JPH06105341A - Stereoscopic vision display method - Google Patents

Stereoscopic vision display method

Info

Publication number
JPH06105341A
JPH06105341A JP4275028A JP27502892A JPH06105341A JP H06105341 A JPH06105341 A JP H06105341A JP 4275028 A JP4275028 A JP 4275028A JP 27502892 A JP27502892 A JP 27502892A JP H06105341 A JPH06105341 A JP H06105341A
Authority
JP
Japan
Prior art keywords
eye
filter
polarized
right eye
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4275028A
Other languages
Japanese (ja)
Inventor
Yasushi Kudo
康 工藤
Satoshi Yamaguchi
山口  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP4275028A priority Critical patent/JPH06105341A/en
Publication of JPH06105341A publication Critical patent/JPH06105341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To attain the stereoscopic vision from many directions by giving an electric signal to a polarized filter comprising three layers so as to vary the transmission angle of a light periodically thereby assigning left and right eye use video images to the left and right eyes respectively. CONSTITUTION:A polarized filter is of three-layer structure each comprising polarized planes A-C, the phases of the planes A, B differ 90 deg. from each other, and the plane C is electrically switched to the planes A, B synchronously with the switching of the video image. The polarized plane C3 of the filter 4 is switched in the order of A-B-A..., and the polarized plane C3 of the filter 5 is switched in the order of B-A-B... sequentially. When only the filters 4, 5 exist, a filter 6 blocks the right eye use video image made incident in the direction of the left eye 10. The switched 1st stage of the filter transmits the right eye use video image 7 in the direction of the right eye 11, and the 2nd stage transmits the left eye use video image in the left eye direction. The two operations are implemented synchronously with the left eye and right eye use video images displayed alternately at the speed of a prescribed frequency Hz or over.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三次元立体映像表示装
置に用いられる立体視表示方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic display method used in a three-dimensional stereoscopic image display device.

【0002】[0002]

