JPH06108198A - Material having erosion resistance to molten metal - Google Patents

Material having erosion resistance to molten metal

Info

Publication number
JPH06108198A
JPH06108198A JP28052092A JP28052092A JPH06108198A JP H06108198 A JPH06108198 A JP H06108198A JP 28052092 A JP28052092 A JP 28052092A JP 28052092 A JP28052092 A JP 28052092A JP H06108198 A JPH06108198 A JP H06108198A
Authority
JP
Japan
Prior art keywords
less
inorganic compound
molten metal
particle size
hard inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28052092A
Other languages
Japanese (ja)
Other versions
JP2797048B2 (en
Inventor
Akira Murase
彰 村瀬
Genryu Abe
源隆 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP4280520A priority Critical patent/JP2797048B2/en
Publication of JPH06108198A publication Critical patent/JPH06108198A/en
Application granted granted Critical
Publication of JP2797048B2 publication Critical patent/JP2797048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To provide a mold material hardly eroded by molten metal such as high temp. aluminum. CONSTITUTION:An atomized powder of a steel having a composition consisting of, by weight, <=0.7% C, <=15%, in total, of carbide-forming elements, such as Cr, Mo, V, and W, 0-3% each of Si, Mn, and Ni, and the balance Fe with inevitable impurities is mixed with the grains of hard inorganic compound, such as carbide, boride, and nitride, in the amount of 10-50% of the whole quantity, which is formed at <=1200 deg.C by a powder metallurgical method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高温のアルミニウム
その他の溶湯に接触して侵食され難い材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material which is unlikely to be corroded by contact with molten metal of high temperature such as aluminum.

【0002】[0002]

【従来の技術】従来、アルミニウム溶湯の鋳造用金型材
料としては、SKD61系などの熱間工具鋼材料や、そ
の表面を窒化処理した材料が広く使用されている。また
特殊な箇所には、SKD61系などの材料にSUS44
0C系などを肉盛りすることも行なわれている。更に、
近年は超硬合金やセラミックス等の耐熱材料も使用され
始めている。
2. Description of the Related Art Conventionally, as a die material for casting molten aluminum, a hot tool steel material such as SKD61 series and a material whose surface is nitrided have been widely used. For special places, use SUS44 for materials such as SKD61 series.
It is also practiced to fill up the 0C series. Furthermore,
In recent years, heat-resistant materials such as cemented carbide and ceramics have begun to be used.

【0003】[0003]

【発明が解決しようとする課題】アルミニウム系溶湯用
の鋳型に広く使用されている熱間工具鋼SKD61系材
料や、その表面に窒化処理を施した材料は、高温のアル
ミニウム溶湯と接触する部分が十分溶損に耐えることが
できなかった。これに加え、最近は自動車部品等の軽量
化のためにアルミニウム部品の需要が増加し、これらは
大型で複雑な形状のものが多いために、アルミニウム溶
湯の温度が高温化し、鋳型の溶湯による侵食が一層増大
する傾向にある。
In the hot work tool steel SKD61 series material which is widely used as a mold for aluminum-based molten metal and the material whose surface is subjected to nitriding treatment, a portion contacting with the high-temperature aluminum molten metal is It was not able to withstand melting damage sufficiently. In addition to this, the demand for aluminum parts has recently increased to reduce the weight of automobile parts, etc., and since many of these are large and have complicated shapes, the temperature of the aluminum melt rises and erosion by the mold melt occurs. Is increasing.

【0004】そのために、最近は肉盛材や各種の表面処
理などが使用され始めたが、高温アルミニウム溶湯に対
する対溶損性は十分ではなかった。また新しい材料とし
て使用され始めたセラミックスは、現在のところ加工が
困難で、かつ壊れ易く、高価である。本発明は、アルミ
ニウムその他の溶湯に対する対溶損性が優れ、かつ切削
加工等も支障なく行なうことができる材料を実現しよう
とするものである。
For this reason, recently, overlay materials and various surface treatments have begun to be used, but their erosion resistance to high temperature molten aluminum has not been sufficient. Further, ceramics, which have begun to be used as a new material, are difficult to process at present, fragile, and expensive. The present invention is intended to realize a material which has excellent erosion resistance to molten metal such as aluminum and which can be cut without trouble.

