JPH06104834A - Automatic gain control circuit - Google Patents

Automatic gain control circuit

Info

Publication number
JPH06104834A
JPH06104834A JP4246993A JP24699392A JPH06104834A JP H06104834 A JPH06104834 A JP H06104834A JP 4246993 A JP4246993 A JP 4246993A JP 24699392 A JP24699392 A JP 24699392A JP H06104834 A JPH06104834 A JP H06104834A
Authority
JP
Japan
Prior art keywords
signal
optical
intermediate frequency
gain
gain control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4246993A
Other languages
Japanese (ja)
Other versions
JP3116590B2 (en
Inventor
Arihide Noda
有秀 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP04246993A priority Critical patent/JP3116590B2/en
Publication of JPH06104834A publication Critical patent/JPH06104834A/en
Application granted granted Critical
Publication of JP3116590B2 publication Critical patent/JP3116590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Radio Transmission System (AREA)

Abstract

PURPOSE:To prevent deterioration in a code error rate characteristic by suppressing noise generated from an optical receiver to which no optical signal is led because of a polarized wave ratio. CONSTITUTION:A transmitted optical signal is divided by a polarized wave separation coupler 103 depending on a polarized wave ratio and led to photo detection circuits 105, 106, in which the signal is converted into an intermediate frequency signal and amplified and demodulated at variable gain amplifiers 107, 108 and demodulators 109, 110 at the poststage. Part of the intermediate frequency signal is fed to detectors 112, 113, in which the signal is subjected to envelope detection. When all of the optical signals are led to the photo detection circuit 105 regardless of the polarized wave ratio, the demodulation circuit 109 outputs a demodulation signal and noise from the photo detection circuit 106 is outputted from the opposite demodulation circuit 110 and a code error rate characteristic is deteriorated. Then a voltage by the output of the detector 112 is added to a control voltage of the variable gain amplifier 107 to which the optical signal is led at an adder 121 to increase the gain, and conversely the control voltage of the variable gain amplifier 108 of the opposite side is unchanged and the gain is suppressed thereby preventing the noise from being invaded in the demodulation signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバを介する伝送
装置の偏波ダイバーシチ光へテロダイン受信器における
中間周波増幅器の自動利得制御回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic gain control circuit for an intermediate frequency amplifier in a polarization diversity optical heterodyne receiver of a transmission device via an optical fiber.

【0002】[0002]

【従来の技術】図3は従来の自動利得制御回路の一例の
ブロック図である。送信部301においてデジタル信号
に応じて周波数変調された光信号は、ィァィファイバ3
02で伝送され偏波分離カップラ303へと導かれる。
偏波分離カップラ303は光ファイバ302を伝送する
光信号の偏波比(以下、S波:P波の比で表す)に応じ
て光信号を光検波回路305または306に導く。例え
ば、伝送後の光信号の偏波比がO(P波)の場合は光検
波回路305に、偏波比1(S波)の場合は306に半
分づつ導かれる。ここで光信号の偏波比がO(P波)で
あったとすると、偏波分離カップラ303を通った光信
号は光受信器内に設けられた局部発振光源304の出力
光と光検波回路305にて合波、検波され中間周波信号
に変換される。その後、中間周波信号は復調回路309
にて復調され、合波器311をへて復調信号として出力
される。
2. Description of the Related Art FIG. 3 is a block diagram of an example of a conventional automatic gain control circuit. The optical signal frequency-modulated by the transmitter 301 according to the digital signal is transmitted to the fiber 3
It is transmitted in 02 and guided to the polarization separation coupler 303.
The polarization separation coupler 303 guides the optical signal to the optical detection circuit 305 or 306 according to the polarization ratio of the optical signal transmitted through the optical fiber 302 (hereinafter referred to as the ratio of S wave: P wave). For example, when the polarization ratio of the optical signal after transmission is O (P wave), it is guided to the optical detection circuit 305, and when it is 1 (S wave), it is guided to 306. Assuming that the polarization ratio of the optical signal is O (P wave), the optical signal that has passed through the polarization separation coupler 303 and the output light of the local oscillation light source 304 provided in the optical receiver and the optical detection circuit 305. Is combined and detected at and converted to an intermediate frequency signal. Thereafter, the intermediate frequency signal is demodulated by the demodulation circuit 309.
The signal is demodulated at and output from the multiplexer 311 as a demodulated signal.

