗効果型磁気ヘツドが
たとえば摩耗などにより抵抗値が変化しても電流密度を
一定に保つことが可能である。また、磁気抵抗効果型ヘ
ツドの記憶媒体からの磁界の変化による信号は差動入力
となり、同相の外来ノイズは除去できる。更に、フイー
ドバツク回路によつて、前置増幅器の入力端子間直流電
位差が零となるため、信号ラインの直流成分を除去する
ためのコンデンサは不要であり、回路の集積化が図れ
る。
According to the present embodiment, the terminal voltage of the magnetoresistive effect magnetic head is determined by the base potential difference of the pair of base-grounded transistors and is constant, so that the resistance value of the magnetoresistive effect magnetic head changes due to, for example, abrasion. However, it is possible to keep the current density constant. Further, the signal due to the change of the magnetic field from the magnetoresistive head type storage medium becomes a differential input, and in-phase external noise can be removed. Further, since the DC voltage difference between the input terminals of the preamplifier becomes zero by the feedback circuit, the capacitor for removing the DC component of the signal line is not required, and the circuit can be integrated.

このときよく知られているようにトランジスタ13,1
4,17をそれぞれ複数個のトランジスタの並列接続を
することによつて回路が発生するランダム性の雑音を小
さくすることが可能である。また、高い周波数帯域で本
実施例を適用する場合、接続点20に微小電流を流した
電流源を接続するか、あるいは電流源2の出力容量と同
容量のコンデンサで接地することによつて、磁気抵抗効
果型磁気ヘツド両端でのインピーダンスの差を等しくな
るように補正して、同相外来ノイズの除去効果を高める
ことができることもあきらかである。更には、本実施例
では、前置増幅器7の入力端子9,10から帰還してい
るが、前置増幅器7の出力端子11,12から帰還して
も、同様の効果が得られることはあきらかである。
At this time, as is well known, transistors 13 and 1
By connecting a plurality of transistors 4 and 17 in parallel, it is possible to reduce random noise generated by the circuit. Further, when the present embodiment is applied in a high frequency band, by connecting a current source in which a minute current flows to the connection point 20 or by grounding with a capacitor having the same capacity as the output capacity of the current source 2, It is also clear that the effect of removing the in-phase external noise can be enhanced by correcting the impedance difference between both ends of the magnetoresistive effect magnetic head so as to be equal. Further, in this embodiment, the feedback is made from the input terminals 9 and 10 of the preamplifier 7, but it is clear that the same effect can be obtained even if the feedback is made from the output terminals 11 and 12 of the preamplifier 7. Is.

また第3図の実施例に示すように、第2図におけるフイ
ードバツク回路19の出力端子21の帰還先をトランジ
スタ14のベースとし、トランジスタ17のベース電位
をVBrefとすることによつて、電流源2を2・IMRの定
電流源とする定電流センス源駆動の検出回路が構成可能
であることもあきらかである。本実施例によれば、定電
流源駆動で、耐外来ノイズ性の良好な検出回路が実現で
きる。
Further, as shown in the embodiment of FIG. 3, the feedback destination of the output terminal 21 of the feed back circuit 19 in FIG. 2 is set as the base of the transistor 14 and the base potential of the transistor 17 is set to V Bref. It is also apparent that a detection circuit for driving a constant current sense source in which 2 is a constant current source of 2 · I MR can be configured. According to the present embodiment, it is possible to realize a detection circuit which is driven by a constant current source and has excellent resistance to external noise.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明によれば、抵抗変化素子の
電流密度を一定に保てるので抵抗変化素子の長自命化が
図れ直流成分を除去するためのコンデンサが不要となる
ため、集積化が容易となる。しかも抵抗変化素子両端の
インピーダンスが等しく、差動増幅が可能なため、同相
の外来ノイズを除去する効果がある。
As described above in detail, according to the present invention, the current density of the variable resistance element can be kept constant, so that the variable resistance element can have a long self-life and a capacitor for removing a direct current component is not required. It will be easy. Moreover, impedances at both ends of the resistance change element are equal, and differential amplification is possible, so that an in-phase external noise is removed.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の抵抗変化検出回路の回路図、第2図は、
本発明を適用した抵抗変化検出回路の一実施例の回路
図、第3図は、本発明の他の実施例の回路図である。 1……磁気抵抗効果型磁気ヘツド、2……定電流源、 3,4……直流電圧除去用コンデンサ、7……前置増幅
器、13,14……ベース接地トランジスタ、 19……フイードバツク回路。
FIG. 1 is a circuit diagram of a conventional resistance change detection circuit, and FIG. 2 is
FIG. 3 is a circuit diagram of an embodiment of a resistance change detection circuit to which the present invention is applied, and FIG. 3 is a circuit diagram of another embodiment of the present invention. 1 ... Magnetoresistive magnetic head, 2 ... Constant current source, 3, 4 ... Capacitor for removing DC voltage, 7 ... Preamplifier, 13, 14 ... Grounded base transistor, 19 ... Feed back circuit.

