JPH06105490A - Rotor for revolving field type motor - Google Patents

Rotor for revolving field type motor

Info

Publication number
JPH06105490A
JPH06105490A JP4273793A JP27379392A JPH06105490A JP H06105490 A JPH06105490 A JP H06105490A JP 4273793 A JP4273793 A JP 4273793A JP 27379392 A JP27379392 A JP 27379392A JP H06105490 A JPH06105490 A JP H06105490A
Authority
JP
Japan
Prior art keywords
magnetic pole
rotor
claw
outer peripheral
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4273793A
Other languages
Japanese (ja)
Inventor
Yoshito Nishikawa
義人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP4273793A priority Critical patent/JPH06105490A/en
Publication of JPH06105490A publication Critical patent/JPH06105490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To reduce cogging toque by setting the shape of a pawl within predetermined range. CONSTITUTION:The ratio theta/omega of a spreading angle omega[rad] per one pole of a rotor 20 in which 2pi [rad] is divided by the number P of poles (e.g. P=8) to spreading angle theta [rad] formed between linear ends of an end 26d connected from a rotary axial center 24a is set in a range of theta/omega=0.25-0.45. Further, the ratio r/R of the radius R[mm] of a pole board 22 to the radius (r) [mm] of curvature of an outer periphery (shoulder) 26f adjacent to a side 26b of a pawl 26 is set in a range of r/R=0.60-0.85. Thus, cogging torque can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サーボモータ等の位置
決め制御に用いられる回転界磁型電動機に係わり、特
に、永久磁石とそれを挟持する一対の磁極盤とを有し、
磁極盤に複数の爪部が形成された回転界磁型電動機の回
転子の低コギング化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary field type electric motor used for positioning control of a servomotor or the like, and in particular, it has a permanent magnet and a pair of magnetic pole plates sandwiching the permanent magnet.
The present invention relates to low cogging of a rotor of a rotary field type electric motor in which a plurality of claw portions are formed on a magnetic pole board.

【0002】[0002]

【従来の技術】一般に、回転界磁型電動機、例えば、サ
ーボモータを一定速度回転および定位置停止させる場
合、回転および停止位置のサーボ系精度向上のため低コ
ギングトルク化が必要とされている。従来より、回転界
磁型電動機の回転子として、図2の(a)および(b)
〔(a)のX−X断面図〕に示すように、軸方向に磁化
された円環状の永久磁石11の両磁極面11a,11b
に、その永久磁石の外周面に沿ってN極,S極が交互に
構成されると共に、図2の(c)(従来の回転界磁型電
動機の回転子の側面概略図)に示すように、外周部が長
方形状に形成された複数の爪部12aを有する一対の円
盤型の磁極盤12を挟持させ、永久磁石11および磁極
盤12の回転軸心に回転軸14を設けた所謂クローポー
ル式回転子が知られている。
2. Description of the Related Art Generally, when a rotating field type electric motor, for example, a servomotor is rotated at a constant speed and stopped at a fixed position, it is necessary to reduce the cogging torque in order to improve the accuracy of the servo system at the rotating and stopping positions. Conventionally, as a rotor of a rotary field type motor, (a) and (b) of FIG.
As shown in [XX sectional view of (a)], both magnetic pole faces 11a and 11b of the annular permanent magnet 11 magnetized in the axial direction.
In addition, N poles and S poles are alternately arranged along the outer peripheral surface of the permanent magnet, and as shown in FIG. 2C (side schematic view of rotor of conventional rotary field type motor). A so-called claw pole in which a pair of disc-shaped magnetic pole disks 12 having a plurality of claw portions 12a whose outer peripheral portions are formed in a rectangular shape is sandwiched, and a rotary shaft 14 is provided at the rotary shaft centers of the permanent magnet 11 and the magnetic pole disk 12. Rotating rotors are known.