【0005】[0005]

【課題を解決するための手段】本発明の耐アルミニウム
溶損材料は、鋼材粉末と、硬質無機化合物粒子とを12
00℃以下の温度で粉末冶金法によって成形加工したも
のである。
The aluminum corrosion resistant material of the present invention comprises steel powder and hard inorganic compound particles.
It is formed by the powder metallurgy method at a temperature of 00 ° C. or less.

【0006】上記硬質無機化合物には炭化物、窒化物、
ほう化物、酸化物等が適当であり、例えばTiN、W
N、VN、TiC、WC、VC、Al2 3 などが挙げ
られる。本発明では、これらの粉末の一種類または複数
種類の混合物で、平均粒径が300μm以下のものを使
用する。
The above hard inorganic compounds include carbides, nitrides,
Borides and oxides are suitable, for example TiN, W
Examples thereof include N, VN, TiC, WC, VC and Al 2 O 3 . In the present invention, one kind or a mixture of plural kinds of these powders having an average particle diameter of 300 μm or less is used.

【0007】上記粉末用の鋼材は、0.7wt%以下の
Cと、合計量が15%以下のCr、Mo、V、W等の炭
化物形成元素と、それぞれがOまたは3%以下のSi、
Mn及びNiと、残部を構成するFe及び不可避不純物
とよりなり、これをアトマイズ法により粉末化し、最大
粒径1000μmで平均粒径が200μm 以下の粒子を
選別して使用する。
The steel material for powders described above contains 0.7 wt% or less of C, a total amount of 15% or less of carbide forming elements such as Cr, Mo, V, and W, and Si of O or 3% or less, respectively.
It is composed of Mn and Ni, and the balance Fe and unavoidable impurities, which are pulverized by an atomizing method, and particles having a maximum particle size of 1000 μm and an average particle size of 200 μm or less are selected and used.

【0008】[0008]

【作用】このようにして得た材料で作った鋳型は、硬質
無機化合物粒子が持つ卓越した耐磨耗性とにより、アル
ミニウム等の高温溶湯の流れに接触しても欠落や磨耗が
少なく、かつ熱衝撃による破損が少なく、しかも鋳型の
切削加工等は可能である。
[Operation] The mold made of the material thus obtained has less abrasion and wear even when it comes into contact with the flow of high temperature molten metal such as aluminum due to the excellent wear resistance of the hard inorganic compound particles, and There is little damage due to thermal shock, and it is possible to cut the mold.

【0009】ここで、原料となる硬質無機化合物粒子の
平均粒径は、大き過ぎると材料の切削加工を困難にした
り、寸法の精緻な鋳型の製作を困難にしたりするばかり
でなく、材料が欠け易くなるため、300μm以下とす
る。
Here, if the average particle size of the hard inorganic compound particles as the raw material is too large, not only the cutting work of the material becomes difficult, but also it becomes difficult to make a mold having a precise dimension, and the material is lacking. Since it becomes easy, the thickness is set to 300 μm or less.

【0010】また、同じく原料となる熱間加工用工具鋼
の粉末の平均粒径も、小さい方が得られた材料中の結晶
の成長を抑制して高い靱性を発揮し、かつ硬質無機化合
物粒子の分布を均一に出来るので有利であるから、20
0μm 以下とし、かつ最大粒径は1000μmとする。
Similarly, the smaller the average particle size of the powder of the hot working tool steel used as the raw material, the higher the toughness by suppressing the growth of crystals in the obtained material, and the hard inorganic compound particles. Is advantageous because the distribution of
The particle size is 0 μm or less and the maximum particle size is 1000 μm.

【0011】材料全体の中で硬質無機化合物粒子が占め
る比率は、図1に示すようにアルミニウム等の高温溶湯
との接触による材料の溶損率に関係し、硬質無機化合物
粒子量がOwt%のものに較べて10wt%のもので溶
損体積率は30%以下に減り、20wt%のもので溶損
体積率は10%以下にまで減るが、50wt%以上では
溶損体積率は増加せず横ばいとなる。これに加えて、硬
質無機化合物が占める割合が増えるにつれて材料の諸特
性が低下し、かつ切削加工が困難になる。従って、硬質
無機化合物粒子が占める比率は10〜50wt%とす
る。
The ratio of the hard inorganic compound particles in the whole material is related to the melting loss rate of the material due to contact with a high temperature molten metal such as aluminum as shown in FIG. 1, and the amount of the hard inorganic compound particles is Owt%. Compared with those of 10 wt%, the melt loss volume ratio is reduced to 30% or less, and of 20 wt% is reduced to 10% or less, but above 50 wt% the melt loss volume ratio is not increased. Be flat. In addition to this, as the proportion of the hard inorganic compound increases, various properties of the material deteriorate, and the cutting process becomes difficult. Therefore, the ratio of the hard inorganic compound particles is set to 10 to 50 wt%.

