JPH06107463A - Unidirectional reinforced c/c composite material - Google Patents

Unidirectional reinforced c/c composite material

Info

Publication number
JPH06107463A
JPH06107463A JP4256065A JP25606592A JPH06107463A JP H06107463 A JPH06107463 A JP H06107463A JP 4256065 A JP4256065 A JP 4256065A JP 25606592 A JP25606592 A JP 25606592A JP H06107463 A JPH06107463 A JP H06107463A
Authority
JP
Japan
Prior art keywords
fiber
carbon
composite material
carbon fiber
volume ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4256065A
Other languages
Japanese (ja)
Inventor
Yasuhiro Aiba
康博 愛場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4256065A priority Critical patent/JPH06107463A/en
Publication of JPH06107463A publication Critical patent/JPH06107463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce a unidirectional reinforced C/C composite material excellent in characteristics such as heat conductivity and strength in a direction perpendicular to carbon fibers. CONSTITUTION:Bundles of carbon fibers and bundles of org. fibers are arranged in one direction and a carbon matrix is impregnated into the resulting formed body to produce the objective unidirectional reinforced C/C composite material contg. <=60vol.% carbon fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核融合炉壁材、高温炉
その他の高温分野に使用される一方向強化のC/C複合
材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unidirectionally reinforced C / C composite material used in fusion reactor wall materials, high temperature furnaces and other high temperature fields, and a method for producing the same.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材料(C/C複合
材)には、一方向強化材、繊維をXY方向の二次元的に
配置した2D材、繊維をXYZ方向の三次元的に配置し
た3D材がある。このうち、一方向強化材の製造法は、
主に以下の二方法が知られている。市販の一方向プリ
プレグシートを、繊維の方向を揃えて積層し、樹脂を硬
化、炭化し、更に炭素マトリックスを含浸する方法(文
献例:日本機械学会誌、第10巻、第2号、P.56、
“C/Cコンポジット開発の現状”)。フィラメント
ワインディング法で炭素繊維束を一方向に揃えて板等に
巻きつけ、これに炭素マトリックスを含浸する方法(文
献例:炭素No.115、“炭素繊維強化炭素複合材
料”)。
2. Description of the Related Art Carbon fiber reinforced carbon composite materials (C / C composite materials) include unidirectional reinforcing materials, 2D materials in which fibers are two-dimensionally arranged in XY directions, and fibers are three-dimensionally arranged in XYZ directions. There is a 3D material. Among these, the manufacturing method of unidirectional reinforcement is
The following two methods are mainly known. A method in which commercially available unidirectional prepreg sheets are laminated with the fibers oriented in the same direction, the resin is cured, carbonized, and further impregnated with a carbon matrix (Reference example: Journal of the Japan Society of Mechanical Engineers, Volume 10, No. 2, P. 56,
"Current status of C / C composite development"). A method in which carbon fiber bundles are aligned in one direction by a filament winding method, wound around a plate or the like, and impregnated with a carbon matrix (reference example: carbon No. 115, "carbon fiber reinforced carbon composite material").

【0003】[0003]

【発明が解決しようとする課題】従来法で得られる一方
向強化C/C複合材は、2D材や3D材に比べて繊維が
一方向に配向しているため、繊維の方向の強度や熱伝導
率は著しく改善されるものの、他の方向即ち繊維と直角
方向の強度(層間剪断強度)、熱伝導率等の特性は著し
く低下するという問題があった。本発明は、繊維と直角
の方向の強度、熱伝導率等の特性に優れる一方向強化の
C/C複合材及びその製造方法を提供するものである。
In the unidirectionally reinforced C / C composite material obtained by the conventional method, the fibers are oriented in one direction as compared with the 2D material and the 3D material. Although the conductivity is remarkably improved, there is a problem that properties such as strength (interlaminar shear strength) in the other direction, that is, the direction perpendicular to the fiber, thermal conductivity, etc. are remarkably lowered. The present invention provides a unidirectionally reinforced C / C composite material having excellent properties such as strength and thermal conductivity in the direction perpendicular to the fiber, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、従来の一
方向強化材について検討した結果、繊維と直角の方向の
強度、熱伝導率等の特性が劣るのは、炭素繊維の体積率
が高いこと(60%以上)が原因となっていることを明
らかにした。即ち、炭素繊維自体は径方向の熱伝導率が
低いため、繊維体積率が高いと繊維と直角方向の熱伝導
率は炭素繊維の径方向の熱伝導率に近くなり、低くな
る。また、炭素繊維の体積率が高いと炭素繊維間の炭素
マトリックスが充分でなくなり、層間強度が低くなる。
以上の考察から本発明者らは、炭素繊維の体積率を小さ
くすることで従来材の問題点を解決できることを見い出
した。
Means for Solving the Problems As a result of studying conventional unidirectional reinforcing materials, the inventors of the present invention are inferior in properties such as strength and thermal conductivity in the direction perpendicular to the fibers because of the volume ratio of carbon fibers. It was clarified that it was caused by high (60% or more). That is, since the carbon fiber itself has a low thermal conductivity in the radial direction, when the fiber volume ratio is high, the thermal conductivity in the direction perpendicular to the fiber is close to the thermal conductivity in the radial direction of the carbon fiber and is low. Further, when the volume ratio of the carbon fibers is high, the carbon matrix between the carbon fibers becomes insufficient and the interlayer strength becomes low.
From the above consideration, the present inventors have found that the problem of the conventional material can be solved by reducing the volume ratio of carbon fiber.