【0003】中間周波信号の一部は可変利得増幅器30
7の後段にて分岐され、検波器312,313で包絡線
検波される。その出力は加算器314を通って可変利得
増幅器307に戻り利得制御信号となり、中間周波信号
の出力が常に一定となるような制御をおこなう。加算器
314の出力は他方の光受信器の可変利得増幅器308
にも加えられ、同様に利得制御をおこなう。
A part of the intermediate frequency signal is a variable gain amplifier 30.
7 is branched at the latter stage, and envelope detection is performed by the detectors 312 and 313. The output passes through the adder 314 and returns to the variable gain amplifier 307 to become a gain control signal, which is controlled so that the output of the intermediate frequency signal is always constant. The output of the adder 314 is the variable gain amplifier 308 of the other optical receiver.
The gain control is performed in the same manner.

【0004】図4は図3の各部の動作特性の示す相関図
である。偏波比が変化するとその偏波比に応じて光検波
回路305,306の出力電力は(L),(m)の様に
変化する。可変利得増幅器307,308への制御信号
(p)は偏波の状態に関係なくV2 と一定であるため検
波器312,313の出力はそれぞれ(n),(o)の
ようになり加算器314の出力は(m)+(o)=V2
となりループが閉じている状態となる。以上のような動
作により中間周波増幅器の利得制御が行われている。
FIG. 4 is a correlation diagram showing the operating characteristics of the respective parts of FIG. When the polarization ratio changes, the output power of the photodetector circuits 305 and 306 changes like (L) and (m) according to the polarization ratio. Since the control signals (p) to the variable gain amplifiers 307 and 308 are constant at V 2 regardless of the polarization state, the outputs of the detectors 312 and 313 are as shown in (n) and (o), respectively. The output of 314 is (m) + (o) = V 2
And the loop is closed. The gain control of the intermediate frequency amplifier is performed by the above operation.

【0005】[0005]

【発明が解決しようとする課題】この従来の自動利得制
御回路では、偏波比に関係なく可変利得増幅器への制御
電圧(p)はV2 と一定であるため、例えば偏波比が0
(縦波)で光検波回路306の出力(m)が0の場合で
も、可変利得増幅器308の利得は307と同等であ
る。この時、出力(m)は0であるが実際には光検波回
路306からの局部発振光によるショット雑音や熱雑音
等が可変利得増幅器308で増幅され、合成器311を
通って復調信号と共に出力される。これにより、符号誤
り率特性が劣化するという問題点があった。
In this conventional automatic gain control circuit, the control voltage (p) to the variable gain amplifier is constant as V 2 regardless of the polarization ratio, so that the polarization ratio is 0, for example.
Even when the output (m) of the optical detection circuit 306 is (longitudinal wave) and is 0, the gain of the variable gain amplifier 308 is equivalent to 307. At this time, the output (m) is 0, but in actuality, shot noise, thermal noise, etc. due to the local oscillation light from the photodetector circuit 306 are amplified by the variable gain amplifier 308 and output through the combiner 311 together with the demodulated signal. To be done. As a result, there is a problem that the code error rate characteristic is deteriorated.

【0006】[0006]

【課題を解決するための手段】本発明の自動利得制御回
路は、偏波ダイバーシチ受信方式の光ヘテロダイン検波
受信器における第1および第2の中間周波増幅器の利得
制御回路と、入力光信号の強度に比例した第1の制御出
力と入力信号光の偏波分離比に比例した第2の制御出力
との差分をそれぞれ前記第1および第2の中間周波増幅
器の利得制御回路に印加することを特徴とする。
SUMMARY OF THE INVENTION An automatic gain control circuit according to the present invention comprises a gain control circuit for the first and second intermediate frequency amplifiers in an optical heterodyne detection receiver of the polarization diversity receiving system, and an intensity of an input optical signal. Is applied to the gain control circuits of the first and second intermediate frequency amplifiers, respectively. The difference between the first control output proportional to the first control output and the second control output proportional to the polarization separation ratio of the input signal light is applied to the gain control circuits of the first and second intermediate frequency amplifiers, respectively. And