【0012】材料の粉末冶金法による成形加工温度は、
高過ぎると硬質無機化合物粒子中から鋼中へCやNなど
が拡散して材料の特性を著るしく劣化させるので、成形
加工は1200℃以下で行うことが必要である。
The forming temperature of the material by powder metallurgy is
If it is too high, C, N, etc. will diffuse from the hard inorganic compound particles into the steel and the characteristics of the material will be markedly deteriorated.

【0013】Cは、優れた焼入れ性、焼戻し硬さ及び高
温硬さを維持し、W、Mo、V、Crなどの成分と結合
して炭化物を作る。しかし、多過ぎると材料の靱性が低
下し、特に熱衝撃による割れが発生するので、上限を
0.7wt%とする。
C maintains excellent hardenability, tempering hardness and high temperature hardness and combines with components such as W, Mo, V and Cr to form a carbide. However, if the amount is too large, the toughness of the material decreases, and cracking particularly due to thermal shock occurs, so the upper limit is made 0.7 wt%.

【0014】Cr、Mo、V、W等の炭化物生成元素
は、材料の高温強度を維持するために添加するが、添加
量が多過ぎると靱性を低下させるので、合計量を15w
t%以下とする。
Carbide-forming elements such as Cr, Mo, V, and W are added to maintain the high temperature strength of the material, but if the addition amount is too large, the toughness decreases, so the total amount is 15 w.
t% or less.

【0015】Si、Mn、Niは一般に靱性を高めるた
めに添加されるが、多過ぎると逆に靱性を低下させた
り、被削性を劣化させたりするので、それぞれ上限を3
wt%とする。
Si, Mn, and Ni are generally added to increase the toughness, but if they are too much, the toughness is lowered or the machinability is deteriorated.
wt%.

【0016】[0016]

【実施例】表1に示す各種の鋼をそれぞれガスアトマイ
ズにより粉末化し、平均粒径54〜150μm、最大粒
径1000μmの粉末原料を得た。これを長さ660m
m、外径149mm、肉厚1.5mmの金属カプセルに
充填し、内部を真空排気して封止し、1100℃に加熱
して直径60mmに熱間押出加工した。これらの押出材
より直径30、長さ100mmのサンプルをそれぞれ切
出し、1020℃で焼入れ、600℃で焼戻した。
EXAMPLE Various steels shown in Table 1 were pulverized by gas atomization to obtain powder raw materials having an average particle size of 54 to 150 μm and a maximum particle size of 1000 μm. This is 660m long
m, an outer diameter of 149 mm, and a wall thickness of 1.5 mm were filled, the inside was evacuated and sealed, heated to 1100 ° C., and hot extruded to a diameter of 60 mm. Samples each having a diameter of 30 and a length of 100 mm were cut out from these extruded materials, quenched at 1020 ° C., and tempered at 600 ° C.

【0017】[0017]

【表1】 [Table 1]

【0018】これらのサンプルを、810℃±20℃の
アルミニウム溶湯に10分間浸漬した後、引上げて20
分間放冷し、これを18回(合計浸漬時間は3時間)く
り返し、各サンプルのアルミニウム溶湯による溶損性
(体積減)を求めた結果も、表1に併せて示す。
These samples were immersed in molten aluminum at 810 ° C. ± 20 ° C. for 10 minutes and then pulled up to 20 ° C.
The results are shown in Table 1 together, which was allowed to cool for a minute and then repeated 18 times (total immersion time was 3 hours) to determine the melt damage property (volume reduction) of each sample by the molten aluminum.

【0019】実施例1乃至5として、表1に示した鋼材
中のSKD61、SCM415、及びSNC631の前
記粉末原料に、表2に示す材質、寸法及び量の硬質無機
化合物粒子を混合し、前記と同手法により熱間押出加工
を行ない、同様な寸法のサンプルを切出し、同様に熱処
理を行った。これらの鋼材は、何れもCが0.7wt
%、炭化物形成元素が15wt%以下であり、硬質無機
化合物粒子の平均粒径は300μm以下でその添加量は
50wt%以下である。
In Examples 1 to 5, the powder raw materials of SKD61, SCM415 and SNC631 in the steel materials shown in Table 1 were mixed with hard inorganic compound particles having the material, size and amount shown in Table 2, and Hot extrusion was carried out by the same method, samples of similar dimensions were cut out, and heat treatment was carried out in the same manner. C of each of these steel materials is 0.7 wt.
%, The carbide forming element is 15 wt% or less, the average particle diameter of the hard inorganic compound particles is 300 μm or less, and the addition amount thereof is 50 wt% or less.

