JPH06107650A - Production of hexafluoropropene oxide - Google Patents

Production of hexafluoropropene oxide

Info

Publication number
JPH06107650A
JPH06107650A JP26346592A JP26346592A JPH06107650A JP H06107650 A JPH06107650 A JP H06107650A JP 26346592 A JP26346592 A JP 26346592A JP 26346592 A JP26346592 A JP 26346592A JP H06107650 A JPH06107650 A JP H06107650A
Authority
JP
Japan
Prior art keywords
hexafluoropropene
reaction
mixture
iii
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26346592A
Other languages
Japanese (ja)
Inventor
Fumihiko Yamaguchi
史彦 山口
Michio Asano
道男 浅野
Tatsuya Otsuka
達也 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP26346592A priority Critical patent/JPH06107650A/en
Publication of JPH06107650A publication Critical patent/JPH06107650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Abstract

PURPOSE:To remove the induction period of the initiation and to improve the yield in production of hexafluoropropene oxide by oxidizing hexafluoropropene with oxygen. CONSTITUTION:In the oxidation reaction, a mixture containing one or more kinds of compounds selected from the group of compounds represented by general formulae, F(CF2O)1COF, F(CF2O)mCF2COF or F(CF2O)nOCF2COF is added. This mixture is obtained as a by-product in the production of hexafluoropropene oxide by oxidizing hexafluoropropene with oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヘキサフルオロプロペン
を酸素で酸化することによるヘキサフルオロプロペンオ
キシドの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing hexafluoropropene oxide by oxidizing hexafluoropropene with oxygen.

【0002】[0002]

【従来の技術】ヘキサフルオロプロペンオキシドは各種
フッ素系化合物の合成原料やオリゴマーの原料等として
使用されている。このヘキサフルオロプロペンオキシド
の製造法としては様々な方法が開発されており、その大
部分はヘキサフルオロプロペンを原料とし、これを酸化
して製造する方法である。古くは酸化剤として過酸化水
素や次亜塩素酸塩類を用いる方法が知られているが、前
者は極低温が必要であり、いずれも原料と水溶液との混
合を考え水溶性の有機溶媒あるいは多量の界面活性剤を
用いる必要があり、廃水処理などの点で工業上問題が多
い。その他の方法として有機過酸化物を酸化剤として用
いる方法、紫外線による光酸化法、陽極酸化による方法
などが知られるが、危険性・装置の繁雑性などの点で問
題を有している。さらに酸素を酸化剤として反応溶媒を
検討したものが、特公昭45−11683号公報に記載
されている。この酸化反応では溶媒として1,1,2−ト
リクロロ−1,2,2−トリフルオロエタン、トリクロロ
フルオロメタン、パーフルオロ(ジメチルシクロブタ
ン)、四塩化炭素などの不活性な飽和ハロゲン化炭素が
用いられている。しかしこの反応の収率(転化率×選択
率)は低く、約50〜60%である。また特公昭45−
11683号公報に明記されてはいないが、この反応を
追試したところ反応開始までに1〜5時間の誘導期間を
必要とすることがわかった。
2. Description of the Related Art Hexafluoropropene oxide is used as a raw material for synthesizing various fluorine compounds and a raw material for oligomers. Various methods have been developed as a method for producing this hexafluoropropene oxide, and most of them are methods in which hexafluoropropene is used as a raw material and is oxidized to produce it. Although methods using hydrogen peroxide and hypochlorites as oxidants have been known for a long time, the former requires extremely low temperatures, and in both cases, a water-soluble organic solvent or a large amount of water-soluble organic solvent should be considered in consideration of mixing the raw material and the aqueous solution. Since it is necessary to use the above-mentioned surfactant, there are many industrial problems in terms of wastewater treatment. Other known methods include a method of using an organic peroxide as an oxidant, a photo-oxidation method using ultraviolet rays, and a method of anodic oxidation, but they have problems in terms of danger and complexity of equipment. Further, a study of a reaction solvent using oxygen as an oxidizing agent is described in JP-B-45-11683. In this oxidation reaction, inert saturated carbon halide such as 1,1,2-trichloro-1,2,2-trifluoroethane, trichlorofluoromethane, perfluoro (dimethylcyclobutane) and carbon tetrachloride is used as a solvent. ing. However, the yield of this reaction (conversion rate × selectivity) is low, about 50-60%. In addition,
Although not specified in Japanese Patent No. 11683, when this reaction was repeated, it was found that an induction period of 1 to 5 hours was required before the reaction started.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、ヘキ
サフルオロプロペンを酸素で酸化し、ヘキサフルオロプ
ロペンオキシドを製造するに際し、反応開始の誘導期間
を無くし、収率(転化率×選択率)を向上することにあ
る。
The object of the present invention is to oxidize hexafluoropropene with oxygen to produce a hexafluoropropene oxide, eliminate the induction period of the initiation of the reaction, and obtain the yield (conversion rate × selectivity). To improve.