【従来の技術】従来から知られている立体視表示方法に
は二眼式と多眼式がある。それぞれの代表的なものとし
て使用、研究されているのは、二眼式では偏光メガネ方
式、多眼式ではレンティキュラ方式である。両者共、左
右の目で見える映像に生じる差、両眼視差を利用したも
のであるが、それぞれ方式に特徴がある。偏光メガネ方
式はテレビジョンなどのディスプレイに光の位相が90
度異なる、左目用右目用の映像を表示し、偏光面が90
度異なるレンズを左右に取り付けたメガネをかけること
により左右の目がそれぞれ対応する映像を観察すること
によって両眼視差を生じ、立体視を実現するものであ
る。一方、レンティキュラ方式はかまぼこ型のレンズを
垂直方向に多数配列したレンズ板、すなわち、レンティ
キュラ板の後焦点面にディスプレイ配置した表示装置を
用い、各1本1本のレンズ、素レンズには複数の視点か
ら撮影した複数の縦方向の帯状の映像の列が順序良く表
示されており、この表示装置を観察するとレンズの屈折
作用により左右の目にはそれぞれの視角に対応する映像
を観察することができるため両眼視差を生じ、立体視が
実現でき、また、視点を移動しても順次対応する映像を
観察することができるため、他方向からの立体視を実現
できる方式である。さらに、最近考えられた立体映像表
示方式に、縦方向に細い帯状のスリットを生成する液晶
パネルLCD1と立体映像を構成する左目用、右目用映
像を表示する液晶パネルLCD2とを積層したディスプ
レイを用いる液晶アクティブ・バリア方式がある。この
方式は、LCD2に縦長の左目用、右目用映像が交互に
表示されたストライプ像をLCD1による細い縦長のス
リット・バリアを通して見ることにより、ストライプの
うち各左目右目の位置に対応した映像を観察することが
出来るため、両眼視差を生じ立体視が実現される方式で
ある。この方式によると立体映像表示部とスリット・バ
リア部とがいずれも液晶パネルで出来ているため、スト
ライプ像及びスリットの幅を数段階において変えること
が出来るので、二眼から多眼の間で任意の方向からの立
体視が実現でき、また、LCD2のスリット部以外に二
次元映像を表示すれば、二次元、三次元混合映像が表示
できる。
2. Description of the Related Art Conventionally known stereoscopic display methods include a binocular type and a multi-lens type. As a representative of each, what is being used and studied is a polarized glasses system for the two-lens system and a lenticular system for the multi-lens system. Both of them make use of the difference between the images viewed by the left and right eyes and the binocular parallax, and each has its own method. The polarized glasses method has a light phase of 90 on a display such as a television.
Displays different images for the left and right eyes, and the polarization plane is 90 degrees.
By wearing glasses in which different lenses are attached to the left and right to observe images corresponding to the left and right eyes, binocular parallax occurs, and stereoscopic vision is realized. On the other hand, the lenticular system uses a lens plate in which a large number of kamaboko type lenses are arranged in the vertical direction, that is, a display device in which a display is arranged on the back focal plane of the lenticular plate. A plurality of vertical strips of images taken from multiple viewpoints are displayed in order, and when this display device is observed, the left and right eyes observe the images corresponding to the respective viewing angles due to the refraction of the lens. This is a method in which binocular parallax is generated, stereoscopic vision can be realized, and corresponding images can be sequentially observed even when the viewpoint is moved, so stereoscopic vision from another direction can be realized. Furthermore, a display in which a liquid crystal panel LCD1 that generates a thin strip-shaped slit in the vertical direction and a liquid crystal panel LCD2 that displays left-eye and right-eye images forming a three-dimensional image are stacked is used in the three-dimensional image display system that has been recently considered. There is a liquid crystal active barrier system. This system observes the image corresponding to each left-eye and right-eye position in the stripe by observing the striped image in which the vertically long left-eye and right-eye images are alternately displayed on the LCD 2 through the thin vertically long slit barrier by the LCD 1. This is a method in which binocular parallax is generated and stereoscopic vision is realized. According to this method, since the stereoscopic image display section and the slit / barrier section are both made of liquid crystal panels, the widths of the stripe image and slit can be changed in several steps, so it is possible to select between two eyes and multiple eyes. The stereoscopic view from the direction can be realized, and if a two-dimensional image is displayed in the area other than the slit portion of the LCD 2, a two-dimensional and three-dimensional mixed image can be displayed.

【0003】[0003]

【発明が解決しようとする課題】前述の従来方式のうち
偏光メガネ方式には第一にメガネを必要とするという欠
点がある。メガネは、かけ馴れない人に取っては非常に
わずらわしいものであるため、立体視の実用化には大き
な障害となりえるものである。第二にこの方式では1つ
の視点しか考慮されていないため、視点を移動しても同
じ映像しか見えない。これは全く不自然な状態であり、
現実感を向上させる立体映像表示装置の実現において
は、解決すべき課題である。レンティキュラ方式は、他
方向からの立体視を実現できる非常に高度な方式である
が、レンズの幅や半径、厚さ、屈折率などレンズの設計
には計算すべきファクタ−が非常に多く、また、映像を
表示するディスプレイの画素の大きさや位置などは高い
精度を必要とするなど、まだ実現は非常に困難な状況で
ある。本発明は、これらの欠点を解決するため、より簡
単な方法で多方向からの立体視をメガネなしで実現する
ことを目的とする。また、前述の方式は、多眼式とは言
っても限られた方向からの立体視しか観察出来ず、その
間では奥行き感が逆になる逆立体視の状態が観察される
という欠点がある。また、同じ解像度で他方向からの立
体視を実現するためには高解像度の液晶パネルディスプ
レイが必要となる。本発明は、これらの欠点を解決する
ため、高解像度の液晶パネルディスプレイを必要とする
ことなく、あらゆる任意の方向からの立体視を実現する
ことを目的とする。
Among the above-mentioned conventional methods, the polarized glasses method has a drawback in that glasses are required. Eyeglasses are very troublesome for people who are unfamiliar, and can be a major obstacle to the practical application of stereoscopic vision. Secondly, since only one viewpoint is considered in this method, even if the viewpoint is moved, only the same image can be seen. This is totally unnatural,
This is a problem to be solved in the realization of a stereoscopic image display device that improves the sense of reality. The lenticular method is a very advanced method that can realize stereoscopic vision from other directions, but there are many factors to be calculated in lens design such as lens width, radius, thickness, and refractive index. In addition, the size and position of the pixel of the display that displays the image requires high accuracy, and it is still very difficult to realize. In order to solve these drawbacks, an object of the present invention is to realize stereoscopic vision from multiple directions without glasses in a simpler method. In addition, the above-described method has a drawback in that only a stereoscopic view can be observed from a limited direction even though it is a multi-view type, and an inverse stereoscopic view in which the sense of depth is reversed is observed between them. Further, in order to realize stereoscopic viewing from the other direction with the same resolution, a high resolution liquid crystal panel display is required. The present invention solves these drawbacks, and an object thereof is to realize stereoscopic vision from any arbitrary direction without requiring a high-resolution liquid crystal panel display.