フロントページの続き (72)発明者 小菅 稔 神奈川県小田原市国府津2880番地 株式会 社日立製作所小田原工場内 (72)発明者 新井 紳一 神奈川県小田原市国府津2880番地 株式会 社日立製作所小田原工場内 (56)参考文献 特開 昭58−189803(JP,A) 特公 昭58−27561(JP,B2)Front page continuation (72) Minor Kosuge 2880, Kozu, Odawara-shi, Kanagawa Hitachi Ltd., Odawara Plant (72) Inventor Shinichi Arai, 2880, Kozu, Odawara, Kanagawa Hitachi Ltd., Odawara Plant (56) ) Reference JP-A-58-189803 (JP, A) JP-B-58-27561 (JP, B2)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電流が与えられ外部要因により自身が持つ
抵抗値が変化する2端子の抵抗変化素子の抵抗変化を検
出する回路において、上記抵抗変化素子の両端にエミッ
タ端子を接続されたベース電位の異なる1対のトランジ
スタと、上記抵抗変化素子の一端に接続され上記電流を
流す電流源と、上記抵抗変化素子に流れる上記電流の変
化を検出するために上記1対のトランジスタのコレクタ
端子に接続される差動増幅器とを有する抵抗変化検出回
路。
1. A base potential having an emitter terminal connected to both ends of the resistance change element in a circuit for detecting a resistance change of a resistance change element of two terminals in which a resistance value of the resistance change element is changed by an external factor when a current is applied. Of a pair of transistors different from each other, a current source connected to one end of the resistance change element for flowing the current, and a collector terminal of the pair of transistors for detecting a change in the current flowing through the resistance change element. Change detection circuit having differential amplifier.
【請求項2】上記差動増幅器の入力または出力に基づい
て、上記1対のトランジスタのコレクタ端子間の直流電
位差が零となるように上記電流源を制御するフィードバ
ック手段を有する特許請求の範囲第1項記載の抵抗変化
検出回路。
2. A feedback means for controlling the current source so that the DC potential difference between the collector terminals of the pair of transistors becomes zero based on the input or output of the differential amplifier. The resistance change detection circuit according to item 1.
【請求項3】上記差動増幅器の入力または出力に基づい
て、上記1対のトランジスタのコレクタ端子間の直流電
位差が零となるように上記1対のトランジスタの少なく
とも片方のベース電位を制御するフイードバック手段を
有する特許請求の範囲第1項記載の抵抗変化検出回路。
3. A feedback that controls the base potential of at least one of the pair of transistors based on the input or output of the differential amplifier so that the DC potential difference between the collector terminals of the pair of transistors becomes zero. The resistance change detection circuit according to claim 1, further comprising means.
【請求項4】上記フィードバック手段は、差動増幅回路
とローパスフイルタから構成される特許請求の範囲第2
項または第3項記載の抵抗変化検出回路。
4. The second feedback means comprises a differential amplifier circuit and a low-pass filter.
The resistance change detection circuit according to item 3 or item 3.
JP58148082A 1983-08-15 1983-08-15 Resistance change detection circuit Expired - Lifetime JPH0610842B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58148082A JPH0610842B2 (en) 1983-08-15 1983-08-15 Resistance change detection circuit
US06/639,093 US4716306A (en) 1983-08-15 1984-08-09 Circuit for detecting variation of resistance of a variable-resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58148082A JPH0610842B2 (en) 1983-08-15 1983-08-15 Resistance change detection circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33997892A Division JPH0740324B2 (en) 1992-12-21 1992-12-21 Resistance change detection circuit