【0004】[0004]

【課題を解決するための手段】本発明の課題は上記酸化
反応において、一般式: F(CF2O)lCOF [I] F(CF2O)mCF2COF [II] F(CF2O)nOCF2COF [III] (式中l、m、nはそれぞれ1〜50の整数である)で示さ
れる化合物よりなる群より選択される少なくとも一種の
化合物を含んでなる混合物(以下、単に「混合物」とい
うことがある)を添加することにより解決される。
The object of the present invention is to provide a compound of the general formula: F (CF 2 O) 1 COF [I] F (CF 2 O) m CF 2 COF [II] F (CF 2 ) in the above oxidation reaction. O) n OCF 2 COF [III] (wherein each of l, m and n is an integer of 1 to 50) a mixture containing at least one compound selected from the group consisting of compounds (hereinafter, (Sometimes referred to simply as a "mixture").

【0005】上記[I][II][III]式において、l、
m、nが1より大きい場合、CF2O繰返し単位間の結
合は頭−尾結合の外に、頭−頭結合および/または尾−
尾結合をも含み、頭−尾結合の場合はエーテル結合を形
成し、頭−頭結合、尾−尾結合の場合には過酸化エーテ
ル結合を形成する。上記混合物中における過酸化エーテ
ル結合の割合は、ヨード滴定法で測定した活性酸素濃度
が0.01〜25重量%であること、すなわち混合物中
の1〜100個の[I]、[II]または[III]分子に1
個の過酸化エーテル結合が存在することが好ましい。混
合物がこの条件を充たす限り、混合物中の[I]、[I
I]、[III]化合物の割合については制限がない。な
お、本明細書中において上記「混合物」には、[I]、
[II]、[III]のいずれか2成分または1成分のみよ
りなる場合を含むものとする。
In the above formulas [I] [II] [III], l,
When m and n are greater than 1, the bond between the CF 2 O repeating units is not only a head-to-tail bond, but also a head-to-head bond and / or a tail-to-head bond.
It also includes a tail bond, and forms an ether bond in the case of head-to-tail bond, and forms a peroxide ether bond in the case of head-to-head bond and tail-to-tail bond. The ratio of ether peroxide bonds in the above mixture is such that the active oxygen concentration measured by the iodometric titration method is 0.01 to 25% by weight, that is, 1 to 100 [I], [II] or [III] 1 for the molecule
It is preferred that there be one peroxy ether linkage. As long as the mixture satisfies this condition, [I], [I]
There is no limitation on the ratio of the compounds [I] and [III]. In the present specification, the above “mixture” includes [I],
The case where it consists of any two or only one of [II] and [III] is included.

【0006】上記[I]、[II]、[III]の化合物は、
ヘキサフルオロプロペンを酸素で酸化してヘキサフルオ
ロプロペンオキシドを製造する際に副生するフッ化カル
ボニルが重合して生成するものである。したがって、こ
の方法によってあらかじめ合成したものを用いてもよい
が、ヘキサフルオロプロペンオキシド製造時の該酸化反
応終了後、反応混合物から目的物であるヘキサフルオロ
プロペンオキシド、未反応物のヘキサフルオロプロペン
を分離したものを用いてもよい。このようにすれば、一
回の反応によって常に次回の反応に用いる[I]、[I
I]、[III]の混合物を得ることができ、同混合物を
循環して用いることができる。
The above-mentioned compounds [I], [II] and [III] are
It is produced by polymerization of carbonyl fluoride, which is a by-product when hexafluoropropene is oxidized with oxygen to produce hexafluoropropene oxide. Therefore, it is possible to use those synthesized in advance by this method, but after completion of the oxidation reaction during the production of hexafluoropropene oxide, the target hexafluoropropene oxide and the unreacted hexafluoropropene are separated from the reaction mixture. You may use what was done. In this way, one reaction always uses for the next reaction [I], [I
A mixture of I] and [III] can be obtained, and the mixture can be circulated and used.

【0007】本発明においては、溶媒として不活性溶
媒、例えばパーフルオロジメチルシクロブタン、フルオ
ロトリクロロメタン、1,1,2−トリクロロ−1,2,2
−トリフルオロエタン、四塩化炭素、一般式Cl(CF2
CFCl)nCl(n=2〜30)で示される化合物等を用
いることができる。また、上記[I]、[II]、[III]
の化合物の混合物を溶媒として用いることも可能であ
る。
In the present invention, the solvent is an inert solvent such as perfluorodimethylcyclobutane, fluorotrichloromethane, 1,1,2-trichloro-1,2,2.
-Trifluoroethane, carbon tetrachloride, general formula Cl (CF 2
Or the like can be used a compound represented by CFCl) n Cl (n = 2~30 ). In addition, the above [I], [II], and [III]
It is also possible to use a mixture of the above compounds as a solvent.

