JPH06108180A - Composite material and its production - Google Patents

Composite material and its production

Info

Publication number
JPH06108180A
JPH06108180A JP28526092A JP28526092A JPH06108180A JP H06108180 A JPH06108180 A JP H06108180A JP 28526092 A JP28526092 A JP 28526092A JP 28526092 A JP28526092 A JP 28526092A JP H06108180 A JPH06108180 A JP H06108180A
Authority
JP
Japan
Prior art keywords
composite material
sic
alloy
matrix
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28526092A
Other languages
Japanese (ja)
Inventor
Satoru Ishizuka
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP28526092A priority Critical patent/JPH06108180A/en
Publication of JPH06108180A publication Critical patent/JPH06108180A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a composite material excellent in flowability of molten material, easy of temp. control at the time of manufacture, and containing dispersed grains. CONSTITUTION:This composite material can be produced by using, as matrix, an Al alloy containing 8-26mass% Si, putting ceramic grains and short fibers into the molten Al alloy, dispersing them by stirring, allowing C liberated or decomposed from existing carbides to react with Si, with priority to Al, and forming SiC in the molten metal. Further, this material is a composite material where an Al alloy containing 8-16mass% Si is used as matrix and SiC grains are dispersed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAl合金をマトリックス
として、セラミックスの粒子や短繊維を分散させた複合
材料とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material in which particles of ceramics or short fibers are dispersed using an Al alloy as a matrix and a method for producing the same.

【0002】[0002]

【従来の技術】セラミックス粒子等を分散した複合材料
に関し、次のような従来技術が知られている。たとえ
ば、SiCやCなどの粒子を完全溶融、または部分溶融
の溶湯に添加し、これに機械的撹拌を与えて複合材料と
するコンポキャスト法がある。また、粉末冶金法とし
て、SiCやCなどの粒子と、Al合金等の粉末とを混
合し、静水圧圧縮や焼結、熱間押出し等の工程により複
合材料とする方法がある。さらにメカニカルアロイング
法としてSiCやCなどの粒子と、Al合金等の粉末と
を混合し、これに冷間や熱間で機械的撹拌を与えて、合
金粉末中にSiCやCなどの粒子を練込み、粒子分散複
合材料とする方法がある。
2. Description of the Related Art The following conventional techniques are known for composite materials in which ceramic particles and the like are dispersed. For example, there is a compocast method in which particles such as SiC and C are added to a molten metal which is completely melted or partially melted, and mechanical stirring is applied to the molten metal to form a composite material. Further, as a powder metallurgy method, there is a method of mixing particles such as SiC or C and powder such as an Al alloy and forming a composite material by a process such as isostatic pressing, sintering, hot extrusion or the like. Further, as a mechanical alloying method, particles such as SiC and C and powders such as Al alloy are mixed, and mechanical stirring is applied to the alloy powder in cold or hot to form particles such as SiC and C in the alloy powder. There is a method of kneading into a particle-dispersed composite material.

【0003】[0003]

【発明が解決しようとする課題】粉末冶金法やメカニカ
ルアロイング法によれば、セラミックス粒子が均一に分
散した複合材料の製造は可能であるが、合金粉末は高価
であり、かつ複合材料を得るまでの工程が多く、完成品
のコストが割高になるという欠点があった。更に素材製
造の最終工程が押し出し加工であるため、完成品形状が
単純なものに限られてしまうという問題点がある。ま
た、前記コンポキャスト法では、添加したSiC粒子や
ウィスカーは、Al合金をマトリックスとした溶湯中で
は、その一部が分解して湯流れを悪くし、また得られた
複合材料の靭性も低下するという問題点がある。すなわ
ち、アルミ合金をマトリックスとして、溶湯(半溶融を
含む)撹拌法により、炭化物やCの粒子や短繊維(ウィ
スカー含む)の添加物を分散複合させる場合、973K
以上の高温状態がある程度継続するので、炭化物から遊
離または分解したC(添加物がCの場合はそのC)とA
lが反応し、アルミカーバイト、例えばAl4 3 を次
式のように生成する。 SiC → Si+C ……… 分解 4Al+3C → Al4 3 ……… 化合(生成) このアルミカーバイトが生成されると、溶湯は湯流れが
悪くなって鋳造性が劣化し、また素材やそれによる製品
の靭性が低下するディメリットが生ずる。アルミカーバ
イトの生成は、複合材料製造時のみならず後の再加熱時
にも起こり得るため、常に厳しい温度管理も要求され
る。
According to the powder metallurgy method and the mechanical alloying method, it is possible to produce a composite material in which ceramic particles are uniformly dispersed, but alloy powder is expensive and a composite material is obtained. There are many steps up to, and the cost of the finished product is high. Furthermore, since the final process of manufacturing the material is extrusion, the shape of the finished product is limited to a simple shape. Further, in the compocast method, the added SiC particles and whiskers are partially decomposed in the molten metal having the Al alloy as a matrix to deteriorate the flow of the molten metal, and the toughness of the obtained composite material is also reduced. There is a problem. That is, when the additives of carbides and particles of C and short fibers (including whiskers) are dispersed and compounded by a molten metal (including semi-molten) stirring method using aluminum alloy as a matrix, 973K
Since the above high-temperature state continues to some extent, C released from the carbide or decomposed (if the additive is C, that C) and A
l reacts to form aluminum carbide, for example, Al 4 C 3 according to the following equation. SiC → Si + C ……… Decomposition 4Al + 3C → Al 4 C 3 ……… Combination (formation) When this aluminum carbide is produced, the molten metal flows poorly and the castability deteriorates. The disadvantage is that the toughness of the Since the formation of aluminum carbide can occur not only during the production of the composite material but also during the subsequent reheating, strict temperature control is always required.

