JPH0610634A - Intake and exhaust valve driving controller of internal combustion engine - Google Patents
Intake and exhaust valve driving controller of internal combustion engineInfo
- Publication number
- JPH0610634A JPH0610634A JP17266792A JP17266792A JPH0610634A JP H0610634 A JPH0610634 A JP H0610634A JP 17266792 A JP17266792 A JP 17266792A JP 17266792 A JP17266792 A JP 17266792A JP H0610634 A JPH0610634 A JP H0610634A
- Authority
- JP
- Japan
- Prior art keywords
- disc
- intake
- camshaft
- housing
- exhaust valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Valve-Gear Or Valve Arrangements (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、内燃機関の運転状態に
応じて吸気・排気弁の開閉時期を可変制御する吸排気弁
駆動制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake / exhaust valve drive control device for variably controlling the opening / closing timing of intake / exhaust valves according to the operating state of an internal combustion engine.
【0002】[0002]
【従来の技術】この種の従来の装置としては種々提供さ
れているが、その一つとして例えば実開昭57−198
306号公報等に記載されているものが知られている。2. Description of the Related Art Various conventional devices of this type have been provided, and one of them is, for example, Shoukai 57-198.
Those described in Japanese Patent No. 306, etc. are known.
【0003】図10及び図11に基づいて概略を説明す
れば、図中2はカムシャフト1の外周に回転自在に設け
られて、吸気バルブ16をバルブスプリング17のばね
力に抗して開作動させるカムであって、このカム2はカ
ム軸受用ブラケット3とカムシャフト1にキー4を介し
て固設されたフランジ部5とにより軸方向の位置決めが
なされている。また、カム2の一側部にはU字溝6を有
するフランジ部7が形成されている一方、前記フランジ
部5にもU字溝8が形成され、両フランジ部5,7間に
円環状のディスク9が介装されている。このディスク9
は、両側の対向位置に前記両U字溝6,8に係止するピ
ン10,11が設けられていると共に、外周が制御環1
2に回転自在に支持されている。この制御環12は、外
周の突起12aを介してシリンダヘッド側の支持孔13
に揺動自在に支持されていると共に、該突起12aの反
対側に有する円弧状の歯車部12bがロッカアーム15
を軸支するロッカシャフト14外周に形成された平歯形
の歯車環14aに噛合している。The outline will be described with reference to FIGS. 10 and 11. Reference numeral 2 in the drawing is rotatably provided on the outer periphery of the camshaft 1 to open the intake valve 16 against the spring force of the valve spring 17. The cam 2 is a cam that is axially positioned by a cam bearing bracket 3 and a flange portion 5 fixed to the cam shaft 1 via a key 4. A flange portion 7 having a U-shaped groove 6 is formed on one side of the cam 2, and a U-shaped groove 8 is also formed on the flange portion 5 so as to form an annular shape between the flange portions 5 and 7. Disk 9 is inserted. This disc 9
Are provided with pins 10 and 11 that engage with the U-shaped grooves 6 and 8 at opposite positions on both sides, and the outer circumference is a control ring 1.
It is rotatably supported by 2. The control ring 12 has a support hole 13 on the cylinder head side through a protrusion 12a on the outer circumference.
The rocker arm 15 has an arcuate gear portion 12b which is swingably supported by the rocker arm 15 and is provided on the opposite side of the projection 12a.
Is meshed with a spur toothed gear ring 14a formed on the outer periphery of the rocker shaft 14 that axially supports.
【0004】そして、制御環12は、歯車部12bに噛
合した歯車環14aを介して図外の駆動機構により機関
運転状態に応じて一方あるいは他方向へ揺動するように
なっている。即ち、ディスク9の中心Pが図11に示す
位置にある場合は、カムシャフト1とディスク9との回
転中心が一致し、したがってディスク9は、ピン11と
U字溝8を介してカムシャフト1に同期回転する一方、
カム2はピン10とU字溝6を介してカムシャフト1に
同期回転する。The control ring 12 is oscillated in one direction or the other direction according to the engine operating state by a drive mechanism (not shown) via a gear ring 14a meshed with the gear portion 12b. That is, when the center P of the disc 9 is at the position shown in FIG. While rotating in synchronization with
The cam 2 rotates synchronously with the cam shaft 1 via the pin 10 and the U-shaped groove 6.
【0005】また、機関運転状態の変化に伴い駆動機構
の油圧アクチュエータによってロッカシャフト14を回
動させると、歯車環14aと歯車部12bを介して制御
環12が突起12aを支点として揺動し、これによって
ディスク9の中心Pがカムシャフト1の中心に対し前記
回動方向に偏心する。このため、ピン10,11が夫々
U字溝6,8に沿って移動し、かつ偏心方向にフランジ
部5,7をカムシャフト1を中心に回動させる。依っ
て、カムシャフト1の1回転毎に、ディスク9の回転位
相がカムシャフト1に対して変化し、同時にカム2の回
転位相もディスク9に対して変化する。したがって、カ
ム2は、カムシャフト1に対し、ディスク9のカムシャ
フト1に対する位相差の2倍の位相差で回転する。この
結果、バルブタイミングをカム2の位相差に応じて可変
にすることができる。When the rocker shaft 14 is rotated by the hydraulic actuator of the drive mechanism as the engine operating condition changes, the control ring 12 swings around the projection 12a as a fulcrum via the gear ring 14a and the gear portion 12b. As a result, the center P of the disc 9 is eccentric with respect to the center of the camshaft 1 in the rotation direction. Therefore, the pins 10 and 11 move along the U-shaped grooves 6 and 8, respectively, and rotate the flange portions 5 and 7 in the eccentric direction about the cam shaft 1. Therefore, the rotational phase of the disk 9 changes with respect to the camshaft 1 and the rotational phase of the cam 2 also changes with respect to the disk 9 for each rotation of the camshaft 1. Therefore, the cam 2 rotates with respect to the camshaft 1 with a phase difference that is twice the phase difference of the disc 9 with respect to the camshaft 1. As a result, the valve timing can be changed according to the phase difference of the cam 2.