【0008】本発明における該混合物の使用量は全溶媒
中で、ヨード滴定で測定した活性酸素濃度が0.01重
量%以上となるようにすることが望ましい。また、不溶
性溶媒を使用する場合には、該混合物が溶媒の2重量%
以上あることが望ましい。
The amount of the mixture used in the present invention is preferably such that the active oxygen concentration measured by iodometric titration is 0.01% by weight or more in all the solvents. When an insoluble solvent is used, the mixture contains 2% by weight of the solvent.
It is desirable to have more than one.

【0009】本反応の反応方法は、回分式でも密閉容器
中で連続式でも行うことができる。液の撹拌、および加
熱できる金属製オートクレーブが好適である。一般的に
はオートクレーブに[I][II][III]を含む溶媒を容
量の30〜50%仕込み、ヘキサフルオロプロペンを溶
媒に対して1〜40%、好ましくは5〜35%仕込み、
90〜150℃に加熱する。そこに酸素ガスを分注圧
0.2〜5kg/cm2・G、好ましくは0.5〜1kg/cm2
の分圧で分注して反応を行う。酸素のトータル仕込み量
は原料のヘキサフルオロプロペンの転化率を分析するこ
とによって決定できるが、おおよそ理論量の1.3〜1.
7倍量である。またこのときの全反応圧は溶媒種、ヘキ
サフルオロプロペン仕込み比、温度条件等によって変動
するため、特に規定はないが、一般には15〜40kg/
cm2・Gである。
The reaction method of this reaction can be carried out either batchwise or continuously in a closed container. A metal autoclave capable of stirring and heating the liquid is suitable. Generally, an autoclave is charged with a solvent containing [I] [II] [III] in an amount of 30 to 50% by volume, and hexafluoropropene in an amount of 1 to 40%, preferably 5 to 35% with respect to the solvent.
Heat to 90-150 ° C. Dispensing pressure of oxygen gas is 0.2 to 5 kg / cm 2 · G, preferably 0.5 to 1 kg / cm 2 G
The reaction is carried out by dispensing at the partial pressure of. The total amount of oxygen charged can be determined by analyzing the conversion rate of hexafluoropropene as a raw material, but it is approximately the theoretical amount of 1.3 to 1.
7 times the amount. The total reaction pressure at this time varies depending on the solvent species, the hexafluoropropene charging ratio, the temperature conditions, etc., and is not specified, but generally 15-40 kg /
cm 2 · G.

【0010】反応終了後は、温度を室温まで戻し、粗製
物をガスとして回収し、副生する酸性成分はアルカリ洗
浄することで除くことができる。さらにヘキサフルオロ
プロペンオキシドの精製は、微量同伴する不活性溶媒は
沸点差から精留法で分離可能であるし、未反応のヘキサ
フルオロプロペンは例えば臭素化を行い高沸点化するこ
とで、同様に精留により分離できる。
After completion of the reaction, the temperature can be returned to room temperature, the crude product can be recovered as a gas, and the by-produced acidic component can be removed by washing with an alkali. Further, in the purification of hexafluoropropene oxide, an inert solvent accompanied by a trace amount can be separated by a rectification method from the difference in boiling points, and unreacted hexafluoropropene can be boiled to have a high boiling point. It can be separated by rectification.

【0011】上述のように、本発明に用いる[I][II]
[III]化合物の混合物は循環して用いることができる
が、[I][II][III]は反応するに従って生成し蓄積
するため、本反応を回分式で行うに当たっては各回分反
応終了ごとに、また連続式で行うに当たっては一定時間
ごとに溶媒成分を分析・検量しし、蓄積量が多くなった
時点で処理操作が必要となる場合がある。 分析・検量法としてはガスクロマトグラフ法、NMR法
などが適用でき、活性酸素濃度についてはヨード滴定法
で検量することができる。処理操作としては、他の不活
性溶媒を用いる場合は蒸留操作により[I][II][II
I]の過剰な成分を分離、アルカリ洗浄で除害する方法
などが取れる。また[I][II][III]を溶媒として用
いる場合はそのまま過剰量を抜き出し、アルカリ洗浄で
除害する方法などが取れる。この除害操作により[I]
[II][III]は分解し、酸性物質を生成するため、
液性をアルカリ性に管理すると共に、水分が反応系中に
混入しないよう注意する必要がある。もし仮に水分の混
入が起これば、反応器中で酸性物質が生成し、反応器の
腐食等を引き起こす危険がある。
As mentioned above, [I] [II] used in the present invention.
The mixture of the [III] compounds can be used by circulating, but [I] [II] [III] is produced and accumulated as the reaction proceeds. Therefore, when this reaction is carried out in a batch system, each batch reaction is completed. In the continuous method, the solvent component may be analyzed and calibrated at regular intervals, and the treatment operation may be required when the accumulated amount increases. As the analysis / calibration method, a gas chromatographic method, an NMR method or the like can be applied, and the active oxygen concentration can be calibrated by an iodine titration method. As for the treatment operation, when another inert solvent is used, a distillation operation is carried out by [I] [II] [II
For example, a method of separating excess components of [I] and detoxifying by alkali cleaning can be used. When [I] [II] [III] is used as a solvent, a method of extracting an excessive amount as it is and removing it by alkali washing can be used. By this removal operation [I]
[II] and [III] decompose to produce acidic substances,
It is necessary to control the liquidity to be alkaline and be careful not to mix water into the reaction system. If water is mixed in, there is a risk that acidic substances will be generated in the reactor and cause corrosion of the reactor.