【0003】ところで、回転界磁型電動機の中でクロー
ポール式回転子は、永久磁石の周面に直接NSNS極が
形成された永久磁石型回転子に比べて、コギングトルク
が大きいという欠点がある。これは、複数の爪部が、鉄
等の磁性体で形成されているため、ステータのティース
に対向する爪部のみに磁束が集中してしまうためであ
る。また、従来のクローポール式回転子の爪部の外周部
は長方形状であるため、回転子が回転する際、隣り合う
爪部の相互間で、爪部側からステータのティースに向か
う磁束が急激に変化してしまうためでもある。
By the way, the claw pole type rotor in the rotating field type motor has a drawback that the cogging torque is larger than that of the permanent magnet type rotor in which the NSNS pole is directly formed on the peripheral surface of the permanent magnet. . This is because the plurality of claws are made of a magnetic material such as iron, so that the magnetic flux concentrates only on the claws facing the teeth of the stator. Further, since the outer periphery of the claw portion of the conventional claw pole type rotor is rectangular, when the rotor rotates, the magnetic flux from the claw portion side toward the teeth of the stator is abruptly generated between the adjacent claw portions. It is because it changes to.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、上記
事実を考慮し、コギングトルクが低い回転界磁型電動機
の回転子を提供することを目的とする。
SUMMARY OF THE INVENTION In consideration of the above facts, an object of the present invention is to provide a rotor of a rotating field type motor having a low cogging torque.

【0005】[0005]

【課題を解決するための手段】上記欠点を解決するため
に、本発明は、軸方向に磁化された円環状の永久磁石
と、該永久磁石の両磁極面を挟持した形で固定された一
対の円盤型の磁極盤と、該磁極盤の外周端から、前記永
久磁石の外周面に沿う外周部にN極,S極が交互に構成
された複数の爪部と、前記永久磁石および前記磁極盤の
回転軸心に設けられた回転軸とを具備した回転界磁型電
動機の回転子において、前記爪部は、前記磁極盤に対向
する折曲部と、該折曲部に隣接し、かつ、互いに相対向
する一対の側面部と、それぞれの側面部から前記爪部の
中心方向に傾斜して延在する一対の傾斜部と、それぞれ
の傾斜部を結んで形成される端面となる先端部とを備え
る略台形状であり、前記回転軸心から前記先端部の両端
とを結んだそれぞれの直線が成す広がり角で定義される
先端部広がり角をθ〔rad〕とし、前記爪部の数に相
当する極数で2π〔rad〕を除した広がり角で定義さ
れる回転子の一極あたりの広がり角をω〔rad〕と
し、また、前記磁極盤の半径をR〔mm〕とし、前記爪
部の外周部の前記側面部に隣接する肩部の屈曲半径をr
〔mm〕とするとき、θ/ω=0.25〜0.45、r
/R=0.65〜0.85の範囲内で設定されているこ
とを特徴としている。
In order to solve the above-mentioned drawbacks, the present invention is directed to an axially magnetized annular permanent magnet and a pair of permanent magnets fixed so as to sandwich both magnetic pole surfaces. Disk-shaped magnetic pole disk, a plurality of claw portions in which N poles and S poles are alternately arranged from the outer peripheral end of the magnetic pole disk to the outer peripheral portion along the outer peripheral surface of the permanent magnet, the permanent magnet and the magnetic pole. In a rotor of a rotating field type electric motor having a rotary shaft provided at a rotary shaft center of a board, the claw portion is adjacent to the bent portion and the bent portion facing the magnetic pole board, and , A pair of side surface portions facing each other, a pair of inclined portions extending from each side surface portion in a direction toward the center of the claw portion, and a tip portion which is an end surface formed by connecting the respective inclined portions. And a substantially trapezoidal shape including, and connecting each of the ends of the tip portion from the rotation axis. A tip spread angle defined by a spread angle formed by a straight line is θ [rad], and 2π [rad] is divided by the number of poles corresponding to the number of the claws, so that the rotor is defined by a spread angle. Is ω [rad], the radius of the magnetic pole plate is R [mm], and the bending radius of the shoulder portion adjacent to the side surface portion of the outer peripheral portion of the claw portion is r.
[Mm], θ / ω = 0.25 to 0.45, r
It is characterized in that it is set within a range of /R=0.65 to 0.85.