【0004】本発明は前記事情に鑑みてなされたもの
で、前記問題点を解消したAl合金の複合材料とその製
造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a composite material of an Al alloy which solves the above problems and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】前記目的に添い、本発明
はSiを8〜16mass%含有するAl合金をマトリ
ックスとし、この溶湯にセラミックスの粒子や短繊維を
投入撹拌して分散させ、介在する炭化物から遊離または
分解したCを、AlよりもSiと優先的に反応させて溶
湯中にSiCを形成せしめる複合材料の製造方法によっ
て、また、本発明はマトリックスにSiを8〜16ma
ss%含むAl合金を用いてなるSiC粒子を分散した
複合材料によって前記課題を解消した。
According to the present invention, in accordance with the above object, an Al alloy containing 8 to 16 mass% of Si is used as a matrix, and ceramic particles or short fibers are added to this molten metal and stirred to be dispersed. By the method for producing a composite material in which C liberated or decomposed from carbide is reacted preferentially with Si over Al to form SiC in the molten metal, the present invention also provides Si in a matrix of 8 to 16 ma.
The above problem is solved by a composite material in which SiC particles are dispersed using an Al alloy containing ss%.

【0006】本発明は、セラミックス粒子等を分散した
複合材料のマトリックスに用いるAl合金においては、
その組成にSiを8mass%以上含有させると、アル
ミカーバイトの生成が著しく抑えられることに著目した
ものである。すなわち、マトリックスとなるAl合金に
Siを8mass%以上を含有させると、溶湯中で炭化
物から遊離または分解したCがAlよりもSiと優先的
に反応し、SiCを形成することを利用するものであ
る。 Si+C → SiC ……… 化合(生成) この形成されたSiCは粒形状を呈するものが多い。よ
って、この8mass%以上Siを含有するAl合金を
マトリックスとすることによって、前記従来のような厳
しい温度管理をしないですむ。なお、溶湯へは雰囲気ガ
スの吸収があるので、約1100Kを越える温度への加
熱は好ましくない。以上のようにSiCの粒子や短繊維
(ウィスカー含む)を複合する場合は、炭化物から遊離
または分解したCが、マトリックス中のSi成分と化合
してSiCを形成するため問題は全くなく、TiC,Z
rC,WC,B4 C,C等の粒子や短繊維を複合する場
合でも、仮にSiCが生成されてもAl4 3 より硬
さ、強さ、耐摩耗性、耐熱性等の点で優れ、また粒形状
を呈するのでさほどディメリットにはならない。一方、
Al合金中のSi成分は、16mass%を越えると粗
大なSi結晶が多く晶出するようになり、マトリックス
合金そのものの靭性が低下してくるので、アルミカーバ
イトの生成は、ますます起こり難くなってはくるが、好
ましくない。
The present invention relates to an Al alloy used as a matrix of a composite material in which ceramic particles and the like are dispersed.
It is remarkable that the formation of aluminum carbide is remarkably suppressed when Si contains 8 mass% or more. That is, when the Al alloy serving as a matrix contains Si in an amount of 8 mass% or more, it is utilized that C liberated or decomposed from carbide in the molten metal reacts with Si preferentially with respect to Al to form SiC. is there. Si + C → SiC ... Chemical compound (generation) Many of the formed SiC have a grain shape. Therefore, by using the Al alloy containing Si of 8 mass% or more as a matrix, it is not necessary to perform severe temperature control as in the conventional case. Since the molten metal absorbs atmospheric gas, it is not preferable to heat it to a temperature higher than about 1100K. When SiC particles or short fibers (including whiskers) are compounded as described above, there is no problem because C liberated or decomposed from carbide combines with the Si component in the matrix to form SiC. Z
Even when combining particles such as rC, WC, B 4 C, C or short fibers, even if SiC is produced, it is superior to Al 4 C 3 in hardness, strength, wear resistance, heat resistance, etc. Also, since it has a grain shape, it is not a big disadvantage. on the other hand,
When the Si component in the Al alloy exceeds 16 mass%, a large amount of coarse Si crystals start to crystallize, and the toughness of the matrix alloy itself deteriorates, so that the formation of aluminum carbide becomes more difficult to occur. However, it is not preferable.