【0012】[0012]

【実施例】次に、本発明に用いる[I]、[II]、[II
I]の化合物の混合物の調製方法、および本発明のヘキ
サフルオロプロペンオキシドの製造方法の具体例を実施
例によって説明する。本発明がこれらの実施例によって
限定されるものではないことは勿論である。
EXAMPLES [I], [II], and [II] used in the present invention
Specific examples of the method for preparing a mixture of the compounds of [I] and the method for producing hexafluoropropene oxide of the present invention will be described by way of Examples. Of course, the present invention is not limited to these examples.

【0013】実施例1 [I][II][III]化合物の調製(1) 撹拌翼、電気ヒーター、液・ガスの仕込み口、および精
製物の取出し口を備えた3Lステンレス鋼製オートクレ
ーブに溶媒としてCl(CF2CFCl)2Clを2245g仕
込み、ヘキサフルオロプロペンを1047g仕込んだ。
この混合物を400rpmにて撹拌、120℃に加熱し、
酸素ガスを分注圧1kg/cm2・Gにてヘキサフルオロプ
ロペンの転化率が94%となるまで仕込み、反応させ
た。反応後、混合物を室温まで冷却し、低沸点生成物で
あるヘキサフルオロプロペンオキシドなどをブローし、
Cl(CF2CFCl)2Cl溶媒を回収した。このとき溶媒
は2474gまで増加していた。この溶媒を19F NM
Rにより分析したところ、Cl(CF2CFCl)2Cl以外
に表1の様なシグナルが観測された。
Example 1 Preparation of [I] [II] [III] Compounds (1) Solvent in a 3 L stainless steel autoclave equipped with a stirring blade, an electric heater, a liquid / gas charging port, and a refined product outlet. 2245 g of Cl (CF 2 CFCl) 2 Cl and 1047 g of hexafluoropropene were charged.
Stir this mixture at 400 rpm and heat to 120 ° C.,
Oxygen gas was charged at a dispensing pressure of 1 kg / cm 2 · G until the conversion of hexafluoropropene was 94%, and the reaction was allowed to proceed. After the reaction, the mixture is cooled to room temperature and blown with a low boiling point product such as hexafluoropropene oxide,
The Cl (CF 2 CFCl) 2 Cl solvent was recovered. At this time, the amount of the solvent increased to 2474 g. This solvent was added to 19 F NM
When analyzed by R, signals other than Cl (CF 2 CFCl) 2 Cl were observed as shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】このNMR分析結果よりCl(CF2CFC
l)2Cl溶媒中には[I][II][III]化合物の混合物が
4.15%含まれることがわかった。また表1のシグナ
ル強度比から、[I][II][III]の混合比は5.4:
3.5:0.7で、平均分子量は約330であると決定し
た。さらにこの[I][II][III]を含んだ溶媒をヨー
ド滴定法で分析したところ、0.0795重量%([I]
[II][III]基準で1.9168重量%)の活性酸素を
有していることがわかった。
From this NMR analysis result, Cl (CF 2 CFC
It was found that the mixture of [I] [II] [III] compounds contained 4.15% in l) 2 Cl solvent. From the signal intensity ratios in Table 1, the mixing ratio of [I] [II] [III] is 5.4:
At 3.5: 0.7, the average molecular weight was determined to be about 330. Furthermore, when the solvent containing this [I] [II] [III] was analyzed by an iodometric titration method, it was found to be 0.0795% by weight ([I]
[II] It was found to have active oxygen of 1.9168% by weight based on [III].