【0007】また、本発明の自動利得制御回路は、偏波
ダイバーシチ光ヘテロダイン受信器の包絡線検波の2出
力を加算して利得制御信号として出力する手段と、偏波
比に応じて光信号が導かれている光受信器側の中間周波
増幅器の利得を大きくし、前記光信号が導かれていない
光受信器側の中間周波増幅器の利得を抑える手段とを有
する。
Further, the automatic gain control circuit of the present invention includes means for adding two outputs of the envelope detection of the polarization diversity optical heterodyne receiver and outputting the gain control signal, and an optical signal according to the polarization ratio. And a means for increasing the gain of the guided intermediate frequency amplifier on the optical receiver side and suppressing the gain of the intermediate frequency amplifier on the optical receiver side where the optical signal is not guided.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例のブロック図、図2は本実
施例の各部の動作特性を示す相関図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a correlation diagram showing operation characteristics of each part of the present embodiment.

【0009】本実施例は、伝送された光信号が偏波分離
カップラ103により偏波比に応じて分けられ、各光検
波回路105,106へと導かれる。ここで中間周波信
号に変換され後段の可変利得増幅器107,108、復
調器109,110にて増幅、復調される。中間周波信
号の一部は検波器112,113に加えられ包絡線検波
される。偏波比により光信号が光検波回路105側に全
て導かれていたとすると、復調回路109からは復調信
号が出力されるが反対の復調回路110からは光検波回
路106からの雑音が出力され、符号誤り率特性が劣化
すル。そこで光信号が導かれている側の可変利得増幅器
107の制御電圧に検波器112の出力分の電圧を繰産
器121に加え利得を上げ、逆に反対側の可変利得増幅
器108の制御電圧は変化させず利得を抑えて、光検波
回路106からの雑音が復調信号に混ざることを防ぐよ
うに構成される。
In this embodiment, the transmitted optical signal is divided by the polarization separation coupler 103 according to the polarization ratio, and is guided to each of the optical detection circuits 105 and 106. Here, the signal is converted into an intermediate frequency signal and amplified and demodulated by the variable gain amplifiers 107 and 108 and demodulators 109 and 110 in the subsequent stages. A part of the intermediate frequency signal is applied to the detectors 112 and 113 and envelope detection is performed. If all the optical signals are guided to the optical detection circuit 105 side by the polarization ratio, the demodulation circuit 109 outputs the demodulation signal, while the opposite demodulation circuit 110 outputs the noise from the optical detection circuit 106. The code error rate characteristics deteriorate. Therefore, the voltage corresponding to the output of the detector 112 is added to the repeater 121 to the control voltage of the variable gain amplifier 107 on the side where the optical signal is guided to increase the gain, and conversely, the control voltage of the variable gain amplifier 108 on the opposite side is The gain is suppressed without changing, and the noise from the photodetector circuit 106 is prevented from being mixed with the demodulated signal.

【0010】次に本実施例の動作について説明する。偏
波分離カッブラ103において分離された光信号は光検
波回路105または106へと導かれ局部発振光源10
4の出力光と合成、検波され中間周波信号となり偏波比
に応じて図2(a),(b)のように出力される。この
中間周波信号は、可変利得増幅器107,108を通っ
て復調回路109,110及び検波器112,113へ
と与えられる。検波器112,113の出力は図2
(f),(g)の様になり、加算器114,115,1
18そして反転増幅器114,115へと与えられる。
反転増幅器114,115は利得を1倍に選んであり、
その出力は図2(f’),(g’)となる。
Next, the operation of this embodiment will be described. The optical signal separated by the polarization separation coupler 103 is guided to the optical detection circuit 105 or 106, and the local oscillation light source 10
The output light of FIG. 4 is combined and detected to be an intermediate frequency signal, which is output as shown in FIGS. 2A and 2B according to the polarization ratio. This intermediate frequency signal is supplied to the demodulation circuits 109 and 110 and the detectors 112 and 113 through the variable gain amplifiers 107 and 108. The outputs of the detectors 112 and 113 are shown in FIG.
As shown in (f) and (g), adders 114, 115 and 1
18 and is provided to inverting amplifiers 114 and 115.
The gains of the inverting amplifiers 114 and 115 are selected to be 1.
The output is shown in FIGS. 2 (f ') and (g').