【0020】比較例1は、硬質無機化合物粒子の平均粒
径が300μmを越える以外は、実施例1と同一のもの
である。比較例2は、硬質無機化合物粒子の添加量が5
0wt%を越える以外は、実施例3及び4と同一のもの
である。
Comparative Example 1 is the same as Example 1 except that the average particle size of the hard inorganic compound particles exceeds 300 μm. In Comparative Example 2, the amount of hard inorganic compound particles added was 5
Same as Examples 3 and 4 except that it exceeds 0 wt%.

【0021】比較例3乃至7は、表1中の鋼材SKH5
1、SKH57、SPM60、SKD11、SKS5の
ガスアトマイズ粉末に表2に示す材質、寸法及び量の硬
質無機化合物粒子を混入したものであり、ガスアトマイ
ズ粉末の寸法、熱間押出加工方法及び熱処理方法は表1
の材料のサンプルの場合と同じである。これらの鋼材
は、何れもCの量が0.7wt%を越え、比較例3、4
及び5では炭化物形成元素も15wt%を越えている。
Comparative Examples 3 to 7 are steel materials SKH5 in Table 1.
1, SKH57, SPM60, SKD11, and SKS5 gas atomized powders mixed with hard inorganic compound particles having the material, size and amount shown in Table 2.
It is the same as the case of the sample of the material. In all of these steel materials, the amount of C exceeds 0.7 wt%,
In Nos. 5 and 5, the carbide forming element also exceeds 15 wt%.

【0022】これらの実施例及び比較例のサンプルにつ
いて、前述の鋼材について行ったのと同じ手法でアルミ
ニウム溶湯に対する浸漬試験を行った結果を、表2に併
せて示した。
Table 2 also shows the results of the immersion test for the molten aluminum of the samples of these Examples and Comparative Examples by the same method as that for the above-mentioned steel materials.

【0023】この浸漬試験の結果では、実施例のサンプ
ルは何れも欠損や割れを発生せず、体積減は硬質無機化
合物粒子を添加しない同一鋼材に較べて大幅に改善され
ており、本発明の効果を確認することができた。
According to the results of this immersion test, none of the samples of the examples produced defects or cracks, and the volume reduction was significantly improved as compared with the same steel material to which the hard inorganic compound particles were not added. I was able to confirm the effect.

【0024】比較例1の場合は、溶湯浸漬による体積減
を改善できてはいるが、硬質無機化合物粒子の欠落によ
る細かい欠損が認められた。比較例2の場合は、実施例
4と較べて溶湯浸漬による体積減の改善効果の向上が極
めて少ない反面に、機械的諸強度の低下が大きく現われ
た。比較例3乃至7の場合は、溶湯浸漬による体積減を
改善できてはいるが、サンプルそのものが亀裂を生じ
て、鋳型として使用できないことが判明した。
In the case of Comparative Example 1, although the volume reduction due to the immersion in the molten metal could be improved, fine defects due to the lack of the hard inorganic compound particles were recognized. In the case of Comparative Example 2, compared with Example 4, the improvement effect of the volume reduction due to the immersion in the molten metal was extremely small, but the mechanical strength was largely reduced. In the cases of Comparative Examples 3 to 7, although it was possible to improve the volume reduction due to the molten metal immersion, it was found that the sample itself cracked and could not be used as a mold.

【0025】[0025]

【発明の効果】以上のように、この発明によるときは、
従来鋳型用として用いられていた熱間工具鋼などの熱衝
撃に対する抵抗や切削加工が可能な長所を温存しなが
ら、高温アルミニウム溶湯などによる溶損を大幅に低下
させることができた。
As described above, according to the present invention,
While preserving the resistance to thermal shock of hot work tool steels and the advantages that can be cut, which were conventionally used for molds, it was possible to significantly reduce the melting loss due to high-temperature aluminum melt.

【図面の簡単な説明】[Brief description of drawings]

【図1】硬質無機化合物粒子含有量と溶損体積率との関
係を示す線図である。
FIG. 1 is a diagram showing the relationship between the content of hard inorganic compound particles and the erosion volume ratio.