【0016】実施例2 [I][II][III]化合物の調製(2) 実施例1で用いた3Lステンレス鋼製オートクレーブに
ヘキサフルオロプロペンを625g仕込んだ。その後4
00rpmにて撹拌、110℃に加熱し、酸素ガスを分注
圧1kg/cm2・Gにてヘキサフルオロプロペンの転化率
が98%となるまで仕込み、反応させた。反応後、混合
物を室温まで冷却し、低沸点生成物であるヘキサフルオ
ロプロペンオキシドなどをブローし、高沸点生成物を回
収した。このとき回収量は97.8gであった。この回収
物を19F NMR、13C NMRにより分析したとこ
ろ、表2、3の様なシグナルが観測された。
Example 2 Preparation of [I] [II] [III] Compound (2) 625 g of hexafluoropropene was charged into the 3 L stainless steel autoclave used in Example 1. Then 4
The mixture was stirred at 00 rpm and heated to 110 ° C., and oxygen gas was charged at a dispensing pressure of 1 kg / cm 2 · G until the conversion of hexafluoropropene was 98%, and the reaction was carried out. After the reaction, the mixture was cooled to room temperature, low-boiling products such as hexafluoropropene oxide were blown, and high-boiling products were recovered. At this time, the recovered amount was 97.8 g. When this recovered substance was analyzed by 19 F NMR and 13 C NMR, signals as shown in Tables 2 and 3 were observed.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】このNMR分析結果より回収物は[I][I
I][III]化合物の混合物であることがわかった。ま
た表2のシグナル強度比から、[I][II][III]の混
合比は5.1:3.6:1.5で、平均分子量は約355で
あると決定した。さらにこの[I][II][III]混合物
をヨード滴定法で分析したところ、1.074重量%の
活性酸素を有していることがわかった。
From the results of this NMR analysis, the recovered product was [I] [I
It was found to be a mixture of I] [III] compounds. From the signal intensity ratios in Table 2, it was determined that the mixing ratio of [I] [II] [III] was 5.1: 3.6: 1.5 and the average molecular weight was about 355. Further, the [I] [II] [III] mixture was analyzed by an iodometric titration method and found to have 1.074% by weight of active oxygen.

【0020】実施例3〜7 実施例1で用いた3Lステンレス鋼製オートクレーブ
に、同じ実施例1で調製した[I][II][III]化合物
を含むCl(CF2CFCl)2Cl溶媒を仕込み、この溶媒
を5バッチ繰り返し使用して反応を行った。各バッチご
との回収溶媒の組成・再仕込み量、およびヘキサフルオ
ロプロペン仕込み量は表4に示した。反応はすべて撹拌
400rpm、120℃の温度条件で、酸素は分注圧1kg
/cm2・Gにて分割仕込みし、ヘキサフルオロプロペン
の転化率が約95%となるまで反応を行った。また各バ
ッチ反応終了ごとに、[I][II][III]の生成により
回収溶媒重量は増加するため、ほぼその増加分を抜き取
り次バッチに用いた。反応結果は全バッチともに誘導期
間はなく、反応終了後の粗製ガスのガスクロマトグラフ
ィー分析の結果、ヘキサフルオロプロペンオキシド収率
で68.4〜71.2%であった。なお各バッチごとのデ
ータは表4に記載した。さらにこれらの粗製ガスをアル
カリ洗浄後、ドライアイス−メタノール浴にてトラップ
したところ、882.1〜906.7gのガス成分を回収
した。これを分析したところヘキサフルオロプロペンオ
キシド(92.1〜96.2%純度)と原料のヘキサフルオ
ロプロペンであった。
Examples 3 to 7 The 3L stainless steel autoclave used in Example 1 was charged with the Cl (CF 2 CFCl) 2 Cl solvent containing the [I] [II] [III] compound prepared in Example 1. After charging, the reaction was carried out by repeatedly using this solvent for 5 batches. Table 4 shows the composition / recharge amount of the recovered solvent and the charge amount of hexafluoropropene for each batch. All reactions were carried out at a stirring temperature of 400 rpm and temperature of 120 ° C.
/ Cm 2 · G was charged separately and the reaction was carried out until the conversion of hexafluoropropene was about 95%. Also, since the weight of the recovered solvent increases due to the production of [I] [II] [III] after each batch reaction is completed, almost the increased amount was extracted and used for the next batch. The reaction results for all batches had no induction period, and the gas chromatographic analysis of the crude gas after the reaction showed that the hexafluoropropene oxide yield was 68.4 to 71.2%. The data for each batch are shown in Table 4. Further, after these crude gases were washed with alkali and trapped in a dry ice-methanol bath, 882.1 to 906.7 g of gas components were recovered. When this was analyzed, it was hexafluoropropene oxide (92.1 to 96.2% pure) and hexafluoropropene as a raw material.