【0004】[0004]

【課題を解決するための手段】映像表示ディスプレイ上
に90度位相の異なる縦方向に帯状の偏光面が順番に配
列している一枚の偏光フィルタを横方向へ少しずつずら
して三層で構成した偏光フィルタパネルを配置した映像
表示装置により、周期的に映像表示ディスプレイに表示
される左目用右目用映像に同期して、偏光フィルタに電
気的信号を与え、周期的に光の透過角度を変えることで
左目、右目に左目用右目用映像をそれぞれ振り分けるこ
とによって、多方向からの立体視を実現する。
[Means for Solving the Problems] A polarizing filter in which strip-shaped polarization planes are sequentially arranged in the vertical direction having different 90 ° phases on a video display is composed of three layers which are slightly shifted in the horizontal direction. By the video display device with the polarized filter panel arranged, an electric signal is periodically applied to the polarization filter in synchronization with the left-eye and right-eye video displayed on the video display to change the light transmission angle periodically. Thus, the left-eye and right-eye images are distributed to the left eye and the right eye, respectively, thereby realizing stereoscopic vision from multiple directions.

【0005】[0005]

【作用】この方法により、ディスプレイ上では、視点位
置右側に左目用映像が、視点位置より左側に右目用映像
観察できる。従って視点位置から視点位置の間で立体視
が実現できる。また、視点の水平方向の移動にともな
い、左目右目にはその視点位置に対応した各映像を連続
的に観察できるため、任意の方向からの立体視が実現で
き、また、逆立体視の観察を阻止出来る。
With this method, the left-eye image can be observed on the right side of the viewpoint position and the right-eye image can be observed on the left side of the viewpoint position on the display. Therefore, stereoscopic vision can be realized between the viewpoint positions. Also, as the viewpoint moves in the horizontal direction, each image corresponding to the viewpoint position can be continuously observed on the left and right eyes, so that stereoscopic viewing from any direction can be realized, and reverse stereoscopic viewing is also possible. Can be stopped.