【0006】[0006]

【作用】上記構成によれば、本発明の回転界磁型電動機
の回転子は、軸方向に磁化させた永久磁石およびこの永
久磁石の両磁極面を挟持した一対の磁極盤の回転軸心に
回転軸が設けられ、磁極盤の外周端に形成され、N極,
S極が交互に構成された複数の爪部には、折曲部、側面
部、傾斜部および先端部が存在し、爪部の外周部は略台
形状に形成されている。したがって、従来のような爪部
が長方形状である回転界磁型電動機の回転子に比べ、隣
り合う爪部の相互間で、爪部側からステータのティース
に向かう磁束が急激に変化しない。
According to the above construction, the rotor of the rotating field type electric motor of the present invention has the permanent magnet magnetized in the axial direction and the rotary shaft center of the pair of magnetic pole plates sandwiching both magnetic pole surfaces of the permanent magnet. A rotating shaft is provided and is formed on the outer peripheral end of the magnetic pole plate.
A bent portion, a side surface portion, an inclined portion, and a tip portion are present in the plurality of claw portions in which the south poles are alternately configured, and the outer peripheral portion of the claw portion is formed in a substantially trapezoidal shape. Therefore, compared to the conventional rotor of the rotary field type electric motor in which the claws are rectangular, the magnetic flux from the claws to the teeth of the stator does not change rapidly between the adjacent claws.

【0007】また、本発明者の実験によれば、爪部の数
に相当する極数で2π〔rad〕を除した広がり角で定
義される一極あたりの広がり角をω〔rad〕とし、回
転軸心から爪部の先端部の両端とを結んだそれぞれの直
線が成す広がり角で定義される先端部広がり角をθ〔r
ad〕としたときの割合θ/ωと、コギングトルクTと
の間には、図3の(a)のグラフに示されるような関係
があり、2つの臨界点G1、G2が存在することが判明
した。よって、割合θ/ωを0.25〜0.45の範囲
内に設定することによって、コギングトルクの低い回転
界磁型電動機の回転子が得られる。なお、この割合θ/
ωが小さい程、略台形状の爪部は三角形に近づき、爪部
の外周部の面積(ステータのティースに対向する面積)
が小さくなる。
According to an experiment by the present inventor, the spread angle per pole defined by the spread angle obtained by dividing 2π [rad] by the number of poles corresponding to the number of claws is ω [rad], The tip end divergence angle defined by the divergence angle formed by the straight lines connecting the rotation axis and both ends of the tip of the claw is θ [r
ad], the ratio θ / ω and the cogging torque T have a relationship as shown in the graph of FIG. 3A, and two critical points G1 and G2 may exist. found. Therefore, by setting the ratio θ / ω within the range of 0.25 to 0.45, it is possible to obtain the rotor of the rotating field type motor having a low cogging torque. This ratio θ /
The smaller the ω, the closer the trapezoidal claw part is to a triangle, and the area of the outer peripheral part of the claw part (the area facing the teeth of the stator).
Becomes smaller.

【0008】さらに、磁極盤の半径をRとし、爪部の側
面部に隣接する外周部(肩部)の屈曲半径をrとしたと
き、割合r/Rと、コギングトルクTとの間には、図3
の(b)のグラフに示されるような関係があり、2つの
臨界点H1,H2が存在することが判明した。したがっ
て、割合r/Rを0.65〜0.85の範囲内に設定す
ることによって、コギングトルクの低い回転界磁型電動
機の回転子が得られる。なお、この割合r/Rは、爪部
の外周部(肩部)の肩下がり具合いを表し、割合r/R
が小さい程、肩下がりの程度が大きく、回転子とステー
タとの間のエアギャップが増加する。
Further, when the radius of the magnetic pole plate is R and the bending radius of the outer peripheral portion (shoulder portion) adjacent to the side surface of the claw portion is r, the ratio r / R and the cogging torque T are , Fig. 3
It has been found that there is a relationship as shown in the graph of (b) and there are two critical points H1 and H2. Therefore, by setting the ratio r / R within the range of 0.65 to 0.85, the rotor of the rotating field type electric motor having a low cogging torque can be obtained. The ratio r / R represents the degree of shoulder lowering of the outer peripheral portion (shoulder) of the claw portion, and the ratio r / R
Is smaller, the degree of shoulder drop is larger and the air gap between the rotor and the stator is increased.

【0009】[0009]

【発明の効果】以上述べたように、本発明では、爪部の
形状を所定の範囲内に設定することによって、コギング
トルクを低減できるため、回転および停止位置のサーボ
系精度が向上する。
As described above, according to the present invention, the cogging torque can be reduced by setting the shape of the claw portion within a predetermined range, so that the accuracy of the servo system at the rotation and stop positions is improved.