【0006】[0006]
【発明が解決しようとする課題】然し乍ら、前記従来の
装置にあっては、制御環12を円弧状歯車部12bと平
歯形の歯車環14aとの噛合回転により揺動させるよう
にしたため、作動中にカムシャフト1に発生する正負の
回転トルク変動に起因して制御環12に作用する交番荷
重、つまり正逆回転方向の繰り返し荷重により、歯車部
12bと歯車環14aとの間に形成された比較的大きな
バックラッシュ隙間に起因して該両者12b,14a間
に打音が発生すると共に、該両者12b,14a間に経
時的に摩耗が発生して制御環12の揺動作用が不安定に
なる。この結果、バルブタイミングの可変制御精度が低
下してしまう。However, in the above-mentioned conventional apparatus, the control ring 12 is swung by the meshing rotation of the arcuate gear portion 12b and the spur gear gear ring 14a. A comparison formed between the gear portion 12b and the gear ring 14a by the alternating load acting on the control ring 12 due to the positive and negative rotational torque fluctuations generated in the camshaft 1, that is, the repeated load in the forward and reverse rotation directions. A striking sound is generated between the two 12b and 14a due to the relatively large backlash clearance, and abrasion is generated between the both 12b and 14a over time, and the swinging action of the control ring 12 becomes unstable. . As a result, the variable control accuracy of the valve timing is reduced.
【0007】しかも、歯車部12bと歯車環14aと
は、平歯車として単に回転運動をそのまま回転運動とし
て伝達するようになっているので、前記カムシャフト1
で発生した回転変動トルクが歯車部12b及び歯車環1
4aを介してロッカシャフト14から油圧アクチュエー
タへ直接的に伝達されてしまう。このため、油圧アクチ
ュエータの駆動負荷が大きくなるので、該油圧アクチュ
エータ等の駆動容量を大きくしなければならず、装置全
体の大型化やコストの高騰が余儀なくされる。Moreover, since the gear portion 12b and the gear ring 14a serve as spur gears and simply transmit the rotary motion as they are, the camshaft 1
The rotational fluctuation torque generated in the gear part 12b and the gear ring 1
It is directly transmitted from the rocker shaft 14 to the hydraulic actuator via 4a. For this reason, the drive load of the hydraulic actuator becomes large, so that the drive capacity of the hydraulic actuator and the like must be increased, which inevitably leads to an increase in the size of the entire apparatus and a cost increase.
【0008】[0008]
【課題を解決するための手段】本発明は、前記従来の問
題点に鑑みて案出されたもので、機関から伝達された回
転力により吸排気弁を駆動させるカムを有するカムシャ
フトと、該カムシャフトの軸心に対して略径方向へ揺動
自在に設けられた円環状のディスクハウジングと、前記
カムシャフトに連繋しつつディスクハウジングの内周面
に回転自在に保持されて、ディスクハウジングの揺動に
伴い中心がカムシャフトの軸心と偏心動するディスクと
を備え、該ディスクの偏心動に伴い前記カムシャフトの
角速度の変化を得て前記吸排気弁の作動角を可変制御す
る吸排気弁駆動制御装置において、前記ディスクハウジ
ングの一端側に、内部に該ディスクハウジングの接線方
向に沿った雌ねじ孔が形成された可動部材を設けると共
に、外周に前記雌ねじ孔に螺合する雄ねじ部が形成され
かつ駆動機構により正逆回転制御される回転部材を設け
たことを特徴としている。The present invention has been devised in view of the above-mentioned problems of the prior art, and includes a camshaft having a cam for driving an intake / exhaust valve by a rotational force transmitted from an engine, An annular disc housing provided so as to be swingable in a substantially radial direction with respect to the axis of the cam shaft, and rotatably held on the inner peripheral surface of the disc housing while being linked to the cam shaft, An intake / exhaust system including a disc whose center is eccentric with the shaft center of the camshaft in accordance with the swing, and which obtains a change in the angular velocity of the camshaft with the eccentricity of the disc to variably control the operating angle of the intake / exhaust valve. In the valve drive control device, a movable member having a female screw hole formed along the tangential direction of the disc housing is provided on one end side of the disc housing, and the female member is provided on the outer periphery. Flip is characterized in that a forward and reverse rotation being controlled rotary member by the male screw portion screwed into hole is formed and a drive mechanism.
【0009】[0009]
【作用】ディスクの中心がカムシャフトの軸心と合致し
ている場合は、カムシャフトの角速度が変化せずに機関
と同期する。When the center of the disk is aligned with the axial center of the camshaft, the angular velocity of the camshaft does not change and synchronizes with the engine.
【0010】一方、機関の運転状態の変化に伴い駆動機
構によって回転部材を一方向に回転させると、雄ねじ部
の回転に伴い雌ねじ部側の可動部材が直線的にスライド
移動する。つまり、回転運動から直線運動に変換され
て、ディスクハウジングを一方向に揺動させる。したが
って、ディスクも揺動して、その中心をカムシャフトの
軸心に対して所定量偏心させる。このため、カムシャフ
トは角速度が変化して部分的に回転速度が増速あるいは
減速し、これによって吸気,排気弁の作動角を可変制御
する。On the other hand, when the rotating member is rotated in one direction by the drive mechanism as the operating condition of the engine changes, the movable member on the female screw portion linearly slides as the male screw portion rotates. In other words, the rotary motion is converted into a linear motion to swing the disc housing in one direction. Therefore, the disc is also swung so that the center of the disc is decentered from the axial center of the camshaft by a predetermined amount. Therefore, the angular velocity of the camshaft changes, and the rotational speed of the camshaft is partially increased or decreased, whereby the operating angles of the intake and exhaust valves are variably controlled.
【0011】また、ディスクハウジングは、歯車ではな
く、回転部材の雄ねじ部に対する可動部材の雌ねじ部の
螺合移動によって揺動するようになっており、該両雌雄
ねじ部間にバックラッシュ隙間が殆ど形成されないた
め、カムシャフトの回転トルク変動によりディスクハウ
ジングに交番荷重が発生しても、両雌雄ねじ部間におけ
る打音や経時的な摩耗の発生等を防止できる。Further, the disk housing is not a gear, but is oscillated by screwing movement of the female screw portion of the movable member with respect to the male screw portion of the rotating member, and there is almost no backlash gap between the female and male screw portions. Since it is not formed, even if an alternating load is generated on the disk housing due to fluctuations in the rotational torque of the camshaft, it is possible to prevent hammering noise between the female and male threaded parts and the occurrence of wear over time.