【0005】本発明は、炭素繊維の体積率が60%以下
である一方向強化C/C複合材並びに炭素繊維束及び有
機繊維束を一方向に並べ、得られる成形体に炭素マトリ
ックスを含浸する一方向強化C/C複合材の製造方法に
関する。
According to the present invention, a unidirectionally reinforced C / C composite material having a volume fraction of carbon fibers of 60% or less, a carbon fiber bundle and an organic fiber bundle are arranged in one direction, and the resulting molded body is impregnated with a carbon matrix. The present invention relates to a method for manufacturing a unidirectionally reinforced C / C composite material.

【0006】本発明の一方向強化C/C複合材は炭素繊
維の体積率が60%以下とされる。60%を越えると層
間剪断強度及び繊維と直角の方向の熱伝導率を大きく出
来ない。そのためには炭素繊維の体積率を60%以下に
する必要があるが、高強度、高弾性等の高性能の炭素繊
維はフィラメントが真っ直で嵩が小さく、炭素繊維の体
積率を60%以下にすることが困難である。炭素繊維の
体積率を小さくするには、炭素繊維束及び有機繊維束を
一方向に並べ、得られる成形体に炭素マトリックスを含
浸し炭化することで達成される。これは有機繊維が炭化
時に大部分消失し、その部分が空孔となり、更に炭素マ
トリックスを含浸することで炭素繊維の体積率を小さく
することができる。有機繊維が炭化して少量残ってもマ
トリックスと同化し、炭素繊維にはならないので、C/
C複合材の特性に影響を及ぼさない。炭素繊維の種類は
特に制限はないが、繊維方向の強度や熱伝導率を大きく
するためには、高性能(高強度、高弾性)の炭素繊維が
好ましい。有機繊維も制限はないが、炭化率が低いもの
又は炭化率が高くても炭素マトリックスと同化し易い易
黒鉛化性のものが好ましい。このようなものとしては熱
可塑性樹脂繊維がある。炭素マトリックスも制限はない
が、ピッチや炭化率の大きな合成樹脂が好ましく、熱分
解黒鉛等も使用できる。また、炭素繊維と有機繊維との
比率は目的、用途に応じて適宜選択すれば良く、特に制
限はない。
In the unidirectionally reinforced C / C composite material of the present invention, the volume fraction of carbon fiber is 60% or less. If it exceeds 60%, the interlaminar shear strength and the thermal conductivity in the direction perpendicular to the fiber cannot be increased. For that purpose, it is necessary to make the volume ratio of the carbon fiber 60% or less, but the high-performance carbon fiber having high strength, high elasticity and the like has a straight filament and a small volume, and the volume ratio of the carbon fiber is 60% or less. Is difficult to do. The volume ratio of the carbon fibers can be reduced by arranging the carbon fiber bundles and the organic fiber bundles in one direction, and impregnating the resulting molded body with a carbon matrix to carbonize the carbon fiber matrix. This is because most of the organic fibers disappear at the time of carbonization, and the portions become voids, and the volume ratio of the carbon fibers can be reduced by further impregnating the carbon matrix. Even if a small amount of the organic fiber is carbonized and remains, it is assimilated with the matrix and does not become carbon fiber.
C Does not affect the properties of the composite. The type of carbon fiber is not particularly limited, but high performance (high strength, high elasticity) carbon fiber is preferable in order to increase the strength and thermal conductivity in the fiber direction. The organic fiber is also not limited, but those having a low carbonization rate or those having a high carbonization rate and easily graphitizable with the carbon matrix are preferable. As such a material, there is a thermoplastic resin fiber. The carbon matrix is also not limited, but a pitch or a synthetic resin having a large carbonization rate is preferable, and pyrolytic graphite or the like can be used. The ratio of carbon fiber to organic fiber may be appropriately selected according to the purpose and application, and is not particularly limited.