【0007】[0007]

【実施例】図3に示すように、ヒーター1で加熱される
ルツボ2内に、JIS AC8A相当のAl合金(表1
参照、Siを11.0〜13.0mass%含有)を収
容し、これを温度1073Kに加熱溶解した。そして得
られた溶湯3のなかに平均粒子径5μmのSiC粒子5
を材料添加装置4より10mass%添加した。次にこ
の溶湯3に対し撹拌棒6により500rpmの回転撹拌
を7.2Ks間継続し、溶湯3中にSiC粒子5を均一
に分散させ、複合材料とした。この複合材料のミクロの
金属組織を図1に示す。この組織にはアルミカーバイト
(Al4 3)の生成は殆ど認められなかった。一方、
比較のため、JIS AC4C相当のAl合金(表1参
照、Siを6.5〜7.5mass%含有)を同じ要領
で1073Kに加熱溶解し、平均粒子径10μmのSi
C粒子を10mass%添加し、同様に撹拌を加えて複
合材料をえた。この複合材料の金属組織を図2に示す。
この組織には黒い粒形状のアルミカーバイドが生成され
ている。
EXAMPLE As shown in FIG. 3, in an crucible 2 heated by a heater 1, an Al alloy corresponding to JIS AC8A (Table 1
Reference material, containing Si of 11.0 to 13.0 mass%) was housed therein, and this was heated and melted at a temperature of 1073K. Then, in the obtained molten metal 3, SiC particles 5 having an average particle diameter of 5 μm
10 mass% was added from the material addition device 4. Next, the molten metal 3 was continuously stirred at 500 rpm by a stirring rod 6 for 7.2 Ks to uniformly disperse the SiC particles 5 in the molten metal 3 to obtain a composite material. The microscopic metallographic structure of this composite material is shown in FIG. Almost no formation of aluminum carbide (Al 4 C 3 ) was observed in this structure. on the other hand,
For comparison, an Al alloy corresponding to JIS AC4C (see Table 1, containing 6.5 to 7.5 mass% of Si) was heated and melted to 1073K in the same manner, and Si having an average particle diameter of 10 μm was used.
C particles were added in an amount of 10 mass%, and similarly stirred to obtain a composite material. The metallographic structure of this composite material is shown in FIG.
Black grain-shaped aluminum carbide is generated in this structure.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【発明の効果】以上のように、本発明によれば湯流れ性
を悪くするアルミカーバイトの生成が抑えられるととも
に、溶湯の温度管理(再加熱時も同様)が容易になり、
靭性の低下も防げる。また、2次的に生成されるSiC
によるデメリットは少ない。
As described above, according to the present invention, the generation of aluminum carbide which deteriorates the flowability of molten metal is suppressed, and the temperature control of the molten metal (similarly during reheating) is facilitated.
It can also prevent deterioration of toughness. In addition, SiC generated secondarily
There are few disadvantages.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合材料の金属組織を示す図であ
る。
FIG. 1 is a diagram showing a metallographic structure of a composite material according to the present invention.

【図2】図1に対応する従来の複合材料の金属組織を示
す図である。
FIG. 2 is a diagram showing a metallographic structure of a conventional composite material corresponding to FIG.

【図3】本発明に用いるコンポキャスト法の要領を説明
する図である。
FIG. 3 is a diagram illustrating a procedure of a compocast method used in the present invention.