【0012】しかも、ディスクハウジングに伝達された
前記回転トルク変動は、雌雄ねじ部間で運動の変換に伴
い吸収されてしまうため、駆動機構に対する変動トルク
の伝達が遮断され、駆動負荷の増加を防止できる。Moreover, since the fluctuation of the rotational torque transmitted to the disk housing is absorbed by the conversion of the movement between the female and male screw portions, the transmission of the fluctuation torque to the drive mechanism is interrupted and the increase of the driving load is prevented. it can.
【0013】[0013]
【実施例】図1〜図6は本発明に係る吸排気弁駆動制御
装置の第1実施例を示し、図1の21は図外の機関のク
ランク軸からスプロケットを介して回転力が伝達される
駆動軸、22は該駆動軸21の外周に一定の隙間をもっ
て配置され、かつ駆動軸21の中心Xと同軸上に設けら
れた中空状のカムシャフトであって、前記駆動軸21
は、機関前後方向に延設されていると共に、軽量化を図
るために内部中空状に形成されている。1 to 6 show a first embodiment of an intake / exhaust valve drive control device according to the present invention, in which reference numeral 21 denotes a rotational force transmitted from a crankshaft of an engine (not shown) via a sprocket. The drive shaft 22 is a hollow cam shaft which is arranged on the outer periphery of the drive shaft 21 with a constant gap and is coaxial with the center X of the drive shaft 21.
Is extended in the front-rear direction of the engine and is formed in an inner hollow shape in order to reduce the weight.
【0014】前記カムシャフト22は、シリンダヘッド
20上端部に有する図外のカム軸受に回転自在に支持さ
れていると共に、図1〜図3に示すように外周の所定位
置に吸気弁23をバルブスプリング24のばね力に抗し
てバルブリフター25を介して開作動させる複数のカム
26…が一体に設けられている。また、カムシャフト2
2は、長手方向の所定位置で軸直角方向から分割形成さ
れていると共に、一方側の分割端部にフランジ部27が
設けられている。また、この両分割端部間にスリーブ2
8と環状ディスク29が配置されている。前記フランジ
部27は、図4にも示すように中空部から半径方向に沿
った細長い矩形状の係合溝30が形成されていると共
に、その外周面の円周方向に環状ディスク29の一側面
に摺接する突起面27aが一体に設けられている。The cam shaft 22 is rotatably supported by a cam bearing (not shown) provided on the upper end of the cylinder head 20, and an intake valve 23 is provided at a predetermined position on the outer circumference as shown in FIGS. A plurality of cams 26 ... Which are opened against the spring force of the spring 24 via the valve lifter 25 are integrally provided. Also, the camshaft 2
2 is divided and formed from a direction perpendicular to the axis at a predetermined position in the longitudinal direction, and a flange portion 27 is provided on one divided end portion. In addition, the sleeve 2 is provided between the divided ends.
8 and an annular disc 29 are arranged. As shown in FIG. 4, the flange portion 27 is provided with an elongated rectangular engaging groove 30 extending from the hollow portion in the radial direction, and one side surface of the annular disc 29 in the circumferential direction of the outer peripheral surface thereof. The protrusion surface 27a that is slidably contacted with is integrally provided.
【0015】前記スリーブ28は、小径な一端部28b
がカムシャフト22の前記他方側の分割端部内に回転自
在に挿入している共に、略中央位置に直径方向に貫通し
た連結軸31を介して駆動軸21に連結固定されてい
る。また、スリーブ28の他端部に設けられたフランジ
部32は、図5にも示すように前記係止溝30と反対側
に半径方向に沿った細長い矩形状の係合溝33が形成さ
れていると共に、外周面に環状ディスク29の他側面に
摺接する突起面28aが一体に設けられている。The sleeve 28 has a small diameter one end portion 28b.
Is rotatably inserted into the other end of the camshaft 22 on the other side, and is fixedly connected to the drive shaft 21 via a connecting shaft 31 penetrating diametrically at a substantially central position. Further, as shown in FIG. 5, the flange portion 32 provided at the other end of the sleeve 28 is provided with an elongated rectangular engaging groove 33 along the radial direction on the side opposite to the engaging groove 30. At the same time, the outer peripheral surface is integrally provided with a protruding surface 28a that is in sliding contact with the other side surface of the annular disk 29.
【0016】前記環状ディスク29は、略ドーナツ板状
を呈し、内径がカムシャフト22の内径と略同径に形成
されて、駆動軸21の外周面との間に環状の隙間部Sが
形成されていると共に、外周部29aが環状のディスク
ハウジング34の内周面34aに金属製の環状ベアリン
グ35を介して回転自在に支持されている。また、直径
線上の対向位置に貫通形成されたピン孔29b,29c
には、各係合溝30,33に係入する一対のピン36,
37が設けられている。この各ピン36,37は、互い
にカムシャフト軸方向へ逆向きに突出しており、基部が
ピン孔29b,29c内に回転自在に支持されていると
共に、先端部の両側縁に図4及び図5に示すように前記
係合溝30,33の対向内面30a,30b、33a,
33bと当接する2面巾状の平面部36a,36b、3
7a,37bが形成されている。The annular disc 29 has a substantially toroidal plate shape, an inner diameter of which is substantially the same as the inner diameter of the cam shaft 22, and an annular gap S is formed between the annular disc 29 and the outer peripheral surface of the drive shaft 21. In addition, the outer peripheral portion 29a is rotatably supported by the inner peripheral surface 34a of the annular disc housing 34 via a metallic annular bearing 35. In addition, pin holes 29b and 29c formed at the opposite positions on the diameter line.
Has a pair of pins 36, which engage with the respective engagement grooves 30, 33.
37 is provided. The pins 36 and 37 project in opposite directions to each other in the axial direction of the cam shaft, the bases are rotatably supported in the pin holes 29b and 29c, and the pins 36 and 37 are provided on both side edges of the tip end in FIGS. As shown in FIG. 3, the facing inner surfaces 30a, 30b, 33a of the engaging grooves 30, 33,
33b, flat portions 36a, 36b, 3 having a width across flats,
7a and 37b are formed.