Publications (2)

Publication Number Publication Date
JPS6040504A JPS6040504A (en) 1985-03-02
JPH0610842B2 true JPH0610842B2 (en) 1994-02-09

Family

ID=15444822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58148082A Expired - Lifetime JPH0610842B2 (en) 1983-08-15 1983-08-15 Resistance change detection circuit

Country Status (1)

Country Link
JP (1) JPH0610842B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712144A (en) * 1985-08-20 1987-12-08 International Business Machines Corporation Method and apparatus for reading recorded data by a magnetoresistive head
US4706138A (en) * 1986-04-14 1987-11-10 International Business Machines Corporation Amplification of signals produced by a magnetic sensor
JPH0487003A (en) * 1990-07-31 1992-03-19 Fujitsu Ltd Signal detecting circuit for magneto-resistance effect head
JPH06139525A (en) * 1992-10-27 1994-05-20 Sony Corp Reproducing device for magneto-resistance effect type head

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827561A (en) * 1981-08-10 1983-02-18 テルモ株式会社 Blood bag with inner needle assembly
JPS58189803A (en) * 1982-04-30 1983-11-05 Fujitsu Ltd Signal detection system of magneto-resistance effect head

Also Published As

Publication number Publication date
JPS6040504A (en) 1985-03-02

Similar Documents

Publication Publication Date Title
CA1326072C (en) Voltage amplifier for constant voltage biasing and amplifying signals from a mr sensor
JP4055960B2 (en) Amplifying circuit for magnetoresistive head and amplifier for magnetoresistive head
EP0215270B1 (en) Method and apparatus for reading recorded data by a magnetoresistive head
JPS62245503A (en) Magnetic record detection circuit
JP2682270B2 (en) Magnetoresistive element circuit
JPS594769B2 (en) Transducer output sensing circuit
US4716306A (en) Circuit for detecting variation of resistance of a variable-resistance element
US5345346A (en) Positive feedback low input capacitance differential amplifier
JPH1027308A (en) Preamplifier and magnetic head device
JP3623963B2 (en) Information signal recording device
JPH06139525A (en) Reproducing device for magneto-resistance effect type head
US6331921B1 (en) Magneto-resistive head read amplifier
US5831784A (en) Pseudo differential voltage sense MR preamplifier with improved bandwidth
JP2994522B2 (en) Preamplifier for magnetoresistive element
JPH0610842B2 (en) Resistance change detection circuit
EP0720285B1 (en) Differential amplifier with proxy load for control of output common mode range
JP3516178B2 (en) Preamplifier circuit device
US5953173A (en) High CMRR and sensor-disk short-circuit protection device for dual element magnetoresistive heads
JPH05242404A (en) Resistance change detection circuit
US6107888A (en) Method to equalize input currents to differential-to-single-ended amplifier configuration
JPH1166505A (en) Low-noise preamplifier for magnetic resistance data transducer
JPH11203611A (en) Amplifier circuit
JPS6117072A (en) Resistance variation detecting circuit
JPH09116347A (en) Single end input type high frequency amplifier
JP2770292B2 (en) Circuit for detecting change in resistance of magnetoresistive element