【0010】[0010]

【実施例】次に、本発明の回転界磁型電動機の回転子の
一実施例を図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the rotor of the rotating field type electric motor of the present invention will be described with reference to the drawings.

【0011】本発明の回転界磁型電動機の回転子に係わ
る実施例の正面図を図1の(a)に示す。また、図1の
(a)に示すY−Y線に沿う断面図を図1の(b)に表
している。
A front view of an embodiment relating to the rotor of the rotating field type electric motor of the present invention is shown in FIG. A sectional view taken along the line YY shown in FIG. 1A is shown in FIG.

【0012】本発明の実施例における回転界磁型電動機
の回転子20は、クローポール式回転子であり、軸方向
に磁化させた円環状の永久磁石21の両磁極面21a,
21bに、一対の鉄製円盤型の磁極盤22を固定させ、
永久磁石21を両磁極盤22によって挟持させた形と
し、永久磁石21および両磁極盤22の回転軸心24a
に、回転軸24を挿通させたものである。両磁極盤22
のそれぞれの外周端には、永久磁石21の外周面に沿っ
てN極,S極が交互に構成されるように、磁極盤22と
一体的に鉄製の複数の爪部26が軸方向に向けて折り曲
げられた状態で形成されている。
The rotor 20 of the rotary field type motor in the embodiment of the present invention is a claw pole type rotor, and has both magnetic pole faces 21a of an annular permanent magnet 21 magnetized in the axial direction.
21b, a pair of iron disk-shaped magnetic pole disks 22 are fixed,
The permanent magnet 21 is sandwiched between the two magnetic pole disks 22, and the rotation axis 24a of the permanent magnet 21 and the two magnetic pole disks 22 is set.
The rotary shaft 24 is inserted therethrough. Both poles 22
A plurality of iron claw portions 26 are integrally formed with the magnetic pole disk 22 in the axial direction so that the N poles and the S poles are alternately arranged along the outer peripheral surface of the permanent magnet 21 at the respective outer peripheral ends. It is formed in a bent state.

【0013】本発明の実施例の回転界磁型電動機の回転
子20は、N極とS極とを併せて8個の爪部を有する。
したがって、爪部の数に相当する極数Pは8である。
The rotor 20 of the rotary field type electric motor according to the embodiment of the present invention has eight claws, which are the N pole and the S pole.
Therefore, the number P of poles corresponding to the number of claws is eight.

【0014】爪部26は、図1の(c)(爪部26の形
状を説明する側面概略図)に示すように、磁極盤22に
対向する折曲部26aと、折曲部26aに隣接して互い
に相対向する一対の側面部26bと、それぞれの側面部
26bから前記爪部の中心方向に傾斜して延在する一対
の傾斜部26cと、それぞれの傾斜部26cを結んで形
成される端面となる先端部26dとを備えており、爪部
26の外周面26eは略台形状である。
As shown in FIG. 1C (a schematic side view for explaining the shape of the claw portion 26), the claw portion 26 is adjacent to the bent portion 26a facing the magnetic pole plate 22 and the bent portion 26a. And a pair of side surfaces 26b facing each other, a pair of slopes 26c extending from the side surfaces 26b in the direction of the center of the claw, and the slopes 26c. The outer peripheral surface 26e of the claw portion 26 has a substantially trapezoidal shape.

【0015】また、本発明の実施例では、上記極数P
(P=8)で2π〔rad〕を除した回転子20の一極
あたりの広がり角ω〔rad〕と、回転軸心24aから
先端部26dの両端とを結び、それぞれの直線が成す先
端部広がり角θ〔rad〕との割合θ/ωを図3の
(a)に示される2つの臨界点G1、G2間(θ/ω=
0.25〜0.45)の中間値(θ/ω=0.35)に
設定する。さらに、磁極盤22の半径R〔mm〕と、爪
部26の側面部26bに隣接する外周部(肩部)26f
の屈曲半径r〔mm〕との割合r/Rを図3の(b)に
示される2つの臨界点H1、H2間(r/R=0.60
〜0.85)の中間値(r/R=0.73)に設定す
る。
In the embodiment of the present invention, the number of poles P is
(P = 8) Divide 2π [rad] by 2 to divide the divergence angle ω [rad] per one pole of the rotor 20 from the rotation axis 24a to both ends of the tip portion 26d, and form a tip portion formed by each straight line. The ratio θ / ω with the spread angle θ [rad] is calculated between the two critical points G1 and G2 shown in FIG.
It is set to an intermediate value (θ / ω = 0.35) of 0.25 to 0.45). Further, the radius R [mm] of the magnetic pole board 22 and the outer peripheral portion (shoulder portion) 26f adjacent to the side surface portion 26b of the claw portion 26.
The ratio r / R to the bending radius r [mm] between the two critical points H1 and H2 shown in FIG. 3 (b) (r / R = 0.60).
.About.0.85) (r / R = 0.73).