【0017】前記ディスクハウジング34は、図1及び
図3に示すように略円環状を呈し、外周の一端部に有す
るボス部材34bに支持孔38がカムシャフト22軸方
向に貫通形成されていると共に、該支持孔38内に挿通
された支軸39を支点として図中上下に揺動自在に設け
られている一方、前記ボス部34bと反対側の外周面に
レバー部40が径方向に沿って一体に突設されている。
そして、このレバー部40の略球状の先端部40aに、
回転部材42を介して上下にスライド移動する可動部材
41が連結されている。前記支軸39は基部がシリンダ
ヘッド20の上面に固定されたブラケット60の固定孔
60aに圧入固定されている。As shown in FIGS. 1 and 3, the disc housing 34 has a substantially annular shape, and a support hole 38 is formed through the boss member 34b at one end of the outer periphery in the axial direction of the camshaft 22. While it is swingably provided up and down in the figure with a support shaft 39 inserted into the support hole 38 as a fulcrum, a lever portion 40 is provided on the outer peripheral surface opposite to the boss portion 34b in the radial direction. It is projected integrally.
Then, at the substantially spherical tip portion 40a of the lever portion 40,
A movable member 41 that slides up and down is connected via a rotating member 42. A base portion of the support shaft 39 is press-fitted and fixed in a fixing hole 60a of a bracket 60 fixed to the upper surface of the cylinder head 20.
【0018】前記可動部材41は、略矩形状を呈し、そ
の上下方向の長さLが十分長く設定されている。また、
一側部に形成された略U字形の保持溝43内に前記レバ
ー部40の先端部40aが摺動自在に保持されていると
共に、一側部上部に有するボルト孔41aに保持溝43
の内面とレバー部先端部40aの外面との間のクリアラ
ンスを調整するアジャストボルト44がナット45を介
して螺入固定されている。また、可動部材41の他側部
内には、内周に螺旋状の雌ねじ部46が形成された雌ね
じ孔47が上下に貫通形成されている。また、この可動
部材41は、両側面がシリンダヘッド20上のガイド部
材48によって上下にスライド案内されるようになって
いる。The movable member 41 has a substantially rectangular shape, and its length L in the vertical direction is set to be sufficiently long. Also,
The tip portion 40a of the lever portion 40 is slidably held in a substantially U-shaped holding groove 43 formed in one side portion, and the holding groove 43 is provided in a bolt hole 41a provided at the upper portion of the one side portion.
An adjustment bolt 44 for adjusting the clearance between the inner surface of the lever and the outer surface of the lever end 40a is screwed and fixed via a nut 45. Further, in the other side portion of the movable member 41, a female screw hole 47 having a spiral female screw portion 46 formed on the inner circumference is vertically formed so as to penetrate therethrough. Both sides of the movable member 41 are vertically slid and guided by the guide members 48 on the cylinder head 20.
【0019】前記回転部材42は、ボルト状を呈し、下
端部42aがシリンダヘッド20上面の支持溝20a内
に軸支されていると共に、上端部42bがシリンダヘッ
ド20に固定されたブラケット49の軸受孔49a内に
フランジ部42cを介して軸支されて、全体が回転自在
に支持されている。また、フランジ部42cから下端部
42aまでの外周面全体に、前記雌ねじ部46に螺合す
る螺旋状の雄ねじ部50が形成されている。また、この
回転部材42は、上端部42bに連繋された駆動機構5
1によって正逆回転制御されている。The rotating member 42 has a bolt shape, a lower end 42a thereof is axially supported in a support groove 20a on the upper surface of the cylinder head 20, and an upper end 42b thereof is a bearing of a bracket 49 fixed to the cylinder head 20. The whole is rotatably supported in the hole 49a via a flange 42c. Further, a spiral male screw portion 50 that is screwed into the female screw portion 46 is formed on the entire outer peripheral surface from the flange portion 42c to the lower end portion 42a. In addition, the rotating member 42 has a driving mechanism 5 that is linked to the upper end portion 42b.
The forward and reverse rotation control is performed by 1.
【0020】この駆動機構51は、図1及び図2に示す
ように回転部材42の上端部42bに設けられて互いに
噛合した一対の傘歯車52,53と、一端部が一方側の
傘歯車53に連結された制御シャフト54と、該制御シ
ャフト54の他端部に連結された回転式のステッピング
モータ55とを備えている。前記他方側の傘歯車52
は、回転部材42の上端部42bに固定されている。ま
た、前記ステッピングモータ55は、コントロールユニ
ット56から出力されたパルス制御信号に基づいて正逆
回転駆動するようになっており、前記コントロールユニ
ット56は、内蔵されたマイクロコンピュータがクラン
ク角センサやエアーフローメータ,機関冷却水温度セン
サ等の各種センサ類からの情報信号に基づいて現在の機
関運転状態を検出して、パルス信号を出力している。As shown in FIGS. 1 and 2, the drive mechanism 51 includes a pair of bevel gears 52, 53 provided on the upper end portion 42b of the rotating member 42 and meshed with each other, and a bevel gear 53 having one end on one side. A control shaft 54 connected to the control shaft 54 and a rotary stepping motor 55 connected to the other end of the control shaft 54. The other side bevel gear 52
Is fixed to the upper end portion 42b of the rotating member 42. Further, the stepping motor 55 is configured to drive forward and reverse rotation based on a pulse control signal output from the control unit 56. The control unit 56 has a microcomputer incorporated therein for a crank angle sensor and an air flow. A current engine operating state is detected based on information signals from various sensors such as a meter and an engine cooling water temperature sensor, and a pulse signal is output.
【0021】以下、本実施例の作用について説明する。
まず、機関低速低負荷時には、コントロールユニット5
6から所定のパルス制御信号が出力されて、ステッピン
グモータ55が一方向に回転すると制御シャフト54を
介して両傘歯車52,53が噛合しつつ回転する。した
がって、該回転力が伝達された回転部材42が、支持溝
20a及び軸受孔49aを介して一方向に回転する。つ
まり雄ねじ部50が回転すると、可動部材41は図6に
示すように雌ねじ部46を介して下方向へ所定の長さf
だけ直線的にスライド移動する。このため、ディスクハ
ウジング34は、レバー部40を介して支軸39を中心
に下方へ揺動し、環状ディスク29の中心Yが駆動軸2
1(カムシャフト22)の中心Xからεの量だけ偏心動
する。したがって、スリーブ28側の係止溝33とピン
37並びにカムシャフト21側の係止溝30とピン36
との摺動位置が駆動軸21の1回転毎に移動し、環状デ
ィスク29の角速度が変化して不等角速度回転になる。The operation of this embodiment will be described below.