【符号の説明】[Explanation of symbols]

2 ルツボ 3 溶湯 5 SiC粒子 6 撹拌棒 2 Crucible 3 Molten metal 5 SiC particles 6 Stir bar

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月10日[Submission date] September 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合材料の金属組織を示す図面に
代る写真である。
FIG. 1 is a photograph replacing a drawing showing a metallographic structure of a composite material according to the present invention.

【図2】図1に対応する従来の複合材料の金属組織を示
す図面に代る写真である。
2 is a photograph replacing a drawing showing a metallographic structure of a conventional composite material corresponding to FIG. 1. FIG.

【図3】本発明に用いるコンポキャスト法の要領を説明
する図である。
FIG. 3 is a diagram illustrating a procedure of a compocast method used in the present invention.

【符号の説明】 2 ルツボ 3 溶湯 5 SiC粒子 6 撹拌棒[Explanation of symbols] 2 Crucible 3 Molten metal 5 SiC particles 6 Stir bar

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Siを8〜16mass%含有するAl
合金をマトリックスとし、この溶湯にセラミックスの粒
子や短繊維を投入撹拌して分散させ、介在する炭化物か
ら遊離または分解したCを、AlよりもSiと優先的に
反応させて溶湯中にSiCを形成せしめることを特徴と
する複合材料の製造方法。
1. Al containing 8 to 16 mass% of Si
Using an alloy as a matrix, ceramic particles and short fibers are added to this melt and stirred to disperse, and C released or decomposed from intervening carbide is preferentially reacted with Si over Al to form SiC in the melt. A method for producing a composite material, characterized by comprising:
【請求項2】 マトリックスにSiを8〜16mass
%含むAl合金を用いてなるSiC粒子を分散した複合
材料。
2. Si in a matrix of 8 to 16 mass
%, A composite material in which SiC particles are dispersed using an Al alloy containing 100%.
JP28526092A 1992-09-30 1992-09-30 Composite material and its production Pending JPH06108180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28526092A JPH06108180A (en) 1992-09-30 1992-09-30 Composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28526092A JPH06108180A (en) 1992-09-30 1992-09-30 Composite material and its production

Publications (1)

Publication Number Publication Date
JPH06108180A true JPH06108180A (en) 1994-04-19

Family

ID=17689199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28526092A Pending JPH06108180A (en) 1992-09-30 1992-09-30 Composite material and its production

Country Status (1)

Country Link
JP (1) JPH06108180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330314A (en) * 2018-03-23 2018-07-27 哈尔滨工业大学 A kind of preparation method of cluster type (SiCp/Al)/Al composite materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330314A (en) * 2018-03-23 2018-07-27 哈尔滨工业大学 A kind of preparation method of cluster type (SiCp/Al)/Al composite materials

Similar Documents

Publication Publication Date Title
US4751048A (en) Process for forming metal-second phase composites and product thereof
US4915904A (en) Process for stabilization of titanium silicide particulates within titanium aluminide containing metal matrix composites
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
US10094006B2 (en) Method of fabricating an aluminum matrix composite and an aluminum matrix composite fabricated by the same
JPH06502692A (en) metal base alloy
JP5076354B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
US5865912A (en) SiC-reinforced aluminum alloy composite material
US5397533A (en) Process for producing TiB2 -dispersed TiAl-based composite material
JP2001342528A (en) Grain refiner for magnesium alloy, production process for the same and grain refining process using the same
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPH0578762A (en) Tial-based composite material having excellent strength and its production
JPH0841564A (en) Magnesium-base composite material and its production
JPH06108180A (en) Composite material and its production
JP3084512B2 (en) Intermetallic compound reinforced magnesium-based composite material and method for producing the same
JPH0633164A (en) Production of nitride dispersed al alloy member
US20030145685A1 (en) Process for producing titanium carbide, titanium nitride, or tungsten carbide hardened materials
JP3190754B2 (en) Manufacturing method of composite material
JP2005068469A (en) Magnesium-based composite material and manufacturing method therefor
JPH01108326A (en) Production of particle-dispersed alloy
JPH07331356A (en) 3aluminum-iron dispersed reinforced aluminum alloy and powder and production thereof
JP4126742B2 (en) Method for producing SiC particles
JP2580689B2 (en) Ti-Al alloy powder sintered body and method for producing the same
JPH05287426A (en) Heat resistant aluminum alloy and heat resistant aluminum alloy powder
JP3087913B2 (en) Particle-dispersed composite material and method for producing the same