【0011】(f’)=−(f’) (g’)=−(g’) この出力(f’),(g’)と検波器112,113の
出力(f’),(g’)を加算器116,117で加算
した結果はそれぞれ(h),(i)となる。
(F ') =-(f') (g ') =-(g') These outputs (f ') and (g') and the outputs (f ') and (g' of the detectors 112 and 113). ) Are added by the adders 116 and 117 to obtain (h) and (i), respectively.

【0012】この出力(h),(i)は同相増幅器11
9,120に与えられる。ここで同相増幅器119,1
20の利得は0.5倍に選んであり、その出力は
(j),(k)となる。
The outputs (h) and (i) are the common-mode amplifier 11
Given to 9,120. Here, the common-mode amplifiers 119, 1
The gain of 20 is selected to be 0.5, and the outputs are (j) and (k).

【0013】(j)=(h)×0.5 (k)=(i)×0.5 一方加算器118の出力(c)は検波器112,113
の出力(f),(g)の和となり(c)=(f)+
(g)となる。
(J) = (h) × 0.5 (k) = (i) × 0.5 On the other hand, the output (c) of the adder 118 is the detectors 112 and 113.
Is the sum of the outputs (f) and (g) of (c) = (f) +
(G).

【0014】なお、この(c)の値は偏波比に関係なく
1 一定である。同相増幅器119,120出力
(j),(k)はこ出力(c)と加算器121,122
にて足され、可変利得増幅器107,108への制御電
圧(d),(e)となる (d)=(c)+(j) (e)=(c)+(k) いまここで、光信号の偏波比が0(縦波)であったとす
ると、光検波回路105の出力電力(a)は1.0、逆
の光検波回路106の出力電力(b)は0となり、これ
に応じて光信号が導かれている図1、上半分側の光受信
器の自動利得制御回路(f),(g’),(h),
(j)の各値は次のようになる。
The value of (c) is constant at V 1 regardless of the polarization ratio. In-phase amplifiers 119 and 120 outputs (j) and (k) are output (c) and adders 121 and 122.
And control voltages (d) and (e) to the variable gain amplifiers 107 and 108 are obtained. (D) = (c) + (j) (e) = (c) + (k) Now, Assuming that the polarization ratio of the optical signal is 0 (longitudinal wave), the output power (a) of the photodetector circuit 105 is 1.0 and the output power (b) of the opposite photodetector circuit 106 is 0. 1, in which an optical signal is guided accordingly, automatic gain control circuits (f), (g '), (h) of the optical receiver on the upper half side,
The values of (j) are as follows.

【0015】検波器112出力 (f)=1.0 反転増幅器114出力 (g’)=1.0 加算器116出力 (h)=2.0 同相増幅器119出力 (j)=1.0 ここで、加算器118の出力(c)は偏波に依存せずV
1 が一定であるので可変利得増幅器107への加算器1
21の制御電圧(d)は(d)=V1 +1.0になる。
Output of detector 112 (f) = 1.0 Output of inverting amplifier 114 (g ′) = 1.0 Output of adder 116 (h) = 2.0 Output of common-mode amplifier 119 (j) = 1.0 where , The output (c) of the adder 118 is V independent of polarization.
Since 1 is constant, the adder 1 to the variable gain amplifier 107
The control voltage (d) of 21 becomes (d) = V 1 +1.0.

【0016】一方、光信号が導かれていない下半分側の
光受信器の自動利得制御回路(g),(f’),
(j),(k)の各値は次のようになる。
On the other hand, the automatic gain control circuits (g), (f ') of the optical receiver on the lower half side where the optical signal is not guided,
The values of (j) and (k) are as follows.

【0017】検波器113出力 (g)=0 反転増幅器115出力 (f’)=0 加算器117出力 (i)=0 同相増幅器120出力 (k)=0 そして、可変利得増幅器108への加算器122の制御
電圧(e)は(e)=V1 +0になる。
Output of detector 113 (g) = 0 Output of inverting amplifier 115 (f ′) = 0 Output of adder 117 (i) = 0 Output of common-mode amplifier 120 (k) = 0 Then, adder to variable gain amplifier 108 The control voltage (e) of 122 becomes (e) = V 1 +0.

【0018】以上のように偏波比が0(縦波)の場合、
光信号が導かれている光受信器側への利得制御電圧
(d)はV1 +1.0となり、可変利得増幅器107の
利得は大きくなる。また逆側の光受信器への利得制御電
圧(e)はV1 +0となり、可変利得増幅器108の利
得は抑えられている。光信号の偏波比が1(横波)とな
った場合は、図2に示すように(c)以外の(a)〜
(k)の各値はすべて反転する。従って各光ヘテロダイ
ン受信器の可変利得増幅器107,108への制御信号
も反転し、(d)=V1+0となり偏波比0(縦波)の
場合と同じ様に光信号が導かれている方側の光受信器の
利得は大きくなり、反対側の利得は抑えられる。
As described above, when the polarization ratio is 0 (longitudinal wave),
The gain control voltage (d) to the optical receiver side through which the optical signal is guided becomes V1 +1.0, and the gain of the variable gain amplifier 107 increases. Further, the gain control voltage (e) to the optical receiver on the opposite side becomes V 1 +0, and the gain of the variable gain amplifier 108 is suppressed. When the polarization ratio of the optical signal is 1 (transverse wave), as shown in FIG.
All the values of (k) are inverted. Therefore, the control signals to the variable gain amplifiers 107 and 108 of each optical heterodyne receiver are also inverted, resulting in (d) = V1 + 0, and the side where the optical signal is guided in the same way as in the case where the polarization ratio is 0 (longitudinal wave). The gain of the optical receiver is increased and the gain on the opposite side is suppressed.

【0019】偏波比が0から1に少しずつ変化して入っ
たときは、図2(d),(e)のように偏波比の値に応
じて利得制御信号が変わるとから各可変利得増幅器の利
得も同様に変化し、偏波比が0.5とのなったとき2つ
の利得は同値となる。
When the polarization ratio gradually changes from 0 to 1, the gain control signal changes according to the value of the polarization ratio as shown in FIGS. 2 (d) and 2 (e). Similarly, the gain of the gain amplifier changes, and when the polarization ratio becomes 0.5, the two gains have the same value.

【0020】このようにすると、偏波比に応じて、光検
波回路105,106からの局部発振光によるショット
雑音や熱雑音等が抑えられるので、符号誤り率特性の劣
化を防ぐことができる。
By doing so, shot noise, thermal noise, etc. due to the locally oscillated light from the photodetector circuits 105, 106 can be suppressed according to the polarization ratio, so that the deterioration of the code error rate characteristic can be prevented.

【0021】[0021]

【発明の効果】以上説明したように本発明の自動利得制
御回路は、偏波比に応じて光信号が導かれない側の光ヘ
テロダイン受信器の中間周波増幅器の利得を抑えること
により、復調信号に光検波回路からの局部発振光による
ショット雑音や熱雑音等が混ざることを防ぐことがで
き、符号誤り率特性の劣化を排除でいるという効果を有
する。
As described above, the automatic gain control circuit of the present invention suppresses the gain of the intermediate frequency amplifier of the optical heterodyne receiver on the side where the optical signal is not guided in accordance with the polarization ratio, thereby demodulating the signal. In addition, it is possible to prevent the shot noise, the thermal noise, and the like due to the local oscillation light from the photodetector circuit from being mixed, and it is possible to eliminate the deterioration of the code error rate characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】本実施例の各部の特性を示す相関図である。FIG. 2 is a correlation diagram showing characteristics of each part of this embodiment.

【図3】従来の自動利得制御回路の一例のブロック図で
ある。
FIG. 3 is a block diagram of an example of a conventional automatic gain control circuit.

【図4】従来の自動利得制御回路の一例のウロック図で
ある。
FIG. 4 is a block diagram of an example of a conventional automatic gain control circuit.

【符号の説明】[Explanation of symbols]

101,301 送信部 102,302 光ファイバ 103,303 偏波分離カップラ 104,304 局部発振光源 105,106,305,306 光検波回路 107,108,307,308 可変利得増幅器 109,110,309,310 復調回路 111,311 合波器 112,113,312,313 検波器 114,115 反転増幅器 116,117,118,314 加算器 119,120 同相増幅器 121,122 加算器 101, 301 Transmitter 102, 302 Optical fiber 103, 303 Polarization separation coupler 104, 304 Local oscillation light source 105, 106, 305, 306 Photodetector circuit 107, 108, 307, 308 Variable gain amplifier 109, 110, 309, 310 Demodulation circuit 111, 311 Combiner 112, 113, 312, 313 Detector 114, 115 Inverting amplifier 116, 117, 118, 314 Adder 119, 120 In-phase amplifier 121, 122 Adder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 偏波ダイバーシチ受信方式の光ヘテロダ
イン検波受信器における第1および第2の中間周波増幅
器の利得制御回路と、入力光信号の強度に比例した第1
の制御出力と入力信号光の偏波分離比に比例した第2の
制御出力との差分をそれぞれ前記第1および第2の中間
周波増幅器の利得制御回路に印加することを特徴とする
自動利得制御回路。
1. A gain control circuit for the first and second intermediate frequency amplifiers in an optical heterodyne detection receiver of a polarization diversity receiving system, and a first proportional to the intensity of an input optical signal.
Gain control circuit of the first and second intermediate frequency amplifiers, respectively, applying a difference between the control output of the first control signal and the second control output proportional to the polarization separation ratio of the input signal light to the gain control circuits of the first and second intermediate frequency amplifiers, respectively. circuit.
【請求項2】 偏波ダイバーシチ光ヘテロダイン受信器
の包絡線検波の2出力を加算して利得制御信号として出
力する手段と、偏波比に応じて光信号が導かれている光
受信器側の中間周波増幅器の利得を大きくし、前記光信
号が導かれていない光受信器側の中間周波増幅器の利得
を抑える手段とを有することを特徴とする自動利得制御
回路。
2. A means for adding two outputs of envelope detection of a polarization diversity optical heterodyne receiver and outputting as a gain control signal, and an optical receiver side to which an optical signal is guided according to a polarization ratio. An automatic gain control circuit comprising means for increasing the gain of the intermediate frequency amplifier and suppressing the gain of the intermediate frequency amplifier on the side of the optical receiver to which the optical signal is not guided.
JP04246993A 1992-09-17 1992-09-17 Automatic gain control circuit Expired - Fee Related JP3116590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04246993A JP3116590B2 (en) 1992-09-17 1992-09-17 Automatic gain control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04246993A JP3116590B2 (en) 1992-09-17 1992-09-17 Automatic gain control circuit

Publications (2)

Publication Number Publication Date
JPH06104834A true JPH06104834A (en) 1994-04-15
JP3116590B2 JP3116590B2 (en) 2000-12-11

Family

ID=17156785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04246993A Expired - Fee Related JP3116590B2 (en) 1992-09-17 1992-09-17 Automatic gain control circuit

Country Status (1)

Country Link
JP (1) JP3116590B2 (en)

Also Published As

Publication number Publication date
JP3116590B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
US5003626A (en) Dual balanced optical signal receiver
US5463461A (en) Coherent optical receiver having optically amplified local oscillator signal
JPH0478251A (en) Demodulator and polarized wave diversity receiver for coherent optical communication provided with the demodulator
JPS58224333A (en) Coherent light receiver
JP2658180B2 (en) Polarization diversity optical receiver
US5367397A (en) Wavelength-stabilizing method and its associated circuitry for an optical communication system
JP3147307B2 (en) Improved dynamic range transmission system using parallel optical coupling
JPH01503031A (en) Transmitters and transceivers for coherent optics
JPH02254830A (en) Polarized wave diversity optical heterodyne detection method and its apparatus
JPH06104834A (en) Automatic gain control circuit
JPH0613988A (en) Polarized wave diversity receiver
JPH05191352A (en) Coherent optical fiber communication system using polarized-light modulation
JP2897819B2 (en) Optical receiver
JPS60172842A (en) Controller of optical reception circuit
JP2689875B2 (en) Optical signal receiver
JPH0828684B2 (en) Double balanced polarization diversity receiver
JPH05268161A (en) Polarized wave diversity receiver
JPH05303128A (en) Optical heterodyne detecting and receiving device capable of removing image signal
JPS6210937A (en) Light heterodyne/homodyne receiving device
JPS63200631A (en) Optical communication method using optical heterodyne detection
JP2998365B2 (en) Data transmission equipment
JPH0716174B2 (en) Optical heterodyne / homodyne detector
JPH04208724A (en) Automatic frequency and gain control system for optical heterodyne polarization diversity reception
JP2778261B2 (en) Cross polarization compensation circuit
JPH02269326A (en) System and device for receiving polarization diversity optical heterodyne detection

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

LAPS Cancellation because of no payment of annual fees