First, when the engine speed is low and the load is low, the control unit 5
When a predetermined pulse control signal is output from 6 and the stepping motor 55 rotates in one direction, both bevel gears 52 and 53 rotate while meshing via the control shaft 54. Therefore, the rotary member 42 to which the rotational force is transmitted rotates in one direction via the support groove 20a and the bearing hole 49a. That is, when the male screw portion 50 rotates, the movable member 41 moves downward by a predetermined length f via the female screw portion 46 as shown in FIG.
Only move linearly. Therefore, the disc housing 34 swings downward around the support shaft 39 via the lever portion 40, and the center Y of the annular disc 29 is set to the drive shaft 2.
1 (camshaft 22) is eccentrically moved from the center X by an amount of ε. Therefore, the engagement groove 33 and the pin 37 on the sleeve 28 side, and the engagement groove 30 and the pin 36 on the camshaft 21 side.
The sliding positions of and move with each rotation of the drive shaft 21, and the angular velocity of the annular disk 29 changes, resulting in unequal angular velocity rotation.
【0022】即ち、係止溝30とピン36の摺動位置が
駆動軸21の中心Xに接近する場合は、係止溝33とピ
ン37の摺動位置が中心Xから離れる関係になる。この
場合は、環状ディスク29は、駆動軸21に対して角速
度が大きくなり、環状ディスク29に対しカムシャフト
22の角速度も大きくなる。したがって、カムシャフト
22は、駆動軸21に対して、部分的に2重に増速され
た状態になる。That is, when the sliding position of the locking groove 30 and the pin 36 approaches the center X of the drive shaft 21, the sliding position of the locking groove 33 and the pin 37 is separated from the center X. In this case, the annular disc 29 has a large angular velocity with respect to the drive shaft 21, and the angular velocity of the camshaft 22 also becomes large with respect to the annular disc 29. Therefore, the camshaft 22 is partially doubled in speed with respect to the drive shaft 21.
【0023】一方機関が高速高負荷域に移行した場合
は、コントロールユニット56から前述とは逆方向のパ
ルス制御信号が出力されて、ステッピングモータ55が
逆回転し、制御シャフト54,傘歯車52,53を介し
て回転部材42も逆回転する。このため、可動部材41
は、雌雄ねじ部46,50の螺合作用により上方向へ直
線的にスライド移動して図1に示す原状位置に戻る。し
たがって、ディスクハウジング34も元の位置に揺動し
て、環状ディスク29の中心Yが駆動軸21の中心Xと
合致する(図1参照)。依って、この場合は、環状ディ
スク29と駆動軸21との間に回転位相は生じず、また
カムシャフト22の中心と環状ディスク29の中心Yも
合致しているため、両者22,29間の回転位相差も生
じない。したがって、駆動軸21の回転に伴い連結軸3
1を介してスリーブ28が同期回転すると共に、スリー
ブ側の係止溝33とピン37,環状ディスク29,ピン
36,カムシャフト22側の係止溝30を介してカムシ
ャフト22も同期回転する。On the other hand, when the engine shifts to the high speed and high load region, the control unit 56 outputs a pulse control signal in the opposite direction to the above, the stepping motor 55 rotates in the reverse direction, and the control shaft 54, the bevel gear 52, The rotating member 42 also reversely rotates via 53. Therefore, the movable member 41
Is linearly slid upward by the screwing action of the male and female screw portions 46 and 50 and returns to the original position shown in FIG. Therefore, the disc housing 34 also swings to the original position, and the center Y of the annular disc 29 coincides with the center X of the drive shaft 21 (see FIG. 1). Therefore, in this case, a rotational phase does not occur between the annular disc 29 and the drive shaft 21, and the center of the camshaft 22 and the center Y of the annular disc 29 are also aligned, so that the space between the two 22 and 29 is the same. No rotational phase difference occurs. Therefore, as the drive shaft 21 rotates, the connecting shaft 3
1, the sleeve 28 rotates synchronously, and the cam shaft 22 also rotates synchronously via the engagement groove 33 on the sleeve side and the pin 37, the annular disc 29, the pin 36, and the engagement groove 30 on the cam shaft 22 side.
【0024】この結果、該夫々の角速度の変化に基づき
カムシャフト22及びカム26と駆動軸21との回転位
相差は、図7Aに示すように変化し、バルブタイミング
は同図Bに示すようにバルブリフトを一定のままカムシ
ャフト22の位相差に応じて変化する。As a result, the rotational phase difference between the camshaft 22 and the cam 26 and the drive shaft 21 changes as shown in FIG. 7A based on the changes in the respective angular velocities, and the valve timing changes as shown in FIG. The valve lift changes according to the phase difference of the cam shaft 22 with the valve lift kept constant.
【0025】つまり、カムシャフト22の角速度が相対
的に大きい場合は、駆動軸21に対する回転位相は両者
21,22が等速になるまで進み、やがてカムシャフト
22の角速度が相対的に小さくなると回転位相は両者2
1,22が等速になるまで遅れる。そして、図7Aで示
すように回転位相差の最大,最小点の途中に同位相点
(P点)が存在し、同図の破線で示す回転位相の変化で
は、P点よりも前の吸気弁23の開弁時期が遅れ、P点
より後の閉弁時期は進み、図7Bの破線で示すように弁
の作動角が小さくなる。したがって、前記のように機関
低速低負荷域では、吸気弁23のバルブタイミングが図
7Bの破線で示すように作動角が小さくなり、開時期が
少し遅れ、閉時期が早くなる。これによって、吸排気弁
のバルブオーバラップが小さくなり、燃焼室の残留ガス
が減少し、安定した燃焼により燃費の向上が図れる。ま
た、早い閉時期により、吸気充填効率が向上し、低速ト
ルクを高めることができる。That is, when the angular velocity of the camshaft 22 is relatively high, the rotational phase with respect to the drive shaft 21 advances until both the speeds 21 and 22 become constant, and eventually when the angular velocity of the camshaft 22 relatively decreases. Phase is both 2
Delay until 1 and 22 become constant speed. Then, as shown in FIG. 7A, the same phase point (point P) exists in the middle of the maximum and minimum points of the rotational phase difference, and the change in the rotational phase shown by the broken line in FIG. The valve opening timing of 23 is delayed, the valve closing timing after point P is advanced, and the valve operating angle is reduced as shown by the broken line in FIG. 7B. Therefore, as described above, in the engine low speed and low load region, the valve timing of the intake valve 23 becomes smaller as shown by the broken line in FIG. 7B, the opening timing is slightly delayed, and the closing timing is advanced. As a result, the valve overlap of the intake and exhaust valves is reduced, the residual gas in the combustion chamber is reduced, and stable combustion improves fuel efficiency. Further, the early closing timing improves the intake charging efficiency and can increase the low speed torque.