【表2】 [Table 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Cを0.7wt%以下と、炭化物形成元
素を合計15wt%以下と、Si、Mn、Niをそれぞ
れ0または3%以下と、残部のFe及び不可避不純物と
からなる鋼の最大粒径が1000μmでかつ平均粒径が
200μm 以下のアトマイズ粉末に、平均粒径が300
μm以下である硬質無機化合物粒子を全体の10〜50
wt%を混合し、粉末冶金法により1200℃以下の温
度で成形加工してなる耐溶湯溶損材料。
1. A steel having a maximum of 0.7 wt% or less C, a total of 15 wt% or less of carbide forming elements, 0 or 3% or less of Si, Mn, and Ni, and the balance of Fe and inevitable impurities. Atomized powder with a particle size of 1000 μm and an average particle size of 200 μm or less has an average particle size of 300.
Hard inorganic compound particles having a particle size of less than or equal to 10
A melt-melting-resistant material obtained by mixing wt% and molding at a temperature of 1200 ° C. or less by a powder metallurgy method.
JP4280520A 1992-09-25 1992-09-25 Melt erosion resistant material Expired - Fee Related JP2797048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4280520A JP2797048B2 (en) 1992-09-25 1992-09-25 Melt erosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4280520A JP2797048B2 (en) 1992-09-25 1992-09-25 Melt erosion resistant material

Publications (2)

Publication Number Publication Date
JPH06108198A true JPH06108198A (en) 1994-04-19
JP2797048B2 JP2797048B2 (en) 1998-09-17

Family

ID=17626254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4280520A Expired - Fee Related JP2797048B2 (en) 1992-09-25 1992-09-25 Melt erosion resistant material

Country Status (1)

Country Link
JP (1) JP2797048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180021150A (en) * 2015-09-11 2018-02-28 제이에프이 스틸 가부시키가이샤 Method for producing alloyed steel powder for sintered member starting material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153245A (en) * 1986-12-16 1988-06-25 Mitsubishi Metal Corp Die for zn and zn-alloy die casting made of dispersion-strengthened-type sintered alloy steel
JPH02299740A (en) * 1989-05-16 1990-12-12 Asahi Glass Co Ltd Forming mold for high-temperature molten metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153245A (en) * 1986-12-16 1988-06-25 Mitsubishi Metal Corp Die for zn and zn-alloy die casting made of dispersion-strengthened-type sintered alloy steel
JPH02299740A (en) * 1989-05-16 1990-12-12 Asahi Glass Co Ltd Forming mold for high-temperature molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180021150A (en) * 2015-09-11 2018-02-28 제이에프이 스틸 가부시키가이샤 Method for producing alloyed steel powder for sintered member starting material

Also Published As

Publication number Publication date
JP2797048B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US4029000A (en) Injection pump for injecting molten metal
US4194900A (en) Hard alloyed powder and method of making the same
TW200914628A (en) Ultra-hard composite material and method for manufacturing the same
US4065301A (en) Method for producing titanium nitride-base sintered alloys
JP2578679B2 (en) TiCN-based cermet
JP2688729B2 (en) Aluminum corrosion resistant material
JP2009108338A (en) Cermet and manufacturing method thereof
JPH07179967A (en) Cobalt-based alloy excellent in corrosion and wear resistance and high-temperature strength
JP2797048B2 (en) Melt erosion resistant material
US5976277A (en) High speed tool steel, and manufacturing method therefor
WO1986004841A1 (en) Method in producing a molding of an iron alloy
JP4265853B2 (en) Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
WO1999039016A1 (en) Iron aluminide composite and method of manufacture thereof
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
JPH0671406A (en) Injection sleeve for die casting and method for casting aluminum or aluminum alloy member
JPH10317002A (en) Powder with low coefficient of friction, its sintered compact, and production of sintered compact
JP2002292507A (en) Cutting tool made of cermet and its manufacturing method
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JPH10263783A (en) Wear resistant parts and manufacture thereof, and parts for casting machine and die casting machine using the same
WO2002076659A1 (en) A high-strength, sintered binder alloy for powder metallurgy
JPH04504736A (en) Manufacturing method of electrode material for discharge alloying
WO2002076677A1 (en) A high-strength, abrasive wheel
JPH02299740A (en) Forming mold for high-temperature molten metal
KR100383279B1 (en) The high strength metal alloy powder product by low temperature sintering

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980602

LAPS Cancellation because of no payment of annual fees