【0007】[0007]

【作用】上記したように、炭素繊維の成形体に、後に大
部分が消失する有機繊維を混合して炭素繊維の体積率を
小さくすることが、一方向強化C/C複合材における繊
維と直角方向の強度(層間剪断強度)及び熱伝導率を大き
くする作用をしている。本発明では強度及び熱伝導率を
特性の代表例として取り上げたが、導電率、熱膨張係数
その他の特性にも当然作用している。特性全体を総括す
ると、本発明は一方向強化C/C複合材の異方性を小さ
くする方向に作用するものである。
As described above, it is preferable to mix the carbon fiber molded body with the organic fiber, which is largely lost later, to reduce the volume ratio of the carbon fiber and to make it perpendicular to the fiber in the unidirectionally reinforced C / C composite material. It acts to increase the strength in the direction (interlaminar shear strength) and thermal conductivity. In the present invention, the strength and the thermal conductivity are taken as the representative examples of the characteristics, but the conductivity, the thermal expansion coefficient and other characteristics are naturally affected. Summarizing the entire characteristics, the present invention acts to reduce the anisotropy of the unidirectionally reinforced C / C composite material.

【0008】[0008]

【実施例】次に本発明の実施例を説明する。 実施例1 ピッチ系高弾性炭素繊維束(弾性率500GPa、密度
2.15g/cm3、繊維径10μm、フィラメント数2
000本)、ポリ四弗化エチレン繊維(融点327℃、密
度2.3g/cm3、繊維径20μm、フィラメント数1
80本)及びアラミド繊維(融点500℃以上、密度1.
45g/cm3、繊維径12μm、フィラメント数100
0本)の三つの束を同時にフィラメントワインディング
により、200mm幅の板に2434回巻き取り、一箇所
を切断してそれぞれ2434束を混合した束を作成し
た。これを内径40mmのパイプに通し、炭素繊維体積率
30%、有機繊維体積率32.5%、合計繊維体積率6
2.5%の成形体を得た。この成形体に溶融ピッチを含
浸し、不活性ガスの雰囲気で約5日間かけて900℃迄
の温度でピッチ及び有機繊維を炭化した。このピッチ含
浸、炭化工程を6回繰り返し、更に2800℃で黒鉛化
後、嵩密度が1.84g/cm3、炭素繊維体積率40%の
一方向強化C/C複合材を得た。特性を表1に示す。
EXAMPLES Examples of the present invention will be described below. Example 1 Pitch-based highly elastic carbon fiber bundle (modulus of elasticity 500 GPa, density 2.15 g / cm 3 , fiber diameter 10 μm, number of filaments 2)
000), polytetrafluoroethylene fiber (melting point 327 ° C., density 2.3 g / cm 3 , fiber diameter 20 μm, number of filaments 1
80) and aramid fibers (melting point 500 ° C or higher, density 1.
45 g / cm 3 , fiber diameter 12 μm, filament number 100
Three bundles (0 pieces) were simultaneously wound by filament winding on a plate having a width of 200 mm 2434 times and cut at one position to prepare a bundle in which 2434 bundles were mixed. This is passed through a pipe with an inner diameter of 40 mm and the carbon fiber volume ratio is 30%, the organic fiber volume ratio is 32.5%, and the total fiber volume ratio is 6
A 2.5% compact was obtained. The molded body was impregnated with molten pitch, and the pitch and the organic fibers were carbonized at a temperature up to 900 ° C. in an inert gas atmosphere for about 5 days. The pitch impregnation and carbonization steps were repeated 6 times, and after graphitization at 2800 ° C., a unidirectionally reinforced C / C composite material having a bulk density of 1.84 g / cm 3 and a carbon fiber volume ratio of 40% was obtained. The characteristics are shown in Table 1.

【0009】実施例2 実施例1と同じピッチ系高弾性炭素繊維束及び実施例1
と同じアラミド繊維の二つの束を同時にフィラメントワ
インディングにより、200mm幅の板に3245回巻き
取り、実施例1と同様にして炭素繊維の体積率40%、
有機繊維の体積率28.7%、合計繊維体積率68.7
%の繊維成形体を得た。この成形体から実施例1と同様
にして嵩密度が1.84g/cm3、炭素繊維体積率50
%の一方向強化C/C複合材を得た。特性を表1に示
す。
Example 2 The same pitch-based high-elasticity carbon fiber bundle as in Example 1 and Example 1
Two bundles of the same aramid fiber were simultaneously wound by filament winding on a plate having a width of 200 mm 3245 times, and the volume ratio of carbon fiber was 40% in the same manner as in Example 1.
Organic fiber volume ratio 28.7%, total fiber volume ratio 68.7
% Fiber molding was obtained. From this molded product, in the same manner as in Example 1, the bulk density was 1.84 g / cm 3 , and the carbon fiber volume ratio was 50.
% Unidirectionally reinforced C / C composite was obtained. The characteristics are shown in Table 1.