【0026】一方、高速高負荷域では、図7Bの実線で
示すように作動角が大きくなり、同時期が早くなると共
に、閉時期が遅くなるため、吸気慣性力を利用した吸気
充填効率が向上し、高出力化が図れる。尚、斯る高速高
負荷域において、可動部材41をさらに上方向に移動さ
せて図1のディスクハウジング34及び環状ディスク2
9をさらに上方向に揺動させれば図7Bの一点鎖線で示
すように吸気弁23の作動角が一層大きくなり、高出力
化を助長することができる。On the other hand, in the high speed and high load region, the operating angle becomes large as shown by the solid line in FIG. 7B, and the closing timing becomes late as the operating timing becomes early, so that the intake charging efficiency utilizing the intake inertial force is improved. However, high output can be achieved. In the high speed and high load range, the movable member 41 is further moved upward to move the disk housing 34 and the annular disk 2 shown in FIG.
If 9 is further swung upward, the operating angle of the intake valve 23 becomes even larger as shown by the alternate long and short dash line in FIG. 7B, and it is possible to promote higher output.
【0027】このように、本実施例では、機関運転変化
に応じてバルブタイミングを高精度に可変制御できるこ
とは勿論のこと、ディスクハウジング34を、従来のよ
うに歯車等を用いずに可動部材41と回転部材42との
雌雄ねじ部46,50を用いて揺動させるようにしてお
り、該雌雄ねじ部46,50のねじ山とねじ溝との間に
バックラッシュ隙間が殆ど形成されていないため、カム
シャフト22の回転トルク変動によりディスクハウジン
グ34に交番荷重が発生しても、雌雄ねじ部46,50
間における打音や経時的な摩耗の発生等が防止される。
特に、可動部材41の上下方向の長さL、つまり雌ねじ
孔47の長さが十分に長く設定されているため、ねじピ
ッチの誤差等で雌ねじ部46のねじ溝と雄ねじ部50の
ねじ山との隙間が一層少なくなり、打音等の発生が効果
的に防止される。As described above, in this embodiment, the valve timing can be variably controlled with high accuracy according to the change in engine operation, and the disk housing 34 can be moved by the movable member 41 without using gears as in the conventional case. The male and female screw portions 46 and 50 of the rotating member 42 and the rotating member 42 are used for swinging, and there is almost no backlash gap formed between the thread and the screw groove of the female and male screw portions 46 and 50. Even if an alternating load is generated in the disc housing 34 due to fluctuations in the rotational torque of the camshaft 22, the female and male threaded portions 46, 50
It is possible to prevent the tapping sound and the occurrence of wear over time.
In particular, since the length L of the movable member 41 in the vertical direction, that is, the length of the female screw hole 47 is set to be sufficiently long, the screw groove of the female screw portion 46 and the screw thread of the male screw portion 50 are different due to an error in the screw pitch or the like. The gap is further reduced, and the generation of tapping noise is effectively prevented.
【0028】しかも、ディスクハウジング34からレバ
ー部40を介して可動部材41に伝達された前記交番荷
重は、雌雄ねじ部46,50間で直線運動から回転運動
に変換される際に吸収されてしまう。このため、ステッ
ピングモータ55に対する前記交番荷重の伝達が確実に
遮断され、回転駆動負荷の増加が防止される。Moreover, the alternating load transmitted from the disk housing 34 to the movable member 41 via the lever portion 40 is absorbed when the linear movement is converted into the rotational movement between the female and male screw portions 46 and 50. . Therefore, the transmission of the alternating load to the stepping motor 55 is reliably cut off, and an increase in the rotational driving load is prevented.
【0029】更に、制御精度の高いステッピングモータ
55の回転駆動やピッチの小さな雌雄ねじ部46,50
の減速作用を利用してディスクハウジング34を揺動さ
せるため、環状ディスク29の駆動軸21に対する偏心
動を細かく制御することが可能になる。この結果、バル
ブタイミング制御精度が向上する。Further, the stepping motor 55 having a high control accuracy is rotationally driven and the male and female screw portions 46 and 50 having a small pitch are used.
Since the disc housing 34 is swung by utilizing the deceleration action of, the eccentric movement of the annular disc 29 with respect to the drive shaft 21 can be finely controlled. As a result, the valve timing control accuracy is improved.
【0030】また、前述のように各ピン36,37は両
側縁が平面部36a,36b,37a,37bに形成さ
れているため、各係止溝30,33の対向内面30a,
30b、33a,33bと面接触状態で当接する。した
がって、駆動軸21からカムシャフト22への回転伝達
時及び環状ディスク29の偏心状態における平面部36
a,36b、37a,37bと対向内面30a,30
b、33a,33bとの摺動時に両者間の集中荷重の発
生が防止されて、面圧が低下する。この結果、係止溝3
0,33とピン36,37間に経時的な摩耗の発生が防
止されて、カムシャフト22の回転トルク変動に伴う各
フランジ部27,32と各ピン36,37との打音の発
生やバルブタイミングのズレによる制御精度の低下等が
防止される。Further, as described above, since both edges of the pins 36, 37 are formed on the flat portions 36a, 36b, 37a, 37b, the facing inner surfaces 30a of the locking grooves 30, 33,
It comes into contact with 30b, 33a and 33b in a surface contact state. Therefore, the flat surface portion 36 during rotation transmission from the drive shaft 21 to the camshaft 22 and in the eccentric state of the annular disk 29.
a, 36b, 37a, 37b and facing inner surfaces 30a, 30
When sliding with b, 33a and 33b, a concentrated load between them is prevented from being generated, and the surface pressure is reduced. As a result, the locking groove 3
0, 33 and the pins 36, 37 are prevented from being worn over time, and the tapping noise between the flange portions 27, 32 and the pins 36, 37 due to the fluctuation of the rotational torque of the camshaft 22 and the valve are prevented. It is possible to prevent a decrease in control accuracy due to a timing shift.
【0031】更に、各ピン36,37は、環状ディスク
29のピン孔29b,29cに回転自在に支持されてい
るため、環状ディスク29の揺動時においても各ピン3
6,37が適宜回転して平面部36a,36b,37
a,37bと係止溝30,33の対向内面30a,30
b、33a,33bが常に面接触する形になる。したが
って、両者30,36、33,37間の摩耗の発生が一
層確実に防止される。Further, since the pins 36 and 37 are rotatably supported by the pin holes 29b and 29c of the annular disc 29, the pins 3 and 37 can be rotated even when the annular disc 29 swings.
6 and 37 are rotated appropriately so that the flat portions 36a, 36b and 37
a, 37b and inner facing surfaces 30a, 30 of the locking grooves 30, 33
b, 33a and 33b are always in surface contact with each other. Therefore, the occurrence of wear between the both 30, 36, 33, 37 is more reliably prevented.
【0032】図8〜図9は本発明の第2実施例を示し、
ディスクハウジング34を支軸で揺動自在に支持するの
ではなく、該ディスクハウジング34の他端部に直接可
動部材41を一体に設けて、該可動部材41でディスク
ハウジング34を上下方向へ直線的に揺動させるように
した。8 to 9 show a second embodiment of the present invention,
Instead of swingably supporting the disc housing 34 by a support shaft, the movable member 41 is integrally provided directly at the other end of the disc housing 34, and the movable member 41 linearly moves the disc housing 34 in the vertical direction. It was made to rock.
【0033】したがって、この実施例によれば、回転部
材42の正逆回転に伴い可動部材41を介してディスク
ハウジング34が回転部材42と上下に平行移動する。
このため、第1実施例における可動部材41の上下移動
量に対するディスクハウジング34の揺動量よりも大き
く揺動させることができる。即ち、第1実施例の場合
は、支点揺動であるため、ディスクハウジング34の所
定の偏心量εを得るためには、可動部材41はそれ以上
の移動量fが必要となるが、本実施例では平行揺動(移
動)であるため、ディスクハウジング34が可動部材4
1の移動量eとディスクハウジング34の移動量eが同
一になる。この結果、可動部材41に移動量を減少させ
ることができ、したがって、移動時間の短縮化により吸
気弁23の作動角変換の応答性が向上する。Therefore, according to this embodiment, the disk housing 34 moves up and down in parallel with the rotary member 42 via the movable member 41 as the rotary member 42 rotates forward and backward.
For this reason, it is possible to swing the disk housing 34 more than the amount of vertical movement of the movable member 41 in the first embodiment. That is, in the case of the first embodiment, since it is the fulcrum swing, in order to obtain the predetermined amount of eccentricity ε of the disk housing 34, the movable member 41 requires a movement amount f of more than that, but in the present embodiment In the example, the disk housing 34 moves in parallel (moves).
The movement amount e of 1 and the movement amount e of the disc housing 34 are the same. As a result, the moving amount of the movable member 41 can be reduced, and therefore the responsiveness of the operation angle conversion of the intake valve 23 is improved by shortening the moving time.
【0034】また、このようにディスクハウジング34
の移動量が、可動部材41の移動量と同一になるところ
から、該ディスクハウジング34の揺動量を逆に大きく
することが可能になるため、吸気弁23の作動角の変化
巾を大きくすることができる。Further, in this way, the disc housing 34
Since the amount of movement of the intake valve 23 is the same as the amount of movement of the movable member 41, the swing amount of the disk housing 34 can be increased conversely. Therefore, the change range of the operating angle of the intake valve 23 should be increased. You can
【0035】また、この実施例では、支軸等が不要とな
り、部品点数の削減とコストの低廉化が図れるばかり
か、ディスクハウジング34と可動部材41との一体化
により駆動軸21に対する可動部材41の雌ねじ孔47
やディスクハウジング34の位置決め及び所謂芯出し作
業が極めて容易になる。In addition, in this embodiment, a support shaft and the like are not required, so that not only the number of parts and the cost can be reduced, but also the movable member 41 with respect to the drive shaft 21 is integrated by integrating the disc housing 34 and the movable member 41. Female screw hole 47
The positioning and so-called centering work of the disc housing 34 and the disc housing 34 become extremely easy.
【0036】尚、前記駆動機構51のステッピングモー
タ55以外にDCモータや油圧モータ等を用いることも
可能である。It is also possible to use a DC motor, a hydraulic motor or the like other than the stepping motor 55 of the drive mechanism 51.
【0037】[0037]
【発明の効果】以上の説明で明らかなように、本発明に
よれば、カムシャフトに対するディスクハウジングの偏
心揺動を、従来のように歯車等によって行うのではな
く、可動部材と回転部材のバックラッシュ隙間の少ない
雌雄ねじ部の螺合移動によって行うようにしたため、カ
ムシャフトの回転トルク変動に起因する打音や摩耗等の
発生が防止される。As is apparent from the above description, according to the present invention, the eccentric swing of the disk housing with respect to the camshaft is not performed by a gear or the like as in the conventional case, but the back of the movable member and the rotating member is moved. Since it is performed by the screwing movement of the male and female screw parts with a small lash gap, the occurrence of hammering noise and wear due to the fluctuation of the rotational torque of the camshaft is prevented.
【0038】しかも、前記回転トルク変動によるディス
クハウジングの交番荷重を、雌雄ねじ部間で効果的に吸
収するため、駆動機構に対する交番荷重の伝達が遮断さ
れ、駆動負荷の増加が防止される。この結果、駆動機構
の小型化が図れると共に、レイアウトの自由度が向上す
る。Moreover, since the alternating load of the disk housing due to the fluctuation of the rotating torque is effectively absorbed between the male and female screw portions, the transmission of the alternating load to the drive mechanism is interrupted and the increase of the driving load is prevented. As a result, the drive mechanism can be downsized, and the degree of freedom in layout is improved.
【図1】本発明の一実施例を示す図2のA−A線断面
図。FIG. 1 is a sectional view taken along line AA of FIG. 2 showing an embodiment of the present invention.
【図2】本実施例の要部を示す平面図。FIG. 2 is a plan view showing a main part of this embodiment.
【図3】図2のB−B線断面図。3 is a sectional view taken along line BB of FIG.
【図4】図2のC−C線断面図。FIG. 4 is a sectional view taken along the line CC of FIG.
【図5】図2のD−D線断面図。5 is a cross-sectional view taken along line DD of FIG.
【図6】本実施例の作用を示す図3のA−A線断面図。FIG. 6 is a sectional view taken along the line AA of FIG. 3 showing the operation of the present embodiment.
【図7】本実施例の駆動軸とカムシャフトとの回転位相
差とバルブタイミングの特性図。FIG. 7 is a characteristic diagram of a valve timing and a rotational phase difference between a drive shaft and a cam shaft according to the present embodiment.
【図8】本発明の第2実施例を示す要部断面図。FIG. 8 is a sectional view of a main part showing a second embodiment of the present invention.
【図9】本実施例の作用を示す要部断面図。FIG. 9 is a cross-sectional view of the main parts showing the operation of this embodiment.
【図10】従来の吸排気弁駆動制御装置の断面図。FIG. 10 is a sectional view of a conventional intake / exhaust valve drive control device.
【図11】図10のF−F線断面図。11 is a sectional view taken along line FF of FIG.
【符号の説明】 21…駆動軸 22…カムシャフト 23…吸気弁 29…環状ディスク 34…ディスクハウジング 34a…内周面 41…可動部材 42…回動部材 46…雌ねじ部 47…雌ねじ孔 50…雄ねじ部 51…駆動機構[Explanation of reference numerals] 21 ... Drive shaft 22 ... Cam shaft 23 ... Intake valve 29 ... Annular disc 34 ... Disc housing 34a ... Inner peripheral surface 41 ... Movable member 42 ... Rotating member 46 ... Female screw part 47 ... Female screw hole 50 ... Male screw Part 51 ... Drive mechanism
Claims (1)
弁を駆動させるカムを有するカムシャフトと、該カムシ
ャフトの軸心に対して略径方向へ揺動自在に設けられた
円環状のディスクハウジングと、前記カムシャフトに連
繋しつつディスクハウジングの内周面に回転自在に保持
されて、ディスクハウジングの揺動に伴い中心がカムシ
ャフトの軸心と偏心動するディスクとを備え、該ディス
クの偏心動に伴い前記カムシャフトの角速度の変化を得
て前記吸排気弁の作動角を可変制御する吸排気弁駆動制
御装置において、前記ディスクハウジングの一端側に、
内部に該ディスクハウジングの接線方向に沿った雌ねじ
孔が形成された可動部材を設けると共に、外周に前記雌
ねじ孔に螺合する雄ねじ部が形成されかつ駆動機構によ
り正逆回転制御される回転部材を設けたことを特徴とす
る内燃機関の吸排気弁駆動制御装置。1. A cam shaft having a cam for driving an intake / exhaust valve by a rotational force transmitted from an engine, and an annular disc provided so as to be swingable substantially in a radial direction with respect to the axis of the cam shaft. The disc includes a housing and a disc that is rotatably held on the inner peripheral surface of the disc housing while being linked to the camshaft, and the center of which is eccentric with the axial center of the camshaft as the disc housing swings. In an intake / exhaust valve drive control device that variably controls the operating angle of the intake / exhaust valve by obtaining a change in the angular velocity of the camshaft with eccentric movement, at one end side of the disc housing,
A movable member having a female screw hole formed along the tangential direction of the disc housing is provided inside, and a male screw portion that is screwed into the female screw hole is formed on the outer periphery, and a rotating member that is controlled to rotate forward and backward by a drive mechanism is provided. An intake / exhaust valve drive control device for an internal combustion engine, which is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17266792A JPH0610634A (en) | 1992-06-30 | 1992-06-30 | Intake and exhaust valve driving controller of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17266792A JPH0610634A (en) | 1992-06-30 | 1992-06-30 | Intake and exhaust valve driving controller of internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0610634A true JPH0610634A (en) | 1994-01-18 |
Family
ID=15946142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17266792A Pending JPH0610634A (en) | 1992-06-30 | 1992-06-30 | Intake and exhaust valve driving controller of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0610634A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088775A (en) * | 2004-09-21 | 2006-04-06 | Favess Co Ltd | Electric power steering device |
CN104727879A (en) * | 2013-12-18 | 2015-06-24 | 现代自动车株式会社 | Continuous Variable Valve Duration Apparatus |
-
1992
- 1992-06-30 JP JP17266792A patent/JPH0610634A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006088775A (en) * | 2004-09-21 | 2006-04-06 | Favess Co Ltd | Electric power steering device |
CN104727879A (en) * | 2013-12-18 | 2015-06-24 | 现代自动车株式会社 | Continuous Variable Valve Duration Apparatus |
JP2015117692A (en) * | 2013-12-18 | 2015-06-25 | 現代自動車株式会社 | Continuous variable valve duration device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3834921B2 (en) | Variable valve mechanism | |
JPH062516A (en) | Intake/exhaust valve driving control device for internal combustion engine | |
JPH06185321A (en) | Suction and exhaust valve drive control device of internal combustion engine | |
JPH01147106A (en) | Valve mechanism | |
JP3286420B2 (en) | Intake and exhaust valve drive control device for internal combustion engine | |
JPH0742514A (en) | Intake/exhaust valve driving control device of internal combustion engine | |
JPH0941924A (en) | Power transmitting mechanism and variable valve system provided with power transmitting mechanism | |
US5357915A (en) | Valve system for internal combustion engine | |
US6578534B2 (en) | Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic | |
JP2004138058A (en) | Variable valve system | |
JP2007218116A (en) | Variable valve gear for engine | |
JPH0610634A (en) | Intake and exhaust valve driving controller of internal combustion engine | |
JP2761949B2 (en) | Valve opening / closing device for 4-cycle engine | |
JP2564147Y2 (en) | Variable valve timing type engine valve device | |
JP3347419B2 (en) | Camshaft phase change device | |
JPH07238815A (en) | Suction and exhaust valve drive control device for internal combustion engine | |
JP2001003720A (en) | Variable valve system of internal combustion engine | |
JP3114747B2 (en) | Engine governor | |
JPH0742515A (en) | Intake/exhaust valve driving control device of internal combustion engine | |
JPH0734821A (en) | Intake/exhaust valve drive control device of internal combustion engine | |
JP3738526B2 (en) | Variable valve mechanism | |
JPH0610631A (en) | Intake and exhaust valve driving controller of internal combustion engine | |
JP2601060Y2 (en) | Intake and exhaust valve drive control device for internal combustion engine | |
JPH0245603A (en) | Variable valve timing device for intake/exhaust system of engine | |
JPH09195737A (en) | Controller for driving intake and exhaust valve of internal combustion engine |