【0006】[0006]

【実施例】本発明は、1枚の左目用右目用の映像を60
Hz以上の速度で交互に切り換えて表示するディスプレ
イ上に縦方向に帯状に分割された偏光フィルタを配置
し、このフィルタにより左目、右目に対応する映像を振
り分けるようにしたものである。図1にこの表示装置の
偏光フィルタの構成図を示す。図においてフィルタは三
層構造で、それぞれ偏光面A1、偏光面B2及び偏光面
C3により構成される。偏光面A1と偏光面B2との位
相は90度異なっており、偏光面C3は映像の切り換え
に同期して電気的に偏光面A1と偏光面B2とに切り替
わる。図2、図3にこの表示装置の動作図を示す。図2
において第一フィルタ4の偏光面C3はA−B−A−B
−Aの順に交互に切り換えられており、第二フィルタ5
の偏光面C3はB−A−B−A−Bの順に交互に切り換
えられている。第三フィルタ6は、第一フィルタ4、第
二フィルタ5だけでは左目10の方向に入射してしまう
右目用映像9を阻止する役目を持つ。この時、偏光フィ
ルタは、右目用映像7を右目11方向のみに透過する。
図3において第一フィルタ4の偏光面C3はB−A−B
−Aの順に交互に切り換えられており、第二フィルタ5
の偏光面C3はA−B−A−Bの順に交互に切り換えら
れている。この時、偏光フィルタは、左目用映像8を左
目10方向のみに透過する。この2つの動作を60Hz
以上の速度で交互に表示される左目用右目用映像に同期
させて行う。 この方法により、ディスプレイ上では、
図4に示すように視点位置13より右側に左目用映像1
6が、視点位置14より左側に右目用映像15が観察で
きる。従って視点位置13から視点位置14の間で立体
視が実現できる。また、視点の水平方向の移動にともな
い、左目右目にはその視点位置に対応した各映像を連続
的に観察できるため、任意の方向からの立体視が実現で
き、第三フィルタ6の作用により逆立体視の観察を阻止
出来る。次に、この発明の更に詳細な実施例を図5によ
り説明する。図において、立体映像表示装置17は映像
表示ディスプレイ18上に三層の偏光フィルタパネル1
9を装着したもので、円筒形をしており、頭を固定した
状態でディスプレイ上のどの方向を向いても視差角20
が常に一定となるように設計されている。映像表示ディ
スプレイ18には、60Hzの速度で右目用映像と左目
用映像を交互に表示する。それに同期させて、左目用映
像は左目方向へ、右目用映像は右目方向へ入射するよう
に偏光面Cを偏光面Aと偏光面Bに電気的に切り換え
る。従って、左目には30Hzの左目用映像が、右目に
は30Hzの右目用映像が観察でき、視点位置l13と
視点位置r14の間で立体視が実現する。位置はそのま
まで頭を回転させ観察方向を変えても、常に視差角αは
一定であるため、視点位置13と視点位置14の間で立
体視が実現するという状態は保たれ、その方向での立体
映像を観察する事ができる。このことから、立体映像表
示装置の全ての領域において、任意の方向からの立体視
が実現できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides one left-eye image and right-eye image 60.
A polarizing filter, which is divided into strips in the vertical direction, is arranged on a display which is alternately switched and displayed at a speed of Hz or more, and the image corresponding to the left eye and the right eye is distributed by this filter. FIG. 1 shows a configuration diagram of a polarization filter of this display device. In the figure, the filter has a three-layer structure and is composed of a polarization plane A1, a polarization plane B2, and a polarization plane C3, respectively. The polarization plane A1 and the polarization plane B2 are out of phase with each other by 90 degrees, and the polarization plane C3 is electrically switched to the polarization plane A1 and the polarization plane B2 in synchronization with the switching of the image. 2 and 3 show operation diagrams of this display device. Figure 2
In, the polarization plane C3 of the first filter 4 is ABAB
-A are alternately switched in order of the second filter 5
The polarization plane C3 is alternately switched in the order of B-A-B-A-B. The third filter 6 has a role of blocking the right-eye image 9 that is incident in the direction of the left eye 10 only by the first filter 4 and the second filter 5. At this time, the polarization filter transmits the right-eye image 7 only in the right-eye 11 direction.
In FIG. 3, the polarization plane C3 of the first filter 4 is B-A-B.
-A are alternately switched in order of the second filter 5
The plane of polarization C3 is alternately switched in the order of ABAB. At this time, the polarization filter transmits the image 8 for the left eye only in the direction of the left eye 10. 60Hz for these two operations
It is performed in synchronization with the left-eye and right-eye images alternately displayed at the above speed. By this method, on the display,
As shown in FIG. 4, the left-eye image 1 is displayed on the right side of the viewpoint position 13.
6 can see the right-eye image 15 on the left side of the viewpoint position 14. Therefore, stereoscopic vision can be realized between the viewpoint position 13 and the viewpoint position 14. Further, as the viewpoint moves in the horizontal direction, each image corresponding to the viewpoint position can be continuously observed by the left eye and the right eye, so that stereoscopic viewing from any direction can be realized, and by the action of the third filter 6, it is possible to reverse. It is possible to prevent stereoscopic observation. Next, a more detailed embodiment of the present invention will be described with reference to FIG. In the figure, the three-dimensional image display device 17 is a three-layer polarization filter panel 1 on an image display display 18.
9 has a cylindrical shape and has a parallax angle of 20 regardless of the direction on the display with the head fixed.
Is designed to be constant at all times. The video display display 18 alternately displays the right-eye image and the left-eye image at a speed of 60 Hz. In synchronization with this, the plane of polarization C is electrically switched to the plane of polarization A and the plane of polarization B so that the image for the left eye enters in the left eye direction and the image for the right eye enters in the right eye direction. Therefore, the left-eye image of 30 Hz can be observed by the left eye, and the right-eye image of 30 Hz can be observed by the right eye, and stereoscopic vision is realized between the viewpoint position l13 and the viewpoint position r14. The parallax angle α is always constant even if the head is rotated and the observation direction is changed while maintaining the position, so that the state in which stereoscopic vision is realized between the viewpoint position 13 and the viewpoint position 14 is maintained, and in that direction. You can observe stereoscopic images. Therefore, stereoscopic viewing from any direction can be realized in all areas of the stereoscopic video display device.

【0007】[0007]

【発明の効果】この表示方式により、特別な高解像度映
像表示ディスプレイや特殊技術を要するレンズ板を開発
することなく、また、メガネを必要とすることなく、多
方向からの立体視を実現する事ができる。
With this display method, stereoscopic viewing from multiple directions can be realized without developing a special high-resolution video display or a lens plate requiring special technology, and without using glasses. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示す図FIG. 1 is a diagram showing a configuration of the present invention.

【図2】本発明の動作と作用を示す図FIG. 2 is a diagram showing the operation and action of the present invention.

【図3】本発明の動作と作用を示す図FIG. 3 is a diagram showing the operation and action of the present invention.

【図4】本発明の原理を示す図FIG. 4 is a diagram showing the principle of the present invention.

【図5】本発明の一実施例のシステム構成を示す図FIG. 5 is a diagram showing a system configuration of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 偏光面A 2 偏光面B 3 偏光面C 4 第一フィルタ 5 第二フィルタ 6 第三フィルタ 7 右目用映像R 8 左目用映像L 9 右目用映像L’ 10 左目 11 右目 12 立体映像表示装置 13 視点位置l 14 視点位置r 15 右目用映像表示部分 16 左目用映像表示部分 17 円筒形立体映像表示装置 18 映像表示ディスプレイ 19 三層偏光フィルタパネル 20 視差角α 1 Polarization plane A 2 Polarization plane B 3 Polarization plane C 4 First filter 5 Second filter 6 Third filter 7 Right eye image R 8 Left eye image L 9 Right eye image L '10 Left eye 11 Right eye 12 Stereoscopic image display device 13 Viewpoint position l 14 Viewpoint position r 15 Right eye image display portion 16 Left eye image display portion 17 Cylindrical stereoscopic image display device 18 Image display display 19 Three-layer polarizing filter panel 20 Parallax angle α