【0021】比較例1 実施例1で用いた3Lステンレス鋼製オートクレーブ
に、[I][II][III]化合物を含まない純品のCl(C
2CFCl)2Cl溶媒を仕込み、反応を行った。各仕込
み条件は表4に示した。反応は撹拌400rpm、120
℃の温度条件で、酸素は分注圧1kg/cm2・Gにて分割
仕込みし、ヘキサフルオロプロペンの転化率が94.8
%となるまで反応を行った。反応結果は反応開始までに
2.5時間の誘導期間が必要で、反応終了後の粗製ガス
のガスクロマトグラフィー分析の結果、ヘキサフルオロ
プロペンオキシド収率で51.9%であった。なお詳し
くは表4に記載した。さらにこれらの粗製ガスをアルカ
リ洗浄後、ドライアイス−メタノール浴にてトラップし
たところ、640.2gのガス成分を回収した。これを分
析したところヘキサフルオロプロペンオキシド(91.7
%純度)と原料のヘキサフルオロプロペンであった。
Comparative Example 1 The 3L stainless steel autoclave used in Example 1 contained the pure Cl (C) containing no [I] [II] [III] compounds.
F 2 CFCl) 2 Cl solvent was charged and the reaction was carried out. The charging conditions are shown in Table 4. Reaction is stirring 400 rpm, 120
Oxygen was dividedly charged at a dispensing pressure of 1 kg / cm 2 · G under a temperature condition of ℃, and the conversion rate of hexafluoropropene was 94.8.
The reaction was carried out until the percentage reached. As a result of the reaction, an induction period of 2.5 hours was required until the start of the reaction, and a gas chromatographic analysis of the crude gas after the completion of the reaction revealed that the hexafluoropropene oxide yield was 51.9%. The details are shown in Table 4. Further, after these crude gases were washed with an alkali and trapped in a dry ice-methanol bath, 640.2 g of gas components were recovered. When this was analyzed, hexafluoropropene oxide (91.7
% Purity) and the starting material was hexafluoropropene.

【0022】実施例8〜10 実施例1で用いた3Lステンレス鋼製オートクレーブ
に、実施例2で調製した[I][II][III]混合物を仕
込み、これを溶媒として3バッチ繰り返し使用し、反応
を行った。各バッチごとの回収[I][II][III]混合
物量・再仕込み量、およびヘキサフルオロプロペン仕込
み量は表5に示した。反応はすべて撹拌400rpm、1
10℃の温度条件で、酸素は分注圧1kg/cm2・Gにて
分割仕込みし、ヘキサフルオロプロペンの転化率が90
%以上となるまで反応を行った。また各バッチ反応終了
ごとに、新たな[I][II][III]化合物の生成により
回収混合物重量は増加するため、分析に必要な分を抜き
取り次バッチに用いた。反応結果は全バッチともに誘導
期間はなく、反応終了後の粗製ガスのガスクロマトグラ
フィー分析の結果、ヘキサフルオロプロペンオキシド収
率で61.0〜66.8%であった。なお詳しくは表5に
記載した。
Examples 8 to 10 The 3L stainless steel autoclave used in Example 1 was charged with the [I] [II] [III] mixture prepared in Example 2, and this was used as a solvent repeatedly for 3 batches, The reaction was carried out. Table 5 shows the recovered [I] [II] [III] mixture amount / recharge amount and hexafluoropropene charge amount for each batch. All reactions are stirring 400 rpm, 1
Under the temperature condition of 10 ° C, oxygen was dividedly charged at a dispensing pressure of 1 kg / cm 2 · G, and the conversion rate of hexafluoropropene was 90.
The reaction was carried out until the percentage was exceeded. In addition, since the weight of the recovered mixture increases due to the formation of a new [I] [II] [III] compound after each batch reaction, an amount necessary for the analysis was extracted and used for the next batch. The reaction results of all batches had no induction period, and the gas chromatographic analysis of the crude gas after the completion of the reaction revealed that the hexafluoropropene oxide yield was 61.0 to 66.8%. The details are shown in Table 5.

【0023】比較例2 実施例1で用いた3Lステンレス鋼製オートクレーブ
に、ヘキサフルオロプロペン625gを仕込み、反応を
行った。反応は撹拌400rpm、110℃の温度条件
で、酸素は分注圧1kg/cm2・Gにて分割仕込みし、ヘ
キサフルオロプロペンの転化率が約98.2%となるま
で反応を行った。反応結果は反応開始までに2.0時間
の誘導期間が必要で、反応終了後の粗製ガスのガスクロ
マトグラフィー分析の結果、ヘキサフルオロプロペンオ
キシド収率で54.0%であった。なお詳しくは表5に
記載した。
Comparative Example 2 625 g of hexafluoropropene was charged into the 3 L stainless steel autoclave used in Example 1 and the reaction was carried out. The reaction was carried out at a stirring temperature of 400 rpm and a temperature of 110 ° C., and oxygen was dividedly charged at a dispensing pressure of 1 kg / cm 2 · G, and the reaction was carried out until the conversion rate of hexafluoropropene was about 98.2%. The reaction result required an induction period of 2.0 hours before the start of the reaction, and the gas chromatographic analysis of the crude gas after the completion of the reaction revealed that the hexafluoropropene oxide yield was 54.0%. The details are shown in Table 5.