【0010】実施例3 ピッチ系高弾性炭素繊維束(実施例1と同じ、但しフィ
ラメント数は6000本)及びビニロン繊維(融点50
0℃以上、密度1.3g/cm3、繊維径14μm、フィ
ラメント数1000本)の二つの束を同時にフィラメン
トワインディングにより、200mm幅の板に1353回
巻き取り、実施例1と同様にして炭素繊維体積率50
%、有機繊維体積率14.3%、合計繊維体積率64.
3%の繊維成形体を得た。この成形体から実施例1と同
様にして嵩密度が1.84g/cm3、炭素繊維体積率60
%の一方向強化C/C複合材を得た。特性を表1に示
す。
Example 3 Pitch-based highly elastic carbon fiber bundle (same as in Example 1, but with 6000 filaments) and vinylon fiber (melting point 50)
Two bundles having a temperature of 0 ° C. or higher, a density of 1.3 g / cm 3 , a fiber diameter of 14 μm, and a number of filaments of 1000) were simultaneously wound by filament winding on a plate having a width of 200 mm, 1353 times, and carbon fibers were prepared in the same manner as in Example 1. Volume ratio 50
%, Organic fiber volume ratio 14.3%, total fiber volume ratio 64.
A 3% fiber molding was obtained. From this molded product, in the same manner as in Example 1, the bulk density was 1.84 g / cm 3 , and the carbon fiber volume ratio was 60.
% Unidirectionally reinforced C / C composite was obtained. The characteristics are shown in Table 1.

【0011】比較例1 実施例3と同じピッチ系高弾性炭素繊維束だけをフィラ
メントワインディングにより、200mm幅の板に162
3回巻き取り、実施例1と同様にして炭素繊維体積率6
0%の炭素繊維成形体を得た。次に、この成形体から実
施例1と同様にして嵩密度が1.91g/cm3、炭素繊
維体積率70%の一方向強化C/C複合材を得た。特性
を表1に示す。
Comparative Example 1 Only the same pitch-based high-elasticity carbon fiber bundle as in Example 3 was subjected to filament winding to form 162 on a 200 mm wide plate.
Winding 3 times, and carbon fiber volume ratio 6 in the same manner as in Example 1.
A 0% carbon fiber compact was obtained. Next, a unidirectionally reinforced C / C composite material having a bulk density of 1.91 g / cm 3 and a carbon fiber volume ratio of 70% was obtained from this molded body in the same manner as in Example 1. The characteristics are shown in Table 1.

【0012】比較例2 実施例3と同じピッチ系高弾性炭素繊維束だけをフィラ
メントワインディングにより、200mm幅の板に135
3回巻き取り、実施例1と同様にして炭素繊維体積率5
0%の炭素繊維成形体を得た。次に、この成形体から実
施例1と同様にして一方向強化C/C複合材を得た。こ
のC/C複合材は繊維と並行な亀裂が多数あり、特性を
測定することが出来なかった。同様に炭素繊維体積率4
0%の炭素繊維成形体を作成し、同様にC/C複合材を
作成したが、同様に亀裂が多数あり、特性を測定するこ
とが出来なかった(比較例3)。
COMPARATIVE EXAMPLE 2 Only the same pitch-based high-elasticity carbon fiber bundle as in Example 3 was put into a 200 mm wide plate by filament winding.
It was wound three times, and carbon fiber volume ratio was 5 in the same manner as in Example 1.
A 0% carbon fiber compact was obtained. Next, a unidirectionally reinforced C / C composite material was obtained from this molded body in the same manner as in Example 1. This C / C composite material had many cracks parallel to the fibers, and its properties could not be measured. Similarly, carbon fiber volume ratio 4
A 0% carbon fiber molded body was prepared and a C / C composite material was prepared in the same manner, but similarly, there were many cracks, and the characteristics could not be measured (Comparative Example 3).

【0013】[0013]

【表1】 [Table 1]

【0014】表1から明らかなように、炭素繊維束だけ
を用いた比較例のC/C複合材は層間剪断強度及び繊維
と直角方向の熱伝導率が低く、又は亀裂の発生があった
が、有機繊維束も併せて用いた実施例のC/C複合材は
層間剪断強度及び繊維と直角方向の熱伝導率が大きくな
っていることが示される。
As is clear from Table 1, the C / C composite material of Comparative Example using only the carbon fiber bundle had low interlaminar shear strength and thermal conductivity in the direction perpendicular to the fiber, or cracking occurred. It is shown that the C / C composite materials of the examples in which the organic fiber bundles are also used have high interlaminar shear strength and thermal conductivity in the direction perpendicular to the fibers.

【0015】[0015]

【発明の効果】従来の方法では、一方向強化C/C複合
材の炭素繊維体積率を60%以下とすることは困難であ
ったが、本発明によれば、炭素繊維束及び有機繊維束を
混合して使用することにより、自由に炭素繊維体積率を
小さく出来、一方向強化C/C複合材の層間剪断強度及
び繊維と直角方向の熱伝導率を大きく出来る、即ち、特
性の異方性を小さく出来る。
According to the conventional method, it was difficult to reduce the volume fraction of carbon fiber of the unidirectionally reinforced C / C composite material to 60% or less. However, according to the present invention, the carbon fiber bundle and the organic fiber bundle are By mixing and using, it is possible to freely reduce the carbon fiber volume ratio, increase the interlaminar shear strength of the unidirectionally reinforced C / C composite material, and increase the thermal conductivity in the direction perpendicular to the fiber, that is, anisotropic properties. You can reduce the sex.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維の体積率が60%以下である一
方向強化C/C複合材。
1. A unidirectionally reinforced C / C composite material having a volume fraction of carbon fibers of 60% or less.
【請求項2】 炭素繊維束及び有機繊維束を一方向に並
べ、得られる成形体に炭素マトリックスを含浸すること
を特徴とする請求項1記載の一方向強化C/C複合材の
製造方法。
2. The method for producing a unidirectionally reinforced C / C composite material according to claim 1, wherein the carbon fiber bundle and the organic fiber bundle are arranged in one direction, and the resulting molded body is impregnated with a carbon matrix.
JP4256065A 1992-09-25 1992-09-25 Unidirectional reinforced c/c composite material Pending JPH06107463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4256065A JPH06107463A (en) 1992-09-25 1992-09-25 Unidirectional reinforced c/c composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4256065A JPH06107463A (en) 1992-09-25 1992-09-25 Unidirectional reinforced c/c composite material

Publications (1)

Publication Number Publication Date
JPH06107463A true JPH06107463A (en) 1994-04-19

Family

ID=17287416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4256065A Pending JPH06107463A (en) 1992-09-25 1992-09-25 Unidirectional reinforced c/c composite material

Country Status (1)

Country Link
JP (1) JPH06107463A (en)

Similar Documents

Publication Publication Date Title
Chung Composite materials: functional materials for modern technologies
US3956564A (en) Graded filamentary composite article and method of making
AU2007201894A1 (en) High-temperature-resistant composite
WO2007004482A1 (en) CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER
CN113896558B (en) High-performance heat-conducting composite material and preparation method thereof
Michalowski et al. Mechanical properties of C/C composites processed by wet impregnation and P-CVI methods
JP2011046543A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JP2717618B2 (en) Method for producing fiber-reinforced composite material
JPH06107463A (en) Unidirectional reinforced c/c composite material
US5554354A (en) Carbon fiber-reinforced carbon composite material and process for producing the same
JP3422806B2 (en) Unidirectional reinforced C / C composite and method for producing the same
JPH06116031A (en) Falsely unidirectional reinforced c/c composite material and its production
JPS61197472A (en) Manufacture of sic continuous fiber reinforced sic compositebody
JPS6054270B2 (en) Carbon fiber reinforced carbon friction material
JPH06321634A (en) C/c composite material reinforced in one direction and its production
Chung Composite material structure and processing
JP3422807B2 (en) Unidirectional reinforced C / C composite fabric
JP2002255664A (en) C/c composite material and production method therefor
JPH06263537A (en) Pseudo-unidirectionally reinforced c/c composite material and its production
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
JPH03193664A (en) Carbon fiber reinforced carbon composite material
JPH05286764A (en) C/c composite material reinforced in one direction and its production
JPH06263536A (en) Pseudo-unidirectionally reinforced c/c composite material and its production
KR940006433B1 (en) Process for the preparation of carbon/carbon composite
Wang et al. Advanced Manufacturing of Carbon Fiber Material