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 映像表示ディスプレイ上に90度位相の
異なる縦方向に帯状の偏光面が順番に配列している一枚
の偏光フィルタを横方向へ少しずつずらして三層で構成
した偏光フィルタパネルを配置した映像表示装置によ
り、周期的に映像表示ディスプレイに表示される左目用
右目用映像に同期して、偏光フィルタに電気的信号を与
え、周期的に光の透過角度を変えることで左目、右目に
左目用右目用映像をそれぞれ振り分けることを特徴とす
る立体視表示方法
1. A polarizing filter panel comprising three layers in which one polarizing filter, in which vertical strip-shaped polarizing planes having different 90-degree phases are sequentially arranged on a video display, is slightly shifted in the horizontal direction. By the video display device arranged, the left eye by cyclically synchronizing the left eye for the right eye video displayed on the video display display with an electric signal to the polarization filter and periodically changing the light transmission angle, Stereoscopic display method characterized by allocating left-eye and right-eye images to the right eye
JP4275028A 1992-09-18 1992-09-18 Stereoscopic vision display method Pending JPH06105341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4275028A JPH06105341A (en) 1992-09-18 1992-09-18 Stereoscopic vision display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4275028A JPH06105341A (en) 1992-09-18 1992-09-18 Stereoscopic vision display method

Publications (1)

Publication Number Publication Date
JPH06105341A true JPH06105341A (en) 1994-04-15

Family

ID=17549873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4275028A Pending JPH06105341A (en) 1992-09-18 1992-09-18 Stereoscopic vision display method

Country Status (1)

Country Link
JP (1) JPH06105341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100625028B1 (en) * 1999-05-28 2006-09-20 엘지.필립스 엘시디 주식회사 Display of 3-Dimension stereoscopic Imaging for Multimode
JP2014138224A (en) * 2013-01-15 2014-07-28 Dr Nakamats Com Three-dimensional television set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100625028B1 (en) * 1999-05-28 2006-09-20 엘지.필립스 엘시디 주식회사 Display of 3-Dimension stereoscopic Imaging for Multimode
JP2014138224A (en) * 2013-01-15 2014-07-28 Dr Nakamats Com Three-dimensional television set

Similar Documents

Publication Publication Date Title
CN100381868C (en) Direct viewing type stereoscopic image display apparatus which can remove moire pattern
KR100580216B1 (en) 3d image display system
CN100378507C (en) Stereoscopic display switching between 2D/3D images using polarization grating screen
US7468838B2 (en) Stereoscopic display for switching between 2D/3D images
KR100440956B1 (en) 2D/3D Convertible Display
US20070258140A1 (en) Multiview autostereoscopic display
JP5107564B2 (en) Image display device
KR20040103724A (en) Display device capable of displaying 2-dimensional and 3-dimensional images
WO2007078141A1 (en) High-resolution field sequential autostereoscopic display
JP2009524118A (en) Stereoscopic image display device having net structure
KR102420041B1 (en) Display device and method thereof
WO2014198104A1 (en) Double layer-structured liquid crystal lens and three-dimensional display device
EP3023830B1 (en) Imaging system
JP3083635B2 (en) 3D stereoscopic image / 2D image coexistence type display device
Dodgson Autostereo displays: 3D without glasses
KR20010103100A (en) 3d image display device
KR100928265B1 (en) Stereoscopic display
JPH08327948A (en) Method and device for displaying stereoscopic picture
US20050057441A1 (en) Three dimensional stereoscopic image display apparatus
Minami et al. Portrait and landscape mode convertible stereoscopic display using parallax barrier
KR20120063361A (en) Polarizing glasses for watching 3 dimensional stereography image displayed and 3 dimensional stereography image display system having the same
JPH06105341A (en) Stereoscopic vision display method
KR20150004028A (en) 3 dimensional stereography image displayable device
JP2004282217A (en) Multiple-lens stereoscopic video image display apparatus
JP2005091447A (en) Stereoscopic display device