【0024】実施例11 撹拌翼、電気ヒーター、液・ガス・仕込み口、および生
成物の取出し口を備えた200mlステンレス鋼製オート
クレーブに、実施例2と同様に調製した[I][II][I
II]混合物を溶媒として151g、およびヘキサフルオ
ロプロペンを33.2g仕込み、撹拌400rpm、120
℃に加熱した。さらに酸素は分注圧1kg/cm2・Gにて
分割仕込みし、ヘキサフルオロプロペンの転化率が約9
7.4%となるまで反応を行った。反応結果は誘導期間
はなく、反応終了後の粗製ガスのガスクロマトグラフィ
ー分析の結果、ヘキサフルオロプロペンオキシド収率で
64.8%であった。なお詳しくは表5に記載した。
Example 11 A 200 ml stainless steel autoclave equipped with a stirring blade, an electric heater, a liquid / gas / charge port, and a product outlet was prepared in the same manner as in Example 2 [I] [II] [ I
II] using the mixture as a solvent (151 g) and hexafluoropropene (33.2 g), and stirring at 400 rpm for 120
Heated to ° C. Further, oxygen was dividedly charged at a dispensing pressure of 1 kg / cm 2 · G, and the conversion rate of hexafluoropropene was about 9
The reaction was carried out until it reached 7.4%. The reaction result had no induction period, and as a result of gas chromatography analysis of the crude gas after the reaction was completed, the hexafluoropropene oxide yield was 64.8%. The details are shown in Table 5.

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【発明の効果】以上述べてきたように、本発明により、
ヘキサフルオロプロペンを酸素で酸化し、ヘキサフルオ
ロプロペンオキシドを製造する場合に、反応開始の誘導
期間が無くなり、反応に要する時間を短縮することがで
きると共に、ヘキサフルオロプロペンオキシドを高収率
で得ることができる。
As described above, according to the present invention,
When hexafluoropropene is oxidized with oxygen to produce hexafluoropropene oxide, the induction period of the reaction start is eliminated, the time required for the reaction can be shortened, and hexafluoropropene oxide can be obtained in a high yield. You can

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ヘキサフルオロプロペンを酸素で酸化し
てヘキサフルオロプロペンオキシドを製造する方法にお
いて、一般式: F(CF2O)lCOF [I] F(CF2O)mCF2COF [II] F(CF2O)nOCF2COF [III] (式中l、m、nはそれぞれ1〜50の整数であり、l、m、
nが1より大きい場合、CF2O繰返し単位間の結合は頭
−尾結合の外に、頭−頭結合および/または尾−尾結合
をも含む。)で示される化合物よりなる群から選択され
る少なくとも一種の化合物を含んでなる混合物を添加す
ることを特徴とするヘキサフルオロプロペンオキシドの
製造方法。
1. A method for producing hexafluoropropene oxide by oxidizing hexafluoropropene with oxygen, which comprises the general formula: F (CF 2 O) 1 COF [I] F (CF 2 O) m CF 2 COF [II ] F (CF 2 O) n OCF 2 COF [III] ( wherein l, m, n is an integer of 1~50, l, m,
When n is greater than 1, the bond between the CF 2 O repeating units includes a head-to-tail bond and also a head-to-head bond and / or a tail-to-tail bond. ) A method for producing hexafluoropropene oxide, characterized in that a mixture containing at least one compound selected from the group consisting of the compounds shown in (4) is added.
【請求項2】 上記混合物の、ヨード滴定法で測定した
活性酸素濃度が0.01〜25重量%であることを特徴
とする請求項1の方法。
2. The method according to claim 1, wherein the mixture has an active oxygen concentration of 0.01 to 25% by weight measured by an iodometric titration method.
【請求項3】 ヘキサフルオロプロペンを酸素で酸化し
てヘキサフルオロプロペンオキシドを製造する場合にお
いて、当該反応の副生物を添加することを特徴とするヘ
キサフルオロプロペンオキシドの製造方法。
3. A method for producing hexafluoropropene oxide, which comprises adding a by-product of the reaction in the case of producing hexafluoropropene oxide by oxidizing hexafluoropropene with oxygen.
JP26346592A 1992-10-01 1992-10-01 Production of hexafluoropropene oxide Pending JPH06107650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26346592A JPH06107650A (en) 1992-10-01 1992-10-01 Production of hexafluoropropene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26346592A JPH06107650A (en) 1992-10-01 1992-10-01 Production of hexafluoropropene oxide

Publications (1)