【0016】なお、図3の(a)および(b)に示す縦
軸のコギングトルクTは、回転軸24に連結し、回転軸
24と共に回転させた図示しないコギングトルク検出器
にて計測したものであり、臨界点G1,G2間(θ/ω
=0.25〜0.45)および臨界点H1,H2間(r
/R=0.60〜0.85)では、コギングトルクTの
値が非常に小さくなっていることが証明されている。
The cogging torque T on the vertical axis shown in FIGS. 3A and 3B is measured by a cogging torque detector (not shown) which is connected to the rotary shaft 24 and is rotated together with the rotary shaft 24. And between the critical points G1 and G2 (θ / ω
= 0.25 to 0.45) and between the critical points H1 and H2 (r
/R=0.60 to 0.85), it is proved that the value of the cogging torque T is extremely small.

【0017】上記構成とした本発明の実施例の回転界磁
型電動機の回転子において、本発明者は、さらに下記の
実験を行った。
The inventor further conducted the following experiment with the rotor of the rotating field type electric motor of the embodiment of the present invention having the above-mentioned structure.

【0018】当実験は、図4の(a)に示すように、略
台形状の爪部26の外周面26eを回転子20の回転方
向に沿って、それぞれ互いに等間隔の平行線A1、B
1、C1、D1、E1によって領域分割させ、回転子2
0の回転時の各平行線上における磁束密度分布Bをガウ
スメータで測定したものであり、その結果を図4の
(b)に示す。 図4の(b)において、波形図(A
2)〜(E2)は、それぞれ領域分割させた平行線A1
〜E1上の磁束密度分布Bを表し、波形図(F)は、波
形図(A2)〜(E2)の合成磁束密度分布を表してい
る。波形図(F)から明らかなように、本実施例の回転
界磁型電動機の回転子における、爪部26の合成磁束密
度分布には、コギングトルクの発生原因となる正弦波の
乱れが見られず、滑らかな正弦波を描いていることか
ら、コギングトルクが低減されていることが証明されて
いる。
In this experiment, as shown in FIG. 4A, the outer peripheral surface 26e of the substantially trapezoidal claw portion 26 is parallel to the parallel lines A1 and B at equal intervals along the rotation direction of the rotor 20.
1, C1, D1, and E1 are divided into regions, and the rotor 2
The magnetic flux density distribution B on each parallel line at the time of 0 rotation is measured by a Gauss meter, and the result is shown in FIG. 4 (b). In FIG. 4B, the waveform diagram (A
2) to (E2) are parallel lines A1 divided into respective regions.
~ E1 represents the magnetic flux density distribution B, and waveform chart (F) represents the composite magnetic flux density distribution in waveform charts (A2) to (E2). As is clear from the waveform diagram (F), in the rotor of the rotating field type electric motor of the present embodiment, in the combined magnetic flux density distribution of the claw portion 26, the sine wave disturbance causing the cogging torque is seen. However, it is proved that the cogging torque is reduced because it draws a smooth sine wave.

【0019】なお、本発明の実施例では、割合θ/ωお
よび割合r/R値をそれぞれ、臨界点G1,G2間およ
び臨界点H1,H2間の中間値に設定したが、これに限
らず、割合θ/ωおよび割合r/R値は、臨界点G1,
G2間および臨界点H1,H2間の範囲内であれば、ど
の値においても有効である。
In the embodiment of the present invention, the ratio θ / ω and the ratio r / R value are set to intermediate values between the critical points G1 and G2 and between the critical points H1 and H2, respectively, but not limited to this. , Ratio θ / ω and ratio r / R are the critical points G1,
Any value is effective as long as it is within the range between G2 and the critical points H1 and H2.

【0020】また、他の実施例として、図5に示すよう
に、爪部26の一対の傾斜部26cと先端部26dの両
端とを結んだ部分が曲率を有する場合、先端部広がり角
θ〔rad〕は、前記両傾斜部26cの接線K1,K2
と前記先端部26dの接線Lとが交わった2点Qおよび
Q’と、回転軸心24aとを結んだそれぞれの直線が成
す角である。
As another embodiment, as shown in FIG. 5, when the portion connecting the pair of inclined portions 26c of the claw portion 26 and both ends of the tip end portion 26d has a curvature, the tip end spread angle θ [ rad] is the tangent line K1, K2 of both the inclined portions 26c.
Is the angle formed by the respective straight lines connecting the two points Q and Q'where the tangent line L of the tip portion 26d intersects with the rotation axis 24a.

【図面簡単な説明】[Brief description of drawings]

【図1】本発明の回転界磁型電動機の回転子に係わる一
実施例を示し、(a)は回転子の正面図、(b)は
(a)のY−Y線に沿う断面図、(c)は爪部の形状を
説明する側面概略図である。
FIG. 1 shows an embodiment relating to a rotor of a rotating field type electric motor of the present invention, (a) is a front view of the rotor, (b) is a sectional view taken along line YY of (a), FIG. 7C is a schematic side view illustrating the shape of the claw portion.

【図2】従来の回転界磁型電動機の回転子を示し、
(a)は回転子の正面図、(b)は(a)のX−X線に
沿う断面図、(c)は爪部の形状を説明する側面概略図
である。
FIG. 2 shows a rotor of a conventional rotary field type motor,
(A) is a front view of a rotor, (b) is sectional drawing which follows the XX line of (a), (c) is a side surface schematic diagram explaining the shape of a claw part.

【図3】本発明の根拠を説明するグラフであり、(a)
は、割合θ/ωとコギングトルクTとの関係を表すグラ
フであり、(b)は、割合r/RとコギングトルクTと
の関係を表すグラフである。
FIG. 3 is a graph illustrating the basis of the present invention, (a)
Is a graph showing the relationship between the ratio θ / ω and the cogging torque T, and (b) is a graph showing the relationship between the ratio r / R and the cogging torque T.

【図4】(a)は、上記一実施例の爪部の外周面を平行
線によって、領域分割した説明図であり、(b)は、
(a)の各平行線上における磁束密度分布Bを表した波
形図である。
FIG. 4 (a) is an explanatory view in which the outer peripheral surface of the claw portion of the above-described embodiment is divided into regions by parallel lines, and FIG. 4 (b) is
It is a wave form diagram showing magnetic flux density distribution B on each parallel line of (a).

【図5】他の実施例を成す回転子における曲率を有する
爪部の先端部広がり角θを示した説明図である。
FIG. 5 is an explanatory diagram showing a tip end spread angle θ of a claw portion having a curvature in a rotor according to another embodiment.

【符号の説明】[Explanation of symbols]

20 回転子 21 永久磁石 22 磁極盤 24 回転軸 24a 回転軸心 26 爪部 26a 折曲部 26b 側面部 26c 傾斜部 26d 先端部 26e 外周面 26f 外周部(肩部) θ 先端部広がり角 ω 回転子の一極あたりの広がり角 R 磁極板の半径 r 屈曲半径 20 rotor 21 permanent magnet 22 magnetic pole disk 24 rotary shaft 24a rotary shaft center 26 claw portion 26a bent portion 26b side surface portion 26c inclined portion 26d tip portion 26e outer peripheral surface 26f outer peripheral portion (shoulder portion) θ tip end spread angle ω rotor Spread angle per pole R radius of pole plate r bending radius

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】軸方向に磁化された円環状の永久磁石と、 該永久磁石の両磁極面を挟持した形で固定された一対の
円盤型の磁極盤と、 該磁極盤の外周端から、前記永久磁石の外周面に沿う外
周部にN極,S極が交互に構成された複数の爪部と、 前記永久磁石および前記磁極盤の回転軸心に設けられた
回転軸とを具備した回転磁界型電動機の回転子におい
て、 前記爪部は、 前記磁極盤に対向する折曲部と、 該折曲部に隣接し、かつ、互いに相対向する一対の側面
部と、 それぞれの側面部から前記爪部の中心方向に傾斜して延
在する一対の傾斜部とそれぞれの傾斜部を結んで形成さ
れる端面となる先端部とを備える略台形状であり、 前記回転軸心から前記先端部の両端とを結んだそれぞれ
の直線が成す広がり角で定義される先端部広がり角をθ
〔rad〕とし、前記爪部の数に相当する極数で2π
〔rad〕を除した広がり角で定義される回転子の一極
あたりの広がり角をω〔rad〕とし、 また、前記磁極盤の半径をR〔mm〕とし、前記爪部の
前記外周部の前記側面部に隣接する肩部の屈曲半径をr
〔mm〕とするとき、 θ/ω=0.25〜0.45 r/R=0.60〜0.85 の範囲内で設定されていることを特徴とする回転界磁型
電動機の回転子。
1. An axially magnetized annular permanent magnet, a pair of disc-shaped magnetic pole plates fixed so as to sandwich both magnetic pole surfaces of the permanent magnet, and an outer peripheral end of the magnetic pole plate. Rotation including a plurality of claw portions having N poles and S poles alternately arranged on an outer peripheral portion along the outer peripheral surface of the permanent magnet, and a rotating shaft provided on a rotating shaft center of the permanent magnet and the magnetic pole plate. In the rotor of the magnetic field type motor, the claw portion includes a bent portion that faces the magnetic pole board, a pair of side surface portions that are adjacent to the bent portion and that face each other, and the side surfaces from the side surface portion. It is a substantially trapezoidal shape that includes a pair of inclined portions that extend obliquely toward the center of the claw portion and a tip portion that is an end surface formed by connecting the respective inclined portions, The tip divergence angle defined by the divergence angle formed by each straight line connecting both ends is θ
[Rad] and the number of poles corresponding to the number of the claw portions is 2π
The divergence angle per one pole of the rotor defined by the divergence angle divided by [rad] is ω [rad], the radius of the magnetic pole plate is R [mm], and the outer peripheral portion of the claw portion is The bending radius of the shoulder portion adjacent to the side portion is r
[Mm] is set in the range of θ / ω = 0.25 to 0.45 r / R = 0.60 to 0.85. .
JP4273793A 1992-09-17 1992-09-17 Rotor for revolving field type motor Pending JPH06105490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273793A JPH06105490A (en) 1992-09-17 1992-09-17 Rotor for revolving field type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273793A JPH06105490A (en) 1992-09-17 1992-09-17 Rotor for revolving field type motor

Publications (1)

Publication Number Publication Date
JPH06105490A true JPH06105490A (en) 1994-04-15

Family

ID=17532662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273793A Pending JPH06105490A (en) 1992-09-17 1992-09-17 Rotor for revolving field type motor

Country Status (1)

Country Link
JP (1) JPH06105490A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118799A (en) * 2011-10-31 2013-06-13 Asmo Co Ltd Rotor and motor
CN103326527A (en) * 2012-03-23 2013-09-25 阿斯莫有限公司 Brushless motor
CN103580406A (en) * 2012-07-31 2014-02-12 阿斯莫有限公司 Motor and method for manufacturing stator core and rotor core of motor
JP2014155379A (en) * 2013-02-12 2014-08-25 Asmo Co Ltd Rotor and motor
JP2014165974A (en) * 2013-02-22 2014-09-08 Asmo Co Ltd Rotor and motor
JP2014165972A (en) * 2013-02-22 2014-09-08 Asmo Co Ltd Rotor and motor
JP2014209828A (en) * 2012-07-31 2014-11-06 アスモ株式会社 Rotor, motor, and process of manufacturing rotor
JP2015073362A (en) * 2013-10-02 2015-04-16 アスモ株式会社 Motor
JP2017011996A (en) * 2016-10-19 2017-01-12 アスモ株式会社 Brushless motor
US9800102B2 (en) 2013-03-06 2017-10-24 Asmo Co., Ltd. Dual rotor core motor with reduced flux leakage
US9859761B2 (en) 2013-02-12 2018-01-02 Asmo Co., Ltd. Rotor and motor
US9887608B2 (en) 2013-01-24 2018-02-06 Asmo Co., Ltd. Rotor, stator and motor
US9893576B2 (en) 2012-03-23 2018-02-13 Asmo Co., Ltd. Brushless motor with cog-shaped rotor core having poles with auxiliary magnets and shaft-fixing portions
DE102012011444B4 (en) * 2011-06-17 2020-11-05 Denso Corporation Rotor and motor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012011444B4 (en) * 2011-06-17 2020-11-05 Denso Corporation Rotor and motor
JP2013118799A (en) * 2011-10-31 2013-06-13 Asmo Co Ltd Rotor and motor
CN103326527A (en) * 2012-03-23 2013-09-25 阿斯莫有限公司 Brushless motor
CN103326527B (en) * 2012-03-23 2018-03-20 阿斯莫有限公司 Brushless electric machine
US9893576B2 (en) 2012-03-23 2018-02-13 Asmo Co., Ltd. Brushless motor with cog-shaped rotor core having poles with auxiliary magnets and shaft-fixing portions
US9966807B2 (en) 2012-03-23 2018-05-08 Asmo Co., Ltd. Brushless motor
CN103580406A (en) * 2012-07-31 2014-02-12 阿斯莫有限公司 Motor and method for manufacturing stator core and rotor core of motor
JP2014161198A (en) * 2012-07-31 2014-09-04 Asmo Co Ltd Motor, stay core for motor, and manufacturing method for rotor core
JP2014209828A (en) * 2012-07-31 2014-11-06 アスモ株式会社 Rotor, motor, and process of manufacturing rotor
US9887608B2 (en) 2013-01-24 2018-02-06 Asmo Co., Ltd. Rotor, stator and motor
US10862380B2 (en) 2013-01-24 2020-12-08 Denso Corporation Rotor, stator and motor
JP2014155379A (en) * 2013-02-12 2014-08-25 Asmo Co Ltd Rotor and motor
US9859761B2 (en) 2013-02-12 2018-01-02 Asmo Co., Ltd. Rotor and motor
US10326324B2 (en) 2013-02-12 2019-06-18 Denso Corporation Rotor and motor
JP2014165974A (en) * 2013-02-22 2014-09-08 Asmo Co Ltd Rotor and motor
JP2014165972A (en) * 2013-02-22 2014-09-08 Asmo Co Ltd Rotor and motor
US9800102B2 (en) 2013-03-06 2017-10-24 Asmo Co., Ltd. Dual rotor core motor with reduced flux leakage
US10734852B2 (en) 2013-03-06 2020-08-04 Asmo Co., Ltd. Motor
JP2015073362A (en) * 2013-10-02 2015-04-16 アスモ株式会社 Motor
JP2017011996A (en) * 2016-10-19 2017-01-12 アスモ株式会社 Brushless motor

Similar Documents

Publication Publication Date Title
US6885125B2 (en) Brushless DC motor and method of manufacturing brushless DC motor
JPH06105490A (en) Rotor for revolving field type motor
JPS61280744A (en) Rotor with permanent magnet
JPH07194079A (en) Permanent magnet dc motor
JPH0543749U (en) Rotor of rotating magnetic field type motor
JPS63178750A (en) Structure of rotor for synchronous ac servomotor
JP3425176B2 (en) Motor or generator yoke
JP3424774B2 (en) Permanent magnet type rotor
JPH0279738A (en) Rotor for synchronous type ac servomotor
JP3703907B2 (en) Brushless DC motor
JP2001037127A (en) Permanent magnet type motor
JPH038405B2 (en)
JPH08251846A (en) Rotor structure
JPH10126982A (en) Permanent magnet motor
JPH1094202A (en) Permanent magnet motor and rotor magnetizing device
US6166475A (en) Brushless motor and magnetic recording-reproducing apparatus using the same
JPH0775321A (en) Pm type stepping motor
JPS58222766A (en) Flat rotary electric machine
JPH0541357U (en) Permanent magnet rotor and electric motor
JPH0543748U (en) Rotor of rotating magnetic field type motor
JPS59178949A (en) Synchronous motor
JPS60102853A (en) Permanent magnet rotor of motor
JPS63294244A (en) Permanent magnet type rotating machine
JPS63129834A (en) Permanent-magnet rotor
JPS6192154A (en) Dd dc servo motor