JPH06107406A - Method for refining metallic silicon - Google Patents

Method for refining metallic silicon

Info

Publication number
JPH06107406A
JPH06107406A JP27955292A JP27955292A JPH06107406A JP H06107406 A JPH06107406 A JP H06107406A JP 27955292 A JP27955292 A JP 27955292A JP 27955292 A JP27955292 A JP 27955292A JP H06107406 A JPH06107406 A JP H06107406A
Authority
JP
Japan
Prior art keywords
silicon
metal silicon
water
purity
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27955292A
Other languages
Japanese (ja)
Other versions
JP2665437B2 (en
Inventor
Yoshiharu Konya
義治 紺谷
Miyuki Wakao
幸 若尾
Akio Ohori
昭男 大堀
Sumio Kamiya
純生 神谷
San Abe
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADOMATETSUKUSU KK
Shin Etsu Chemical Co Ltd
Toyota Motor Corp
Original Assignee
ADOMATETSUKUSU KK
Shin Etsu Chemical Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADOMATETSUKUSU KK, Shin Etsu Chemical Co Ltd, Toyota Motor Corp filed Critical ADOMATETSUKUSU KK
Priority to JP4279552A priority Critical patent/JP2665437B2/en
Publication of JPH06107406A publication Critical patent/JPH06107406A/en
Application granted granted Critical
Publication of JP2665437B2 publication Critical patent/JP2665437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To easily and inexpensively obtain high-purity metallic silicon by crushing high-purity metallic silicon, treating the crushed silicon with aq. HF having specified concn. at normal temps. and then subjecting the product to filtration and water washing. CONSTITUTION:The metallic silicon having >=99.5% purity is crushed to <=50mum, and the crushed silicon is treated with 1-5wt.% aq. HF at normal temps., then filtered, washed with water and refined. When a smaller amt. of aq. HF is added, the concn. of the granular silicon is increased in a reactor, the grains are aggregated, the liq. dispersion is increased in viscosity, and the silicon is not uniformly treated. Conversely, when a larger amt. of HF is added, the treating effect is not improved, HF is wasted, the load in the succeeding HF recovery stage is inefficiently increased. Accordingly, the weight ratio of the HF to silicon is controlled to 2-10, preferably to 3-6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属けい素の精製方法、
特には太陽電池、セラミックスの原料に供することがで
きる金属けい素の精製方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for purifying metallic silicon,
In particular, it relates to a method for refining metallic silicon that can be used as a raw material for solar cells and ceramics.

【0002】[0002]

【従来の技術】化学工業用に用いられる金属けい素は通
常純度が99.5%以上のものとされているが、このものは
Fe、Al、Caなどの不純物を1,000ppm近く含有して
いるために、そのままでは高純度が要求される太陽電池
やセラミックスの原料とすることはできない。他方、冶
金により得られる金属けい素には不純物が粒子界面に存
在することが知られており、このものは溶融後の冷却速
度を変えれば結晶粒子の大きさ、不純物の偏析度を調整
できることから、これについては工業用金属けい素を溶
融して再結晶化させ、これを 100μm以下に粉砕して酸
処理する方法が提案されている(特開昭60-195015 号、
特開昭60-195016 号各公報参照)。
2. Description of the Related Art Metallic silicon used in the chemical industry is usually considered to have a purity of 99.5% or higher. However, since it contains impurities such as Fe, Al, and Ca near 1,000 ppm, However, it cannot be used as it is as a raw material for solar cells and ceramics that require high purity. On the other hand, it is known that impurities are present at the grain interface in metal silicon obtained by metallurgy, and this is because the size of crystal grains and the segregation degree of impurities can be adjusted by changing the cooling rate after melting. In this regard, there has been proposed a method in which industrial metal silicon is melted and recrystallized, and this is crushed to 100 μm or less and treated with an acid (Japanese Patent Laid-Open No. 60-195015).
(See Japanese Patent Laid-Open No. 60-195016).

【0003】[0003]

【発明が解決しようとする課題】しかし、この方法では
金属けい素を一旦 1,500℃以上の高温で溶融させるめに
電気代などのエネルギーコストが大きく、高価になると
いう欠点がある。そのため、これについては金属けい素
を溶融せず、粒子径の大きい金属けい素粒子を高濃度の
HF、HCl 、HNO3などの酸を用いて40〜90℃において加
熱処理するという方法も提案されているが、これには粒
子内部に点在する不純物を除去することができないため
に精製効率が低く、この場合には装置の腐蝕があり、か
つ酸を除去するための水洗の強化、酸の回収、排水処理
の負荷増大により処理コストが高くなるという欠点があ
る。
However, this method has a drawback in that the energy cost such as an electric bill is large and expensive because the metal silicon is once melted at a high temperature of 1,500 ° C. or higher. For this reason, a method has been proposed in which the metal silicon is not melted, and the metal silicon particles having a large particle size are heat-treated at a temperature of 40 to 90 ° C. with a high concentration of an acid such as HF, HCl or HNO 3. However, the purification efficiency is low because impurities scattered inside the particles cannot be removed.In this case, there is corrosion of the equipment, and the washing with water to remove the acid is strengthened. There is a drawback that the treatment cost increases due to the increased load of collection and wastewater treatment.

【0004】なお、この高純度けい素についてはゾーン
メルティング法、単結晶引上げ法などによる半導体グレ
ードの精製シリコンも知られているが、これは非常に高
価なものであることから、一般用に用いることはでき
ず、したがってこの金属けい素の精製方法については簡
易な方法で安価に高純度の金属けい素を得る方法が求め
られている。
For this high-purity silicon, semiconductor grade purified silicon by the zone melting method, the single crystal pulling method, etc. is also known, but it is very expensive, so it is used for general purposes. It cannot be used. Therefore, as a method for purifying this metallic silicon, a method for obtaining a highly pure metallic silicon at a low cost by a simple method is required.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不
利、欠点を解決した金属けい素の精製方法に関するもの
であり、これは純度が99.5%以上の金属けい素を50μm
以下に粉砕し、1重量%〜5重量%のHF水溶液を用い
て常温で処理したのち、ろ過、水洗することを特徴とす
るものである。
SUMMARY OF THE INVENTION The present invention relates to a method for refining metal silicon which solves the above disadvantages and drawbacks. This is a method of purifying metal silicon having a purity of 99.5% or more to 50 μm.
It is characterized in that it is ground into the following, treated with a 1 wt% to 5 wt% HF aqueous solution at room temperature, and then filtered and washed with water.

【0006】すなわち、本発明者らは化学工業用グレー
ドの金属けい素の精製方法について種々検討した結果、
純度が99.5%以上である化学工業用の金属けい素をまず
粒径が50μm以下に粉砕すると、金属けい素の結晶粒の
表面および内部に偏析していた不純物が粉砕で微細化し
た粒子の表面に露出されるので、これをHF水溶液で処
理すると常温でこれらの不純物を除去することができ、
これによれば金属けい素の表面における自然酸化膜も除
去できるので、ついでこれをろ過、水洗すれば、不純物
としてのFeを15ppm 以下、Alを130ppm以下、Caを
30ppm 以下、Uを2.2ppb以下にまで低下させた高純度金
属けい素を95%以上の収率で得ることができるというこ
とを見出し、ここに使用するHFの濃度、使用量などに
ついての研究を進めて本発明を完成さた。以下にこれを
さらに詳述する。
That is, the inventors of the present invention conducted various studies on a method for purifying chemical industry grade metal silicon, and as a result,
When metal silicon for the chemical industry with a purity of 99.5% or more is first crushed to a particle size of 50 μm or less, the surface of the crystal grains of metal silicon and the surface of the particles that have been segregated and the impurities segregated inside Since it is exposed to, the impurities can be removed at room temperature by treating it with an HF aqueous solution.
According to this, since the natural oxide film on the surface of the metal silicon can be removed, if it is then filtered and washed with water, Fe as impurities is 15 ppm or less, Al is 130 ppm or less, and Ca is
It was found that high-purity metal silicon with U reduced to 2.2 ppb or less at 30 ppm can be obtained with a yield of 95% or more, and research on the concentration and amount of HF used here was conducted. Then, the present invention was completed. This will be described in more detail below.

【0007】[0007]

【作用】本発明は金属けい素の精製方法に関するもので
あり、これは純度が99.5%以上の金属けい素を50μm以
下に粉砕し、1重量%〜5重量%のHF水溶液を用いて
常温で処理した後、ろ過、水洗することを特徴とするも
のであり、これによれば太陽電池、セラミックスに使用
することができる高純度の金属けい素を容易に、かつ安
価に得ることができるという有利性が与えられる。
The present invention relates to a method for purifying metal silicon, which comprises crushing metal silicon having a purity of 99.5% or more to 50 μm or less and using a 1% to 5% by weight HF aqueous solution at room temperature. After treatment, it is characterized by being filtered and washed with water. According to this, it is possible to easily and inexpensively obtain high-purity metallic silicon that can be used for solar cells and ceramics. Gender is given.

【0008】本発明による金属けい素の精製方法は化学
工業用グレードの金属けい素を始発材として用いて行な
われる。この化学工業用グレードの金属けい素はけい砂
を電気炉中で炭素で還元する方法またはマグネシウム、
アルミニウムで還元する方法で作られ、これは純度が9
9.5%のものであるが、これには通常不純物としてF
e、Al、Caなどを1,000ppm前後含んでいるほか、
U、Thなどのような放射性元素も数十〜数百ppb 含ん
でおり、これらの不純物はこの金属けい素の破断面をエ
レクトロマイクロプローブアナリシス(EPMA)による走
査型電子顕微鏡(SEM) 写真で調べたところ、Fe、A
l、Caが結晶粒子界面および内部に偏析、点在し、内
部に点在する不純物集合体の大きさは平均20μmから 2
00μmの範囲にあり、特に50μmから 100μmに多く分
布していることが判った。
The method for refining metallic silicon according to the present invention is carried out using chemical industry grade metallic silicon as a starting material. This chemical grade metal silicon is a method of reducing silica with carbon in an electric furnace or magnesium,
Made with a method of reduction with aluminum, which has a purity of 9
Although it is 9.5%, it usually contains F as an impurity.
e, Al, Ca, etc. around 1,000ppm,
Radioactive elements such as U and Th also contain tens to hundreds of ppb, and these impurities are investigated by scanning electron microscope (SEM) photographs of the fracture surface of this metal silicon by electromicroprobe analysis (EPMA). Fe, A,
l and Ca are segregated and scattered at the crystal grain interface and inside, and the size of the impurity aggregates scattered inside is from 20 μm on average to 2 μm.
It was found that it was in the range of 00 μm, and particularly distributed from 50 μm to 100 μm.

【0009】本発明ではこの金属けい素がまず50μm以
下に粉砕されるのであるが、このように粉砕するとこの
金属けい素の結晶粒子界面および内部に偏析ないし点在
していた不純物の殆どが、この粉砕された金属けい素の
粉粒体の表面に露出するようになるのでこの除去が容易
になるということが見出された。この粉砕による粒子径
はそれが小さい程、事後の工程による精製効率が上がる
けれども、あまり微細化すると粉砕時の異物混入が多く
なるし、後記する酸処理、水洗後における固液分離操作
の効率が低下するので、この粒子径は1μm以上、50μ
m以下とすることがよい。
In the present invention, the metal silicon is first pulverized to 50 μm or less. When pulverized in this way, most of the impurities segregated or scattered at the crystal grain interface and inside of the metal silicon, It has been found that this removal is facilitated because it becomes exposed on the surface of the crushed metal silicon powder particles. The smaller the particle size obtained by this pulverization, the higher the purification efficiency in the post-treatment step.However, if the particle size is made too fine, the inclusion of foreign matter during pulverization will increase, and the efficiency of solid-liquid separation operation after acid treatment and water washing described below The particle size is 1μm or more, 50μ
It is preferably m or less.

【0010】なお、この粉砕は回転円筒式ボールシル、
振動ボールミルなどで行えばよく、粉砕後はJIS325メッ
シュ(目開き44μm)ふるいなどでふるい分けするか、
サイクロンなどの分級機を用いて50μm以上の粗い粒子
を除去すればよい。
Incidentally, this crushing is performed by a rotating cylindrical ball sill,
It may be done with a vibrating ball mill, etc., and after crushing, sieve with a JIS325 mesh (opening 44 μm) sieve, or
Coarse particles of 50 μm or more may be removed using a classifier such as a cyclone.

【0011】本発明ではこのように粉砕された金属けい
素をHF水溶液で処理してこの粒子表面に露出している
不純物を除去するのであるが、これはこの金属けい素粉
末にHF水溶液を添加して撹拌すればよく、これによれ
ばこれらの不純物がHFとの反応で金属けい素から除去
されるが、この反応は常温での20分〜2時間の処理で行
なわれるので、この際加熱する必要はない。
In the present invention, the metal silicon thus crushed is treated with an aqueous HF solution to remove impurities exposed on the surface of the particles. This is the addition of the aqueous HF solution to the metallic silicon powder. Then, these impurities are removed from the metal silicon by the reaction with HF. However, this reaction is carried out at room temperature for 20 minutes to 2 hours, so heating at this time is required. do not have to.

【0012】なお、上記した粉砕して得られた金属けい
素は粒子表面で空気中の酸素と速やかに反応してその表
面に薄い自然酸化膜を形成し、これはアモルファスシリ
カで常温の大気中保存では厚さが2〜3nmのものであ
る。しかし、不純物除去のためにこの金属けい素を HC
l、HNO3、H2SO4 などで処理すとこの自然酸化膜が妨げ
となってこの自然酸化膜の内側にあり、金属けい素の表
面に偏析している不純物を除去することができないの
で、前記した不純物の除去にはこの自然酸化膜の除去が
必要不可欠なことになる。
The metal silicon obtained by the above-mentioned pulverization rapidly reacts with oxygen in the air on the surface of the particles to form a thin natural oxide film on the surface, which is amorphous silica in the atmosphere at room temperature. In storage, the thickness is 2-3 nm. However, in order to remove impurities, HC
When treated with l, HNO 3 , H 2 SO 4, etc., this natural oxide film interferes with the removal of impurities that are inside the natural oxide film and segregated on the surface of the metal silicon. The removal of the natural oxide film is indispensable for removing the impurities.

【0013】しかるに、本発明にしたがって粉砕化した
金属けい素をHF水溶液で処理すると、この自然酸化膜
(SiO2)がHF水溶液と反応し、 SiO2+4HF →SiF4+2H2O SiF4+2HF →H2SiF6 で除去されるので、これによれば自然酸化物の存在によ
って不純物の除去ができなくなるという不利が解消され
る。
However, when the metal silicon pulverized according to the present invention is treated with an HF aqueous solution, this natural oxide film (SiO 2 ) reacts with the HF aqueous solution, and SiO 2 + 4HF → SiF 4 + 2H 2 O SiF 4 + 2HF → Since it is removed with H 2 SiF 6 , this eliminates the disadvantage that impurities cannot be removed due to the presence of natural oxides.

【0014】なお、この場合における自然酸化膜は比表
面積(m2/g)、酸化物厚み(nm)を測定し、シリカの比
重(2.20)から計算すると、0.2 重量%から2重量%の
範囲、通常は1重量%前後であり、これは前記したF
e、Al、Caなどの不純物量より多くなるので、ここ
に使用するHFの濃度、添加量はこのシリカ量を基準と
して決めればよい。
In this case, the native oxide film in this case has a specific surface area (m 2 / g) and an oxide thickness (nm) of which it is calculated from the specific gravity of silica (2.20). , Usually around 1% by weight, which is the above-mentioned F
Since the amount of impurities such as e, Al, and Ca is larger than that, the concentration and addition amount of HF used here may be determined based on this silica amount.

【0015】本発明におけるHF水溶液の添加量はそれ
が少ないとこの反応器中での金属けい素の粉粒体濃度が
高くなって粒子同志の凝集、分散液の粘度上昇がみられ
て均一処理が難しくなり、これが多すぎると処理効果の
向上がなくなり、HFの浪費となり、後工程のHFの回
収処理の負担が増えて効率的でなくなるので、これは金
属けい素に対して重量比で2以上、10以下、好ましくは
3以上、6以下とすることが望ましい。
When the amount of the HF aqueous solution added in the present invention is small, the concentration of powdery particles of metallic silicon in the reactor becomes high, and the particles are aggregated together and the viscosity of the dispersion is increased, so that uniform treatment is performed. If it is too much, the treatment effect will not be improved, waste of HF will be wasted, and the burden of the recovery process of HF in the subsequent process will increase and it will not be efficient, so this is 2% by weight relative to the metal silicon. As described above, 10 or less, preferably 3 or more and 6 or less is desirable.

【0016】また、ここに使用するHF水溶液の濃度は
これが1重量%未満ではシリカとの反応が遅くなるし、
不純物の除去も不充分となり、これは5重量%以上とし
ても精製効率は変わらず、これ以上とするとHFの浪費
となり、処理後の固液分離でHFが多く残り、水洗工程
の負荷が増えて好ましくないので、これは1重量以上、
5重量%以下とすることが必要とされる。
If the concentration of the HF aqueous solution used here is less than 1% by weight, the reaction with silica becomes slow,
The removal of impurities became insufficient, and even if it was 5% by weight or more, the purification efficiency did not change, and if it was more than 5%, HF wasted and HF remained in the solid-liquid separation after the treatment, increasing the load of the washing process. As this is not preferable, this is 1 weight or more,
It is required to be 5% by weight or less.

【0017】このHF水溶液で処理された粉粒体状の金
属けい素は、ろ過により不純物を含むHF水溶液を分
離、除去し、残液はさらに水洗、ろ過をくり返して希釈
除去すればよい。ろ過、水洗後の金属けい素は通常の粉
体乾燥と同様の方法で、汚染を生じない洗浄な容器中、
雰囲気で乾燥すればよいが、これら一連の工程で処理に
使用するHF水溶液は純度99.9%以上の高純度品とし、
HF希釈用および水洗用の水はイオン交換水または蒸留
水を用いることがよい。
The particulate silicon metal treated with the HF aqueous solution may be separated by filtration to remove the HF aqueous solution containing impurities, and the residual liquid may be further washed with water and filtered repeatedly to be diluted and removed. After filtering and washing with water, the metallic silicon is treated in the same way as normal powder drying in a clean container that does not cause contamination.
It may be dried in an atmosphere, but the HF aqueous solution used for processing in these series of steps should be a high-purity product with a purity of 99.9% or more,
Ion-exchanged water or distilled water may be used as water for HF dilution and water washing.

【0018】なお、ここに使用する反応容器はテフロン
製またはポリ塩化ビニル製のものとすればよいが、工業
用装置としてはテフロンまたはポリ塩化ビニルを内張り
した鉄製で、同様の材質からなる撹拌機を装備したもの
を用いればよい。また、このろ過器も耐蝕材質を備え、
効率的にろ過、水洗できるものであればよく、機種を限
定する必要はない。
The reaction vessel used here may be made of Teflon or polyvinyl chloride, but as an industrial apparatus, it is made of iron lined with Teflon or polyvinyl chloride, and a stirrer made of the same material. You can use the one equipped with. In addition, this filter also has a corrosion resistant material,
There is no need to limit the model as long as it can be efficiently filtered and washed.

【0019】[0019]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1 純度が99.5%以上の化学工業用グレードの金属けい素を
粒子径1〜30μmに粉砕し、この5kgを内面をテフロン
ライニングしたステンレス製の50リットルの容器に入
れ、ここに純度99.5%、濃度55重量%の濃HF水をイオ
ン交換水で2重量%に希釈したHF水溶液15kgを加え、
常温20℃で1時間撹拌処理した。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Example 1 Chemical industry grade metal silicon having a purity of 99.5% or more was crushed to a particle size of 1 to 30 μm, and 5 kg of this was placed in a stainless steel 50 liter container having an inner surface of Teflon lining, and the purity was 99.5%. , 15 kg of concentrated HF water with a concentration of 55% by weight diluted with ion-exchanged water to 2% by weight was added,
The mixture was stirred at room temperature of 20 ° C for 1 hour.

【0020】ついで、この酸処理後の懸濁液をろ過器に
移し、加圧ろ過でHF水を除去したのち、イオン交換水
で洗浄後ろ過し、100 ℃、-740mmHgで8時間真空乾燥し
て処理ずみの金属けい素粉を取出し、このものについて
これに含まれている不純物としてのFe、Al、Caの
量を原子吸光法により測定すると共にここに含まれてい
るUの量を誘導結合高周波プラズマ重量分析法(ICP-M
S)により分析したところ、後記する表1に示したとお
りの結果が得られ、このものは高純度金属けい素である
ことが確認された。
Then, the acid-treated suspension was transferred to a filter, HF water was removed by pressure filtration, washed with ion-exchanged water, filtered, and vacuum dried at 100 ° C. and -740 mmHg for 8 hours. The treated metal silicon powder was taken out, and the amounts of Fe, Al, and Ca as impurities contained in this powder were measured by atomic absorption spectrometry, and the amount of U contained therein was inductively coupled. High frequency plasma gravimetric method (ICP-M
As a result of analysis by S), the results shown in Table 1 below were obtained, and it was confirmed that this was high-purity metal silicon.

【0021】実施例2 実施例1におけるHF水の濃度を2重量%から5重量%
に変えたほかは実施例1と同じように処理して金属けい
素の精製を行なったところ、得られた金属けい素中の不
純物量について後記する表1に示したとおりの結果が得
られた。
Example 2 The concentration of HF water in Example 1 was changed from 2% by weight to 5% by weight.
The same procedure as in Example 1 was carried out to refine the silicon metal, except that the results were as shown in Table 1 below for the amount of impurities in the obtained silicon metal. .

【0022】実施例1におけるHF水の添加量15kgを30
kgと変えたほかは実施例1と同じように処理して金属け
い素の精製を行なったところ、得られた金属けい素中の
不純物量について後記する表1に示したとおりの結果が
得られた。
The amount of HF water added in Example 1 was changed from 30 to 15 kg.
When the metal silicon was purified by the same treatment as in Example 1 except that the amount was changed to kg, the results shown in Table 1 below regarding the amount of impurities in the obtained metal silicon were obtained. It was

【0023】比較例1〜6 実施例1における出発原料としての金属けい素の粒子径
を50〜200 μmのものとしたもの(比較例1)、HF濃
度を 0.5重量%としたもの(比較例2)、これを55重量
%としたもの(比較例3)、HF水添加量を36kgとした
もの(比較例4)、処理温度を50℃としたもの(比較例
5)、処理時間を4時間としたもの(比較例6)につい
て、これらの条件以外は実施例1と同じようにして金属
けい素の精製を行なったところ、得られた金属けい素の
不純物量について次の表1に示したとおりの結果が得ら
れた。
Comparative Examples 1 to 6 Metallic silicon as a starting material in Example 1 having a particle size of 50 to 200 μm (Comparative Example 1) and HF concentration of 0.5% by weight (Comparative Example) 2), 55 wt% of this (Comparative Example 3), HF water addition amount of 36 kg (Comparative Example 4), treatment temperature of 50 ° C. (Comparative Example 5), treatment time of 4 When the metal silicon was purified in the same manner as in Example 1 except that these conditions were used as the time (Comparative Example 6), the amount of impurities in the obtained metal silicon is shown in Table 1 below. The exact result was obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】比較例7〜8 実施例1におけるHF液を濃度36%の HCl(比較例
7)、濃度30%のHNO3(比較例8)としたほかは実施例
1と同じように処理して金属けい素の精製をしたとこ
ろ、得られた金属けい素の不純物量についてつぎの表2
に示したとおりの結果が得られた。
Comparative Examples 7 to 8 The same treatment as in Example 1 was carried out except that the HF solution in Example 1 was changed to HCl having a concentration of 36% (Comparative Example 7) and HNO 3 having a concentration of 30% (Comparative Example 8). After refining the metal silicon with the following method, the amount of impurities in the obtained metal silicon is shown in Table 2 below.
The result as shown in was obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明は金属けい素の精製方法に関する
ものであり、これは前記したように純度が99.5%以上の
金属けい素を50μm以下に粉砕し、1重量%〜5重量%
のHF水溶液を用いて処理したのち、ろ過、水洗するこ
とを特徴とするものであり、これによれば金属けい素の
表面における自然酸化膜も除去できるので、不純物とし
てのFeを15ppm 以下、Alを130ppm以下、Caを 30p
pm以下、Uを2.2ppb以下にまで低下させた高純度金属け
い素を95%以上の収率で得ることができるという有利性
が与えられる。
Industrial Applicability The present invention relates to a method for purifying metallic silicon, which has a purity of 99.5% or more and is crushed to 50 μm or less by 1% to 5% by weight.
It is characterized in that it is treated with an HF aqueous solution of, and then filtered and washed with water. According to this method, the natural oxide film on the surface of the metal silicon can also be removed. Less than 130ppm, Ca less than 30p
This gives an advantage that high-purity metal silicon having U reduced to 2.2 ppb or less can be obtained in a yield of 95% or more.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若尾 幸 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内 (72)発明者 大堀 昭男 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社磯部工場内 (72)発明者 神谷 純生 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 安部 賛 愛知県西加茂郡藤岡町大字石飛177−9 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Yukiko Wakao 1 Hitomi, Katsumi, Matsuida-cho, Usui-gun, Gunma 10 Silicon Research Institute for Electronic Materials, Shin-Etsu Chemical Co., Ltd. (72) Akio Ohori Isobe, Gunma Prefecture Isobe 2-13-1 Shin-Etsu Kagaku Kogyo Co., Ltd. Isobe Plant (72) Inventor Junsei Kamiya 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Corporation (72) Inventor Abe Fujioka-cho, Nishikamo-gun Aichi Ishihito 177-9

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】純度が99.5%以上の金属けい素を50μm以
下に粉砕し、1重量%〜5重量%のHF水溶液を用いて
常温で処理した後、ろ過、水洗することを特徴とする金
属けい素の精製方法
1. A metal characterized by crushing metal silicon having a purity of 99.5% or more to 50 μm or less, treating it with a 1 wt% to 5 wt% HF aqueous solution at room temperature, and then filtering and washing with water. Purification method of silicon
【請求項2】HF水溶液の添加量を金属けい素に対し重
量比で2以上、10以下とする請求項1に記載した金属け
い素の精製方法。
2. The method for purifying metal silicon according to claim 1, wherein the amount of the HF aqueous solution added is 2 or more and 10 or less in weight ratio to the metal silicon.
【請求項3】HF希釈用および水洗用の水がイオン交換
水または蒸留水とされる請求項1に記載した金属けい素
の精製方法。
3. The method for purifying metal silicon according to claim 1, wherein the water for diluting HF and the water for washing are ion-exchanged water or distilled water.
JP4279552A 1992-09-24 1992-09-24 Purification method of silicon metal Expired - Lifetime JP2665437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4279552A JP2665437B2 (en) 1992-09-24 1992-09-24 Purification method of silicon metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4279552A JP2665437B2 (en) 1992-09-24 1992-09-24 Purification method of silicon metal

Publications (2)

Publication Number Publication Date
JPH06107406A true JPH06107406A (en) 1994-04-19
JP2665437B2 JP2665437B2 (en) 1997-10-22

Family

ID=17612558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4279552A Expired - Lifetime JP2665437B2 (en) 1992-09-24 1992-09-24 Purification method of silicon metal

Country Status (1)

Country Link
JP (1) JP2665437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247726A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
JP2008247724A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
CN113412237A (en) * 2019-04-30 2021-09-17 瓦克化学股份公司 Method for refining a crude silicon melt using a particulate medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657172B2 (en) * 2006-08-22 2011-03-23 三和油化工業株式会社 Method for purifying metal silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247726A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
JP2008247724A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
CN113412237A (en) * 2019-04-30 2021-09-17 瓦克化学股份公司 Method for refining a crude silicon melt using a particulate medium
CN113412237B (en) * 2019-04-30 2024-06-07 瓦克化学股份公司 Method for refining crude silicon melt using particulate medium

Also Published As

Publication number Publication date
JP2665437B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
US4612179A (en) Process for purification of solid silicon
JP5032223B2 (en) Method for cleaning polysilicon crushed material
US8354088B2 (en) Methods and apparatus for recovery of silicon and silicon carbide from spent wafer-sawing slurry
WO2005110918A1 (en) Method for producing halosilane and method for purifying solid component
CA1240483A (en) Process for the purification of silicon by the action of an acid
WO2010029894A1 (en) High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
JPS6144802B2 (en)
JP5431780B2 (en) A processing method for obtaining a niobium raw material or a tantalum raw material, a method for separating and purifying niobium or tantalum, and a method for producing niobium oxide or tantalum oxide.
JPH06144822A (en) Production of highly pure fine silicon particle and production of highly pure polycrystalline silicon using the same particle
JPH0344131B2 (en)
JP2665437B2 (en) Purification method of silicon metal
CN115491527B (en) Pretreatment method of uranium-containing waste residues and recycling method of uranium
US20070007878A1 (en) Method of recycling an exhausted selenium filter mass
JP3415382B2 (en) Method for producing high-purity silicon powder
CN114813275B (en) Preparation method of alpha-quartz type free silicon dioxide breathing dust
JP4863887B2 (en) Method for purifying metal silicon
JP4657172B2 (en) Method for purifying metal silicon
JPH0692243B2 (en) Method and apparatus for refining metallic silicon
WO2022124924A1 (en) Method for producing porous nanosilicon
JPS5924731B2 (en) Method for removing and recovering uranium or/and thorium from a liquid containing uranium or/and thorium
CN111252769A (en) Preparation method of solar polycrystalline silicon
JPH0533070A (en) Method for removing impurity in metal silicon powder
JPH0688149A (en) Method for refining titanium-containing material
JP2619925B2 (en) Purification method of raw material for quartz glass
RU2174950C1 (en) Method of preparing silane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090620

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110620

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20130620

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 16