Publication Number Publication Date
JPH06107650A true JPH06107650A (en) 1994-04-19

Family

ID=17389890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26346592A Pending JPH06107650A (en) 1992-10-01 1992-10-01 Production of hexafluoropropene oxide

Country Status (1)

Country Link
JP (1) JPH06107650A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040879A (en) * 2001-07-31 2003-02-13 Asahi Glass Co Ltd Method for producing hexafluoropropylene oxide
JP2010037151A (en) * 2008-08-05 2010-02-18 Unimatec Co Ltd Method for producing carbonyl fluoride
WO2011122544A1 (en) * 2010-03-29 2011-10-06 ダイキン工業株式会社 Method for producing carbonyl fluoride and hexafluoropropylene oxide
CN102731441A (en) * 2011-03-31 2012-10-17 大金工业株式会社 Method for cleaning hexafluoropropylene oxide
CN102728107A (en) * 2011-03-31 2012-10-17 大金工业株式会社 Bubble eliminating method of liquid having anionic surfactant and method of cleaning hexafluoropropylene oxide
JP2013220999A (en) * 2012-04-13 2013-10-28 Daikin Industries Ltd Treatment method of fluorine-containing compound-containing liquid
CN104557797A (en) * 2013-10-28 2015-04-29 浙江蓝天环保高科技股份有限公司 Method for shortening induction period of epoxidation reaction of hexafluoropropylene

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040879A (en) * 2001-07-31 2003-02-13 Asahi Glass Co Ltd Method for producing hexafluoropropylene oxide
JP2010037151A (en) * 2008-08-05 2010-02-18 Unimatec Co Ltd Method for producing carbonyl fluoride
WO2011122544A1 (en) * 2010-03-29 2011-10-06 ダイキン工業株式会社 Method for producing carbonyl fluoride and hexafluoropropylene oxide
CN102822155A (en) * 2010-03-29 2012-12-12 大金工业株式会社 Method for producing carbonyl fluoride and hexafluoropropylene oxide
CN102731441A (en) * 2011-03-31 2012-10-17 大金工业株式会社 Method for cleaning hexafluoropropylene oxide
CN102728107A (en) * 2011-03-31 2012-10-17 大金工业株式会社 Bubble eliminating method of liquid having anionic surfactant and method of cleaning hexafluoropropylene oxide
JP2012211115A (en) * 2011-03-31 2012-11-01 Daikin Industries Ltd Method for cleaning hexafluoropropylene oxide
JP2013220999A (en) * 2012-04-13 2013-10-28 Daikin Industries Ltd Treatment method of fluorine-containing compound-containing liquid
CN104557797A (en) * 2013-10-28 2015-04-29 浙江蓝天环保高科技股份有限公司 Method for shortening induction period of epoxidation reaction of hexafluoropropylene

Similar Documents

Publication Publication Date Title
JP3572077B2 (en) Method for producing perfluoroalkyl iodides
ZA200309058B (en) Process of preparing halogenated esters.
EP0980345B1 (en) Method for preparing 1,1,1,3,3-pentachlorobutane
JP2021119113A (en) Method for producing sulfur tetrafluoride
JPH07206757A (en) Production of polyfluorochloro- and perfluorocarboxylic acid chlorides
JPH06107650A (en) Production of hexafluoropropene oxide
ITMI960798A1 (en) PROCESS FOR THE PREPARATION OF PERFLUOROPOLIETERS WITH BROMINATED OR IODURED TERMINALS
JP2673119B2 (en) Method for producing alkyl halodifluoroacetate
CA1298315C (en) Process for the preparation of fluorobenzaldehydes
JP2794520B2 (en) Method for producing perfluorocarboxylic acid fluoride compound
US4138417A (en) Process for producing perfluorocarboxylic acid
EP0748318B1 (en) Process for preparing polyfluorooxetanes
JPH0261446B2 (en)
JPH0552295B2 (en)
JP2972163B2 (en) Method for producing alkylhalodifluoroacetate
JP4210600B2 (en) Monochloroacetic acid production method
DE3332017A1 (en) METHOD FOR PRODUCING 3,4-DICHLORBENZOTRIHALOGENIDES
EP0939752B1 (en) Manufacture of fluorinated compounds
JPH08231462A (en) Perfluoroalkylarboxylic acid fluoride and production of its derivative
GB1573660A (en) Perluoro-2,3,4,5-tetramethyl-3-ethyl tetrahydrofuran and its use as an inert fluid
JP3172173B2 (en) Fluorocarbon compound and method for producing the same
JP4058142B2 (en) Method for producing fluorinated iodoethane
DE2556844C3 (en) Process for the preparation of perfluorocarboxylic acids
JP4867100B2 (en) Method for producing hexafluoropropylene oxide
JPH0525066A (en) Production of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane