JPH06103991A - Manufacture of solid electrolytic film and manufacture of solid electrolytic type fuel cell - Google Patents

Manufacture of solid electrolytic film and manufacture of solid electrolytic type fuel cell

Info

Publication number
JPH06103991A
JPH06103991A JP4252986A JP25298692A JPH06103991A JP H06103991 A JPH06103991 A JP H06103991A JP 4252986 A JP4252986 A JP 4252986A JP 25298692 A JP25298692 A JP 25298692A JP H06103991 A JPH06103991 A JP H06103991A
Authority
JP
Japan
Prior art keywords
powder
solid electrolyte
solid
mixed
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4252986A
Other languages
Japanese (ja)
Inventor
Shinji Kawasaki
真司 川崎
Shigenori Ito
重則 伊藤
Katsumi Yoshioka
克己 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4252986A priority Critical patent/JPH06103991A/en
Priority to US08/119,690 priority patent/US5527633A/en
Priority to EP93307308A priority patent/EP0588632B1/en
Priority to DE69317970T priority patent/DE69317970T2/en
Publication of JPH06103991A publication Critical patent/JPH06103991A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a solid electrolytic film having sufficiently high airtightness by forming the solid electrolytic film by high productive thermal spraying method and by applying heat treatment at relatively low temp. in closely forming the thermal spraying film. CONSTITUTION:A solid electrolytic material powder having an average grain diameter of 10 to 40 micrometers is prepared. At least one metal compound powder selected from groups comprising manganese. iron, cobalt. nickel. copper, and zinc is mixed with the solid electrolytic material powder to prepare mixed powder. Blending is made in such a way that the content of the metal to total metal atoms in the mixed powder may be 1atm% to 15atm%. A thermal spraying film is formed. using the mixed powder by thermal spraying method. Next, heat treatment at 1350 degrees C to 1500 degrees C is applied to the thermal spraying film to form an airtight solid electrolytic film. Or the above metal compound powder and the material powder are transferred to a thermal spraying gun part through separate powder supply devices respectively. In this case, supply is made in such a way that the content of at least one metal in the above per total amt. of metal atoms in the material powder and the compound powder may be 1atm% to 15atm%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質膜の製造方
法、及びこの固体電解質膜を用いる固体電解質型燃料電
池の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolyte membrane and a method for producing a solid oxide fuel cell using the solid electrolyte membrane.

【0002】[0002]

【従来の技術】固体電解質型燃料電池 (SOFC) は、1000
℃の高温で作動するため電極反応が極めて活発で、高価
な白金などの貴金属触媒を全く必要とせず、分極が小さ
く、出力電圧も比較的高いため、エネルギー変換効率が
他の燃料電池にくらべ著しく高い。更に、構造材は全て
固体から構成されるため、安定且つ長寿命である。
2. Description of the Related Art A solid oxide fuel cell (SOFC) has 1000
Since it operates at a high temperature of ℃, the electrode reaction is extremely active, no expensive noble metal catalyst such as platinum is required, the polarization is small, and the output voltage is relatively high, so the energy conversion efficiency is remarkably higher than other fuel cells. high. Furthermore, since the structural material is composed entirely of solid, it is stable and has a long life.

【0003】こうしたSOFCでは、固体電解質の薄膜
化が望まれるが、化学蒸着法(CVD)や電気化学的蒸着法
(EVD) 等の電解質薄膜化技術では、装置が大型化し、処
理面積、処理速度が小さすぎる。このためコストが高
く、固体電解質膜の大面積化も困難であり、またEVD
法の場合には基体が円筒状のものに限られる。プラズマ
溶射を固体電解質型燃料電池の製造に使用することは、
成膜速度が早く、簡単で、薄く且つ比較的緻密に成膜で
きるという点で優れており、従来から行われている。
(サンシャインジャーナル 1981, Vol.2, No.1) また、酸化セリウムまたは酸化ジルコニウムとアルカリ
土類金属または希土類元素等の金属酸化物とを固溶した
溶射原料を、粒度調整後にプラズマ溶射し、固体電解質
膜を形成することが公知である (特開昭61−198569号公
報、同61−198570号公報) 。
In such SOFCs, it is desired to reduce the thickness of the solid electrolyte, but chemical vapor deposition (CVD) or electrochemical vapor deposition
With electrolyte thinning technology such as (EVD), the equipment becomes large and the processing area and processing speed are too small. Therefore, the cost is high, it is difficult to increase the area of the solid electrolyte membrane, and the EVD
In the case of the method, the substrate is limited to a cylindrical one. The use of plasma spraying in the manufacture of solid oxide fuel cells
It is excellent in that the film formation speed is fast, simple, thin, and relatively dense, and has been conventionally performed.
(Sunshine Journal 1981, Vol.2, No.1) Further, a thermal spraying raw material in which cerium oxide or zirconium oxide and a metal oxide such as an alkaline earth metal or a rare earth element are solid-solutioned, plasma sprayed after particle size adjustment, and a solid It is known to form an electrolyte membrane (Japanese Patent Laid-Open Nos. 61-198569 and 61-198570).

【0004】しかし、プラズマ溶射膜は一般に気密性に
欠ける。このため、上記のようにSOFCの固体電解質
膜をプラズマ溶射によって形成すると、膜の気密性が不
充分である。このため、SOFCの動作時に、固体電解
質膜を水素、一酸化炭素等が透過する燃料漏れが発生
し、SOFC単セル当りの起電力が例えば通常の1Vよ
り小さくなり、出力が低下し、燃料の電力への変換率が
悪くなった。この際、固体電解質膜の膜厚を大きくして
燃料漏れに対処することも考えられるが、この場合は、
バルク中のイオン拡散に対する拡散抵抗が大きくなり、
結局電池の抵抗が大きくなる。これらのことから、固体
電解質膜を緻密化し、かつ燃料漏れの発生しない限りに
おいて薄膜化することにより、単電池の発電出力を向上
させるための技術が要望されている。
However, plasma sprayed coatings generally lack air tightness. Therefore, when the SOFC solid electrolyte membrane is formed by plasma spraying as described above, the airtightness of the membrane is insufficient. Therefore, during operation of the SOFC, a fuel leak occurs in which hydrogen, carbon monoxide, etc. permeate the solid electrolyte membrane, the electromotive force per SOFC single cell becomes smaller than the usual 1 V, the output decreases, and the fuel The conversion rate to electricity has deteriorated. At this time, it is possible to deal with fuel leakage by increasing the thickness of the solid electrolyte membrane, but in this case,
Increased diffusion resistance to ion diffusion in the bulk,
After all, the resistance of the battery increases. For these reasons, there is a demand for a technique for improving the power generation output of a single cell by densifying the solid electrolyte membrane and thinning it as long as fuel leakage does not occur.

【0005】こうした問題を解決するための方法とし
て、特開平4−115469号公報、特開平3−62459 号公報
においては、SOFCの固体電解質質膜をプラズマ溶射
によって形成し、このプラズマ溶射膜を熱処理する方法
が開示されている。しかし、プラズマ溶射膜には欠陥が
多く、充分に気密な膜を得ることが難しかった。特に、
2 ガス透過係数が10-7 cm4-1-1( 以下の高品質膜
を得るためには、1550℃以上の高温で長時間熱処理する
ことが必要であった。
As a method for solving such a problem, in JP-A-4-115469 and JP-A-3-62459, a solid electrolyte membrane of SOFC is formed by plasma spraying, and the plasma sprayed film is heat treated. A method of doing so is disclosed. However, the plasma sprayed film has many defects, and it is difficult to obtain a sufficiently airtight film. In particular,
The N 2 gas permeation coefficient was 10 −7 cm 4 g −1 s −1 (it was necessary to perform heat treatment at a high temperature of 1550 ° C. or higher for a long time in order to obtain a high quality film having

【0006】こうした高温で長時間熱処理を行うのに
は、多大のエネルギー、時間を必要とするので、製造コ
ストが非常に高くなる。そのうえ、プラズマ溶射膜の付
着した基体が、1550℃以上の高温で変質、劣化、変形す
るおそれがある。特にSOFCにおいては、多孔質の基
体を使用するので、1550℃以上の高温では多孔質の基体
の焼結が進み、寸法が小さくなり、酸化剤や燃料が基体
を透過しにくくなる。この結果、SOFCとしては充分
に機能しないものとなるという問題が生じた。
Since a large amount of energy and time are required to perform the heat treatment at such a high temperature for a long time, the manufacturing cost becomes very high. Moreover, the substrate to which the plasma sprayed film is attached may be altered, deteriorated, or deformed at a high temperature of 1550 ° C. or higher. Particularly in SOFC, since a porous substrate is used, at a high temperature of 1550 ° C. or higher, sintering of the porous substrate proceeds, the size becomes small, and it becomes difficult for the oxidant and fuel to permeate the substrate. As a result, there is a problem that the SOFC does not function sufficiently.

【0007】本発明の課題は、固体電解質膜を高生産性
の溶射法で形成し、この溶射膜を熱処理するのに際し、
低温で熱処理を行うことで充分に気密質の固体電解質膜
を得られるようにすることである。
An object of the present invention is to form a solid electrolyte membrane by a highly productive thermal spraying method and heat-treat this thermal sprayed membrane.
The heat treatment is carried out at a low temperature so that a sufficiently airtight solid electrolyte membrane can be obtained.

【0008】[0008]

【課題を解決するための手段】本発明は、平均粒径が10
〜40μmである固体電解質材料粉末を準備し、マンガ
ン、鉄、コバルト、ニッケル、銅及び亜鉛からなる群よ
り選ばれた一種以上の金属の化合物を前記固体電解質材
料粉末と混合して混合粉末を作製し、この際この混合粉
末中の全金属原子に対する前記一種以上の金属の含有率
が1atom%以上、15atom%以下となるように配合し、こ
の混合粉末を用いて溶射法によって溶射膜を形成し、次
いでこの溶射膜を1350℃〜1500℃で熱処理することで気
密質の固体電解質膜を形成する、固体電解質膜の製造方
法に係るものである。
The present invention has an average particle size of 10
A solid electrolyte material powder having a size of ˜40 μm is prepared, and a compound of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc is mixed with the solid electrolyte material powder to prepare a mixed powder. At this time, the content of the one or more metals is 1 atom% or more and 15 atom% or less with respect to all the metal atoms in the mixed powder, and the sprayed film is formed by the spraying method using the mixed powder. Then, the sprayed film is heat-treated at 1350 ° C to 1500 ° C to form an airtight solid electrolyte film.

【0009】また、本発明は、平均粒径が10〜40μmで
ある固体電解質材料粉末を準備し、マンガン、鉄、コバ
ルト、ニッケル、銅及び亜鉛からなる群より選ばれた一
種以上の金属の化合物を前記固体電解質材料粉末と混合
して混合粉末を作製し、この際この混合粉末中の全金属
原子に対する前記一種以上の金属の含有率が1atom%以
上、15 atom %以下となるように配合し、前記混合粉末
を用いて溶射法によって一方の電極の表面に溶射膜を形
成し、次いでこの溶射膜を1350℃〜1500℃で熱処理する
ことで気密質の固体電解質膜を形成し、この固体電解質
膜の表面に他方の電極を形成する、固体電解質型燃料電
池の製造方法に係るものである。
The present invention also provides a solid electrolyte material powder having an average particle size of 10 to 40 μm, and a compound of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc. Is mixed with the solid electrolyte material powder to prepare a mixed powder, in which the content of the one or more metals is 1 atom% or more and 15 atom% or less with respect to all metal atoms in the mixed powder. , Forming a sprayed film on the surface of one electrode by a spraying method using the mixed powder, and then heat-treating the sprayed film at 1350 ° C to 1500 ° C to form an airtight solid electrolyte film, and the solid electrolyte The present invention relates to a method for producing a solid oxide fuel cell, in which the other electrode is formed on the surface of the membrane.

【0010】更に、本発明は、平均粒径が10〜40μmで
ある固体電解質材料粉末を準備し、マンガン、鉄、コバ
ルト、ニッケル、銅及び亜鉛からなる群より選ばれた一
種以上の金属の化合物粉末を準備し、前記固体電解質材
料粉末と前記化合物粉末とをそれぞれ別個の粉末供給装
置を通して溶射ガン部へと運び、この際前記固体電解質
材料粉末及び前記化合物粉末における金属原子の合計量
に対する前記一種以上の金属の含有率が1atom%以上、
15atom%以下となるように供給し、前記固体電解質材料
粉末と前記化合物粉末とを溶射ガン部で溶融させて溶射
膜を形成し、次いでこの溶射膜を1350℃〜1500℃で熱処
理することで気密質の固体電解質膜を形成する、固体電
解質膜の製造方法に係るものである。
Further, in the present invention, a solid electrolyte material powder having an average particle size of 10 to 40 μm is prepared, and a compound of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc. A powder is prepared, and the solid electrolyte material powder and the compound powder are conveyed to a spray gun part through separate powder supply devices, and at this time, the solid electrolyte material powder and the compound powder are mixed with the metal atom in the total amount of the metal atom. The above metal content is 1 atom% or more,
It is supplied so as to be 15 atom% or less, the solid electrolyte material powder and the compound powder are melted in a spray gun section to form a sprayed film, and the sprayed film is then heat-treated at 1350 ° C to 1500 ° C to be airtight. The present invention relates to a method for producing a solid electrolyte membrane for forming a high quality solid electrolyte membrane.

【0011】更に、本発明は、平均粒径が10〜40μmで
ある固体電解質材料粉末を準備し、マンガン、鉄、コバ
ルト、ニッケル、銅及び亜鉛からなる群より選ばれた一
種以上の金属の化合物粉末を準備し、前記固体電解質材
料粉末と前記化合物粉末とをそれぞれ別個の粉末供給装
置を通して溶射ガン部へと運び、この際前記固体電解質
材料粉末及び前記化合物粉末における金属原子の合計量
に対する前記一種以上の金属の含有率が1atom%以上、
15atom%以下となるように供給し、前記固体電解質材料
粉末と前記化合物粉末とを溶射ガン部で溶融させ、この
溶融物を一方の電極の表面に溶射して溶射膜を形成し、
次いでこの溶射膜を1350℃〜1500℃で熱処理することで
気密質の固体電解質膜を形成し、この固体電解質膜の表
面に他方の電極を形成する、固体電解質型燃料電池の製
造方法に係るものである。
Further, in the present invention, a solid electrolyte material powder having an average particle size of 10 to 40 μm is prepared, and a compound of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc. A powder is prepared, and the solid electrolyte material powder and the compound powder are conveyed to a spray gun part through separate powder supply devices, and at this time, the solid electrolyte material powder and the compound powder are mixed with the metal atom in the total amount of the metal atom. The above metal content is 1 atom% or more,
Supply so as to be 15 atom% or less, to melt the solid electrolyte material powder and the compound powder in the spray gun section, to form a sprayed film by spraying the melt on the surface of one electrode,
Then, the sprayed film is heat-treated at 1350 ° C to 1500 ° C to form an airtight solid electrolyte membrane, and the other electrode is formed on the surface of the solid electrolyte membrane, which relates to a method for producing a solid electrolyte fuel cell. Is.

【0012】また、本発明は、マンガン、鉄、コバル
ト、ニッケル、銅及び亜鉛からなる群より選ばれた一種
以上の金属の化合物と固体電解質材料粉末とを混合し、
造粒して造粒粉末を作製し、この際この造粒粉末中の全
金属原子に対する前記一種以上の金属の含有率が1atom
%以上、15atom%以下となるように前記化合物と前記固
体電解質材料粉末とを混合し、かつ前記造粒粉末の平均
粒径が10〜40μmとなるように造粒し、この造粒粉末を
用いて溶射法によって溶射膜を形成し、次いでこの溶射
膜を1350℃〜1500℃で熱処理することで気密質の固体電
解質膜を形成する、固体電解質膜の製造方法に係るもの
である。
In the present invention, a compound of at least one metal selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc is mixed with a solid electrolyte material powder,
The granulated powder is prepared by granulating, wherein the content ratio of the one or more metals to all metal atoms in the granulated powder is 1 atom.
% And 15 atom% or less, the compound and the solid electrolyte material powder are mixed, and the granulated powder is granulated to have an average particle size of 10 to 40 μm, and the granulated powder is used. The present invention relates to a method for producing a solid electrolyte membrane, in which a sprayed film is formed by a thermal spraying method and then the sprayed film is heat-treated at 1350 ° C to 1500 ° C to form an airtight solid electrolyte film.

【0013】また、本発明は、マンガン、鉄、コバル
ト、ニッケル、銅及び亜鉛からなる群より選ばれた一種
以上の金属の化合物と固体電解質材料粉末とを混合し、
造粒して造粒粉末を作製し、この際この造粒粉末中の全
金属原子に対する前記一種以上の金属の含有率が1atom
%以上、15atom%以下となるように前記化合物と前記固
体電解質材料粉末とを混合し、かつ前記造粒粉末の平均
粒径が10〜40μmとなるように造粒し、この造粒粉末を
用いて溶射法によって一方の電極の表面に溶射膜を形成
し、次いでこの溶射膜を1350℃〜1500℃で熱処理するこ
とで気密質の固体電解質膜を形成し、この固体電解質膜
の表面に他方の電極を形成する、固体電解質型燃料電池
の製造方法に係るものである。
In the present invention, a compound of at least one metal selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc is mixed with a solid electrolyte material powder,
The granulated powder is prepared by granulating, wherein the content ratio of the one or more metals to all metal atoms in the granulated powder is 1 atom.
% And 15 atom% or less, the compound and the solid electrolyte material powder are mixed, and the granulated powder is granulated to have an average particle size of 10 to 40 μm, and the granulated powder is used. To form a sprayed film on the surface of one electrode by a thermal spraying method, and then heat-treat the sprayed film at 1350 ° C to 1500 ° C to form an airtight solid electrolyte membrane, and to form the other solid electrolyte film on the surface of the solid electrolyte membrane. The present invention relates to a method for manufacturing a solid oxide fuel cell, in which an electrode is formed.

【0014】ここで、固体電解質材料粉末の平均粒径と
は、溶射用の粉末供給装置で溶射ガンへと供給する際の
最小単位粉末の平均粒径をいい、湿気等の原因で1次粒
子が凝集してなる凝集粒子の平均粒径を意味しない。こ
の最小単位粉末は、通常は1次粒子である。ただし、1
次粒子を造粒して造粒粉末を製造した場合には、この造
粒粉末の平均粒径を示す。こうした造粒粉末としては、
1次粒子を噴霧乾燥法で凝集させて造粒した粉末があ
る。
Here, the average particle size of the solid electrolyte material powder means the average particle size of the smallest unit powder when it is supplied to the thermal spray gun by the powder supply device for thermal spraying, and it is the primary particle due to moisture or the like. Does not mean the average particle size of aggregated particles formed by aggregating. This minimum unit powder is usually primary particles. However, 1
When the granulated powder is produced by granulating the secondary particles, the average particle size of the granulated powder is shown. As such granulated powder,
There is a powder obtained by aggregating primary particles by a spray drying method and granulating.

【0015】上記した一種以上の金属の化合物と固体電
解質材料粉末とを混合するには、金属の化合物の粉末と
固体電解質材料粉末とを混合する。また、上記金属の化
合物が溶解した溶液を、固体電解質材料粉末と混合する
場合もある。
To mix the above-mentioned one or more metal compounds and the solid electrolyte material powder, the metal compound powder and the solid electrolyte material powder are mixed. In addition, the solution in which the compound of the metal is dissolved may be mixed with the solid electrolyte material powder.

【0016】[0016]

【作用】本発明によれば、溶射固体電解質膜を熱処理す
ることによりこの膜を気密化させて固体電解質膜を設け
ているので、この熱処理によりプラズマ溶射膜特有の微
小クラックや欠陥をなくし、固体電解質膜の組織を緻密
に、均一にすることができる。
According to the present invention, the thermal spraying solid electrolyte membrane is heat-treated to hermetically seal the membrane to provide the solid electrolyte membrane. Therefore, this thermal treatment eliminates the microcracks and defects peculiar to the plasma sprayed membrane, The texture of the electrolyte membrane can be made dense and uniform.

【0017】しかも、マンガン、鉄、コバルト、ニッケ
ル、銅及び亜鉛からなる群より選ばれた一種以上の金属
の化合物を、固体電解質材料粉末と混合させたことが重
要である。本発明者の発見したところでは、上記の金属
が、溶射膜を熱処理する際に、溶射膜の組織の緻密化を
促進し、緻密化に必要な熱処理温度を下げ、緻密化に必
要な熱処理時間を短くする作用がある。
Moreover, it is important that the compound of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc is mixed with the solid electrolyte material powder. The inventor has found that the above-mentioned metal promotes the densification of the structure of the sprayed film during the heat treatment of the sprayed film, lowers the heat treatment temperature necessary for the densification, and the heat treatment time required for the densification. Has the effect of shortening.

【0018】更に、マンガン、鉄、コバルト、ニッケ
ル、銅及び亜鉛からなる群より選ばれた一種以上の金属
を含む化合物粉末と、固体電解質材料粉末とを、それぞ
れ別個の粉末供給装置を通して溶射ガン部へと運び、こ
こで溶融させることもできる。この場合には、上記金属
が、溶射膜の全体に亘って均一に分散し、熱処理時に溶
射膜の組織の緻密化を促進する。
Further, a compound powder containing one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc, and a solid electrolyte material powder are passed through separate powder supply devices, respectively, and a thermal spray gun section is provided. It can also be transported to and melted here. In this case, the metal is uniformly dispersed throughout the sprayed film, and promotes the densification of the structure of the sprayed film during the heat treatment.

【0019】更に、上記した一種以上の金属の化合物と
固体電解質材料粉末とを混合し、造粒して造粒粉末を作
製しても、上記と同様な効果が得られる。この際、混合
粉末を造粒するには、まず混合粉末を仮焼する方法があ
る。この場合には、仮焼物を粉砕し、この粉砕物をふる
いにかけて分級し、分級後の粉末を用いる。または、ま
ず混合粉末に水を加えてスラリーを作製し、このスラリ
ーを噴霧乾燥装置によって造粒する。
Further, even if the compound of one or more kinds of metals described above and the solid electrolyte material powder are mixed and granulated to prepare a granulated powder, the same effect as described above can be obtained. At this time, in order to granulate the mixed powder, there is a method of first calcining the mixed powder. In this case, the calcined product is crushed, the crushed product is sieved to be classified, and the powder after classification is used. Alternatively, first, water is added to the mixed powder to prepare a slurry, and the slurry is granulated by a spray dryer.

【0020】しかも、上記において、混合粉末中の全金
属原子に対する前記一種以上の金属の含有率を1atom%
以上、15atom%以下とする。むろん、この場合、混合粉
末中の全金属原子の量を 100atom%として計算する。ま
た、上記において、固体電解質材料粉末及び前記化合物
粉末における金属原子の合計量に対する前記一種以上の
金属の含有率を、1atom%以上、15atom%以下にする。
むろん、この場合、固体電解質材料粉末中の全金属原子
の量と化合物粉末中の金属原子の量との合計を、 100at
om%として計算する。
Moreover, in the above, the content of the one or more metals is 1 atom% with respect to all the metal atoms in the mixed powder.
It should be at least 15 atom%. Of course, in this case, the amount of all metal atoms in the mixed powder is calculated as 100 atom%. Further, in the above description, the content of the one or more metals with respect to the total amount of metal atoms in the solid electrolyte material powder and the compound powder is 1 atom% or more and 15 atom% or less.
Of course, in this case, the total amount of all metal atoms in the solid electrolyte material powder and the amount of metal atoms in the compound powder is 100 at.
Calculate as om%.

【0021】上記した一種以上の金属の含有率が1atom
%未満であると、溶射膜の緻密化の効果が充分ではな
く、後述する平均粒径との兼ね合いにもよるが、充分に
気密質の固体電解質膜を得るためには、熱処理温度を高
くしなければならない。上記含有率が15atom%を超える
と、上記した各金属の粒界析出が起り易くなり、固体電
解質膜の比抵抗が上昇し、単電池の出力が低下する。こ
の含有率は3〜12atom%とすると好ましく、5〜10atom
%とすると更に好ましい。
The content of one or more metals mentioned above is 1 atom.
If it is less than%, the effect of densification of the sprayed film is not sufficient, and depending on the balance with the average particle size described later, in order to obtain a sufficiently airtight solid electrolyte film, the heat treatment temperature should be raised. There must be. When the content exceeds 15 atom%, grain boundary precipitation of each of the above metals is likely to occur, the specific resistance of the solid electrolyte membrane increases, and the output of the single cell decreases. This content is preferably 3 to 12 atom%, 5 to 10 atom
% Is more preferable.

【0022】更に、本発明者が初めて見出したところで
は、固体電解質材料粉末の平均粒径が、溶射膜の気密化
に対して極めて重要な要素であった。即ち、この材料粉
末の平均粒径を小さくすると、熱処理温度や上記金属化
合物の添加量が同じであっても、固体電解質膜の気密性
が更に高くなることが判った。また、上記材料粉末の平
均粒径を小さくすると、熱処理温度を下げても、または
上記金属の化合物の添加量を少なくしても、同レベルの
気密性を達成できることも判った。
Furthermore, when the present inventor first found out, the average particle size of the solid electrolyte material powder was a very important factor for making the sprayed film airtight. That is, it was found that when the average particle size of this material powder was reduced, the airtightness of the solid electrolyte membrane was further increased even if the heat treatment temperature and the amount of the metal compound added were the same. It was also found that if the average particle size of the material powder is reduced, the same level of airtightness can be achieved even if the heat treatment temperature is lowered or the amount of the metal compound added is reduced.

【0023】この平均粒径が40μmを超えると、SOF
Cの固体電解質膜として充分な気密性を達成するには、
1500℃程度を超える高温を必要とした。一方、この平均
粒径が10μm未満であると、上記材料粉末の溶射ガンへ
の供給がスムーズに行われなかった。この平均粒径は、
15〜30μmとすると一層好ましい。
If the average particle size exceeds 40 μm, the SOF
To achieve sufficient airtightness as the solid electrolyte membrane of C,
A high temperature of more than 1500 ° C was required. On the other hand, if the average particle size is less than 10 μm, the material powder cannot be smoothly supplied to the spray gun. This average particle size is
It is more preferably 15 to 30 μm.

【0024】また、上記した一種以上の金属の化合物粉
末と固体電解質材料粉末とを混合し、造粒して造粒粉末
を作製し、この造粒粉末を溶射する場合には、この造粒
粉末の平均粒径を10〜40μmにすると、上記と同じ効果
が得られた。この造粒粉末の平均粒径は、15〜30μmと
すると一層好ましい。
When one or more metal compound powders described above and a solid electrolyte material powder are mixed and granulated to prepare a granulated powder, and the granulated powder is sprayed, the granulated powder is prepared. When the average particle size of 10 is 40 to 40 μm, the same effect as described above was obtained. The average particle size of the granulated powder is more preferably 15 to 30 μm.

【0025】本発明によって製造した固体電解質膜は、
酸素センサ及び酸素濃度計の固体電解質膜として有用で
あり、更に、その緻密性から、金属材を被覆する耐酸化
被膜として有用である。
The solid electrolyte membrane produced according to the present invention is
It is useful as a solid electrolyte membrane of an oxygen sensor and an oxygen concentration meter, and is also useful as an oxidation resistant coating for coating a metal material because of its denseness.

【0026】また、本発明の製造方法によって製造した
固体電解質膜は、緻密な薄い膜として形成できるもので
あり、かつ電気伝導度も高いため、固体電解質型燃料電
池の固体電解質膜に適用すれば、内部抵抗の小さい高出
力の固体電解質型燃料電池を製造できる。また従来の固
体電解質型燃料電池に於ける、緻密薄膜固体電解質の製
造法であるEVDと比較して技術的に簡単であり、装置
も通常の溶射装置と熱処理用の電気炉等があれば成膜可
能であり、低コストである。
Since the solid electrolyte membrane produced by the production method of the present invention can be formed as a dense and thin membrane and has high electric conductivity, it can be applied to the solid electrolyte membrane of a solid oxide fuel cell. A high output solid oxide fuel cell with a small internal resistance can be manufactured. Further, in the conventional solid oxide fuel cell, it is technically simple as compared with EVD which is a method for producing a dense thin film solid electrolyte, and the device can be formed if an ordinary thermal spraying device and an electric furnace for heat treatment are provided. Membrane is possible and low cost.

【0027】またEVDでは現在の比較的小型の円筒状
固体電解質型燃料電池の製造は可能であるが、平板型の
SOFCの場合、製造が困難である。その点本発明は平
板型SOFCにも円筒型SOFCにも適用可能である。
また、円筒型SOFCを長尺化したり、平板型SOFC
を大面積化する際にも、容易に対応できる。更に複雑な
形状の集合電池に対しても、本発明の方法は適用可能で
ある。
EVD can manufacture a relatively small cylindrical solid oxide fuel cell at present, but it is difficult to manufacture a flat plate SOFC. In this respect, the present invention is applicable to both flat plate type SOFC and cylindrical type SOFC.
Also, the cylindrical SOFC is made longer, and the flat plate SOFC is
It is possible to easily cope with the case of increasing the area. The method of the present invention can also be applied to an assembled battery having a more complicated shape.

【0028】「固体電解質材料粉末」は、混合粉末と固
溶粉末との双方を含む。SOFC用の混合粉末として
は、ジルコニア粉末又はセリア粉末と安定化剤粉末との
混合粉末が好ましい。SOFC用の固溶粉末としては、
ジルコニア又はセリアと安定化剤との固溶物からなる粉
末が好ましい。安定化剤としては、アルカリ土類金属又
は希土類元素の化合物が好ましい。
The "solid electrolyte material powder" includes both mixed powder and solid solution powder. As the mixed powder for SOFC, a mixed powder of zirconia powder or ceria powder and stabilizer powder is preferable. As a solid solution powder for SOFC,
A powder composed of a solid solution of zirconia or ceria and a stabilizer is preferable. As the stabilizer, a compound of an alkaline earth metal or a rare earth element is preferable.

【0029】本発明における溶射はプラズマ溶射である
が、低圧プラズマ溶射の方が効果が大きい。しかし、常
圧プラズマ溶射を採用した場合にも、この後の熱処理で
充分緻密な固体電解質膜が得られる。上記金属の化合物
としては、上記金属の酢酸塩、硝酸塩、硫酸塩、有機酸
塩、酸化物、炭酸塩、水酸化物などがあり、酸化物、炭
酸塩、水酸化物が好ましい。
Although the thermal spraying in the present invention is plasma spraying, low pressure plasma spraying is more effective. However, even when the atmospheric pressure plasma spraying is adopted, a sufficiently dense solid electrolyte membrane can be obtained by the subsequent heat treatment. Examples of the compound of the above metal include acetate, nitrate, sulfate, organic acid salt, oxide, carbonate and hydroxide of the above metal, and oxide, carbonate and hydroxide are preferable.

【0030】固体電解質材料粉末の主成分を酸化ジルコ
ニウムとし、空気電極基体をランタン系ペロプスカイト
複合酸化物で形成し、空気電極基体の表面に固体電解質
材料を溶射した場合には、その後の熱処理の段階で、固
体電解質膜と空気電極との間にLa2Zr2O7等からなる絶縁
層が生成しうる。しかし、本発明の方法に従って、溶射
膜中にマンガン、コバルトを存在させると、こうした絶
縁層が生成しなくなる。
When the main component of the solid electrolyte material powder is zirconium oxide, the air electrode substrate is formed of lanthanum-based perovskite complex oxide, and the solid electrolyte material is sprayed on the surface of the air electrode substrate, the subsequent heat treatment is performed. In the step, an insulating layer made of La 2 Zr 2 O 7 or the like may be formed between the solid electrolyte membrane and the air electrode. However, when manganese or cobalt is present in the sprayed film according to the method of the present invention, such an insulating layer is not formed.

【0031】空気電極は、ドーピングされたか、又はド
ーピングされていないLaMnO3, CaMnO3, LaNiO3 , LaCoO
3 , LaCrO3等で製造でき、ストロンチウムやカルシウム
をドーピングしたLaMnO3が好ましい。また、ドーピング
されたか又はドーピングされていないLaMnO3 , CaMnO
3 , LaNiO3 , LaCoO3 , LaCrO3において、定比組成のも
のに限らず、La欠損組成やCa欠損組成などの不定比組成
のものも使用できる。こうした不定比組成のものは、La
2Zr2O7の生成を抑制する効果を有する。燃料電極は、一
般にはニッケル−ジルコニアサーメット又はコバルト−
ジルコニアサーメットが好ましい。燃料ガスとしては、
水素、改質水素、一酸化炭素、炭化水素等の燃料を含む
ガスを用いる。酸化ガスとしては、酸素を含むガスを用
いる。
The air electrode is made of doped or undoped LaMnO 3 , CaMnO 3 , LaNiO 3 , LaCoO.
LaMnO 3 which can be produced from 3 , LaCrO 3 or the like and is doped with strontium or calcium is preferable. Also, doped or undoped LaMnO 3 , CaMnO
Of 3 , 3 , LaNiO 3 , LaCoO 3 , and LaCrO 3 , not only stoichiometric compositions but also non-stoichiometric compositions such as La-deficient composition and Ca-deficient composition can be used. Such non-stoichiometric composition is La
It has the effect of suppressing the formation of 2 Zr 2 O 7 . Fuel electrodes are generally nickel-zirconia cermet or cobalt-
Zirconia cermet is preferred. As fuel gas,
A gas containing a fuel such as hydrogen, reformed hydrogen, carbon monoxide, or hydrocarbon is used. A gas containing oxygen is used as the oxidizing gas.

【0032】[0032]

【実施例】以下具体的な実験結果について述べる。 (実験1)ランタンマンガナイト粉末を成形圧200kgf/
cm2 でプレス成形し、直径50mm、厚さ3mmの円板状成形
体を得、これを大気中1550℃で5時間焼成し、この焼成
体を加工して直径30mm、厚さ1.5mm の円板状をした、気
孔率19%の空気電極基体を作製した。また、固体電解質
材料粉末として、電融ジルコニアを粉砕して、8モルイ
ットリア安定化ジルコニア(8YSZ)粉末を準備した。また
添加剤として、二酸化マンガン(MnO2)粉末を準備した。
8YSZ粉末の粒度分布をレーザー回折法により測定
し、その平均粒径を表1に示した。
EXAMPLES Specific experimental results will be described below. (Experiment 1) Forming pressure of lanthanum manganite powder 200 kgf /
Press molding with cm 2 to obtain a disk-shaped molded body with a diameter of 50 mm and a thickness of 3 mm, which was fired at 1550 ° C. for 5 hours in the atmosphere, and the fired body was processed into a circle with a diameter of 30 mm and a thickness of 1.5 mm. A plate-shaped air electrode substrate having a porosity of 19% was produced. Further, as the solid electrolyte material powder, electro-melted zirconia was pulverized to prepare 8 mol yttria-stabilized zirconia (8YSZ) powder. Further, manganese dioxide (MnO 2 ) powder was prepared as an additive.
The particle size distribution of 8YSZ powder was measured by a laser diffraction method, and the average particle size is shown in Table 1.

【0033】次に8YSZ粉末と二酸化マンガン粉末と
を混合し、混合粉末を製造した。この際、この混合粉末
中の全金属原子に対するマンガンの含有率(atom %)
を、表1に示すように種々変更した。表1に示す各混合
粉末を空気電極基体上にプラズマ溶射し、厚さ約 300μ
mの溶射膜を形成した。こうして得た各溶射膜につい
て、それぞれ表1に示す条件で、大気中で4時間熱処理
を行った。この後、固体電解質膜の表面を機械加工し、
厚さ 200μmとした。こうして作製した各試料について
2 ガス透過係数を測定し、気密性の評価を行った。こ
の結果を表1に示す。
Next, 8YSZ powder and manganese dioxide powder were mixed to produce a mixed powder. At this time, the content ratio of manganese (atom%) to all metal atoms in this mixed powder
Were variously changed as shown in Table 1. Each powder mixture shown in Table 1 was plasma sprayed on the air electrode substrate to a thickness of about 300μ.
m sprayed film was formed. The thermal spray coatings thus obtained were heat-treated in the atmosphere for 4 hours under the conditions shown in Table 1. After this, the surface of the solid electrolyte membrane is machined,
The thickness was 200 μm. The N 2 gas permeation coefficient of each of the samples thus prepared was measured to evaluate the airtightness. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】比較例1−1,2−1においては、混合粉
末がスムーズに流れず、特に比較例1−1では、溶射膜
を形成できなかった。比較例2−1においては、溶射は
可能であったが、供給した粉末の重量に対する溶射膜の
重量の比率が10%以下であり、極めて歩留りが悪かっ
た。これは、粉末が軽すぎたため、具合良くプラズマ中
に粉末が導入されなかったためと考えられる。実施例に
おいては、すべて、1350℃〜1500℃の範囲の比較的低温
による熱処理で、N2 透過係数が10-7cm4-1-1以下
である高品質の膜を製造できた。
In Comparative Examples 1-1 and 2-1, the mixed powder did not flow smoothly, and particularly in Comparative Example 1-1, the sprayed film could not be formed. In Comparative Example 2-1, thermal spraying was possible, but the ratio of the weight of the sprayed film to the weight of the supplied powder was 10% or less, and the yield was extremely poor. It is considered that this is because the powder was too light and was not properly introduced into the plasma. In all the examples, heat treatment at a relatively low temperature in the range of 1350 ° C. to 1500 ° C. was able to produce a high-quality film having an N 2 permeability coefficient of 10 −7 cm 4 g −1 s −1 or less.

【0036】次に8YSZ粉末の平均粒径とマンガンの
含有率との相互作用について、更に検討する。 実施例1−2,1−3、1−4または実施例2−1,2
−2を互いに比較すると、いずれもマンガンの含有率が
大きいほど、N2 ガス透過係数で表される気密性は向上
することが解る。
Next, the interaction between the average particle size of the 8YSZ powder and the manganese content will be further examined. Examples 1-2, 1-3, 1-4 or Examples 2-1 and 2
-2 are compared with each other, it can be seen that the higher the manganese content is, the higher the airtightness represented by the N 2 gas permeation coefficient is.

【0037】実施例1−4,2−2,3−2,4−2に
おいては、マンガンの含有率を5atom%に固定し、熱処
理温度を1430℃に固定した。これらを比較すると、8Y
SZ粉末の平均粒径が小さい方が、固体電解質膜の気密
性が向上している。また、実施例1−1、比較例2−1
においては、マンガン含有量を1 atom %、熱処理温度
を1350℃に固定しているが、やはり同様の結果が得られ
ている。比較例3−1においては、マンガンの含有量
を、15 atom %に増やし、熱処温度を1500℃まで上昇さ
せても、N2 ガス透過係数が10-7cm4 -1-1以下にな
らなかった。これは、実施例4−3とは顕著な対照をな
している。
In Examples 1-4, 2-2, 3-2 and 4-2, the manganese content was fixed at 5 atom% and the heat treatment temperature was fixed at 1430 ° C. Comparing these, 8Y
The smaller the average particle size of the SZ powder, the higher the airtightness of the solid electrolyte membrane. In addition, Example 1-1 and Comparative example 2-1
In, the manganese content was fixed at 1 atom% and the heat treatment temperature was fixed at 1350 ° C, but similar results were obtained. In Comparative Example 3-1, even if the manganese content was increased to 15 atom% and the heat treatment temperature was increased to 1500 ° C., the N 2 gas permeation coefficient was 10 −7 cm 4 g −1 s −1 or less. I didn't. This is in marked contrast to Example 4-3.

【0038】比較例2−1においては、固体電解質膜の
気密性自体は問題ないが、8YSZ粉末の平均粒径が10
μm未満になると、前述したように材料の歩留りが極端
に下がるので、量産には不適切である。そして、上述の
実施例から、固体電解質材料粉末の平均粒径を40μm以
下にし、かつマンガン等を1〜15atom%加えることによ
り、1350〜1500℃の熱処理で、充分に気密な固体電解質
膜が得られることが判った。
In Comparative Example 2-1, the airtightness of the solid electrolyte membrane itself is not a problem, but the average particle size of the 8YSZ powder is 10
If it is less than μm, the yield of the material is extremely lowered as described above, and it is not suitable for mass production. Then, from the above-mentioned example, by setting the average particle size of the solid electrolyte material powder to 40 μm or less and adding 1 to 15 atom% of manganese or the like, a sufficiently airtight solid electrolyte membrane can be obtained by heat treatment at 1350 to 1500 ° C. I found out that

【0039】また、上記の実施例から解るように、添加
金属化合物の量と8YSZ粉末の平均粒径とは、互いに
全く独立に選択することができ、かつこれにより必要な
熱処理温度を変化させることができる。この点で、製造
工程を管理するうえで、最適な熱処理温度、金属化合物
の添加量、8YSZ粉末の平均粒径の組み合わせを選択
し易いと考えられる。
As can be seen from the above examples, the amount of the added metal compound and the average particle size of the 8YSZ powder can be selected completely independently of each other, and the necessary heat treatment temperature can be changed accordingly. You can From this point, it is considered that it is easy to select the optimum combination of the heat treatment temperature, the addition amount of the metal compound, and the average particle size of the 8YSZ powder in controlling the manufacturing process.

【0040】(実験2)共沈法によって作製した平均粒
径 0.2μmの8YSZ粉末を用意し、これに二酸化マン
ガン粉末を混合した。この際、この混合粉末中の全金属
原子に対するマンガンの含有率が5atom%となるよう
に、8YSZ粉末と二酸化マンガン粉末とを配合した。
この混合粉末に水を加え、アトライタにて混合後、噴霧
乾燥装置により、表2に示す平均粒径を持つ造粒粉末を
造粒した。表2に示す「平均粒径」は、レーザー回折法
で測定した。
(Experiment 2) 8YSZ powder having an average particle diameter of 0.2 μm prepared by the coprecipitation method was prepared, and manganese dioxide powder was mixed therein. At this time, the 8YSZ powder and the manganese dioxide powder were blended so that the content ratio of manganese to all the metal atoms in this mixed powder was 5 atom%.
Water was added to this mixed powder and mixed with an attritor, and then a granulated powder having an average particle size shown in Table 2 was granulated by a spray dryer. The "average particle size" shown in Table 2 was measured by a laser diffraction method.

【0041】こうした得た各例の造粒粉末を、実験1で
用いた空気電極の表面にプラズマ溶射し、厚さ約 300μ
mの溶射膜を形成した。こうして得た各溶射膜につい
て、それぞれ1430℃で大気中にて4時間熱処理を行っ
た。この後、固体電解質膜の表面を機械加工し、厚さ 2
00μmとした。こうして作製した各試料について、N2
ガス透過係数を測定し、気密性の評価を行った。この結
果を表2に示す。
The obtained granulated powder of each example was plasma-sprayed on the surface of the air electrode used in Experiment 1 to give a thickness of about 300 μm.
m sprayed film was formed. Each of the sprayed films thus obtained was heat-treated at 1430 ° C. in the atmosphere for 4 hours. After this, the surface of the solid electrolyte membrane was machined to a thickness of 2
It was set to 00 μm. For each sample thus prepared, N 2
The gas permeability coefficient was measured, and the airtightness was evaluated. The results are shown in Table 2.

【0042】[0042]

【表2】 [Table 2]

【0043】表2から解るように、プラズマ溶射の前に
予め混合粉末を造粒した場合にも、造粒粉末の平均粒径
を40μm以下にすれば、10-8台のN2 ガス透過係数を有
する気密膜が得られる。このように、8YSZ粉末と二
酸化マンガン粉末との混合粉末を造粒した場合には、造
粒粉末の平均粒径が重要であることを確認した。また、
比較例4−1においては、N2 ガス透過係数は10-8台で
あるが、比較例2−1の場合と同じく、溶射材料の歩留
りが極端に下がったので、製造技術としては不適当であ
ると判断した。
As can be seen from Table 2, even when the mixed powder is granulated in advance before the plasma spraying, if the average particle size of the granulated powder is set to 40 μm or less, the N 2 gas permeation coefficient of 10 −8 is possible. An airtight film having is obtained. Thus, when granulating the mixed powder of 8YSZ powder and manganese dioxide powder, it was confirmed that the average particle diameter of the granulated powder is important. Also,
In Comparative Example 4-1, the N 2 gas permeation coefficient was 10 −8 , but as in Comparative Example 2-1, the yield of the thermal spray material was extremely low, and therefore it is unsuitable as a manufacturing technique. I decided it was.

【0044】[0044]

【発明の効果】以上述べてきたように、本発明により、
気密質の固体電解質膜を、生産性の高い溶射法で量産す
ることができる。しかも、溶射膜を熱処理するのに際
し、比較的低い熱処理温度で溶射膜の緻密化を促進し、
気密性の高い固体電解質膜を得ることができる。
As described above, according to the present invention,
Airtight solid electrolyte membranes can be mass-produced by a highly productive thermal spraying method. Moreover, when heat treating the sprayed film, the densification of the sprayed film is promoted at a relatively low heat treatment temperature,
It is possible to obtain a solid electrolyte membrane having high airtightness.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が10〜40μmである固体電解質
材料粉末を準備し、マンガン、鉄、コバルト、ニッケ
ル、銅及び亜鉛からなる群より選ばれた一種以上の金属
の化合物を前記固体電解質材料粉末と混合して混合粉末
を作製し、この際この混合粉末中の全金属原子に対する
前記一種以上の金属の含有率が1atom%以上、15atom%
以下となるように配合し、この混合粉末を用いて溶射法
によって溶射膜を形成し、次いでこの溶射膜を1350℃〜
1500℃で熱処理することで気密質の固体電解質膜を形成
する、固体電解質膜の製造方法。
1. A solid electrolyte material powder having an average particle size of 10 to 40 μm is prepared, and a compound of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc is added to the solid electrolyte. A mixed powder is prepared by mixing with the material powder, in which the content of one or more metals is 1 atom% or more and 15 atom% with respect to all metal atoms in the mixed powder.
Blended as follows, using this mixed powder to form a sprayed film by a spraying method, then this sprayed film 1350 ℃ ~
A method for producing a solid electrolyte membrane, comprising forming an airtight solid electrolyte membrane by heat treatment at 1500 ° C.
【請求項2】 前記固体電解質材料粉末が、ジルコニア
粉末と安定化剤粉末との混合粉末であるか、又はジルコ
ニアと安定化剤との固溶物からなる粉末である、請求項
1記載の固体電解質膜の製造方法。
2. The solid according to claim 1, wherein the solid electrolyte material powder is a mixed powder of zirconia powder and a stabilizer powder, or a powder composed of a solid solution of zirconia and a stabilizer. Method for manufacturing electrolyte membrane.
【請求項3】 平均粒径が10〜40μmである固体電解質
材料粉末を準備し、マンガン、鉄、コバルト、ニッケ
ル、銅及び亜鉛からなる群より選ばれた一種以上の金属
の化合物を前記固体電解質材料粉末と混合して混合粉末
を作製し、この際この混合粉末中の全金属原子に対する
前記一種以上の金属の含有率が1atom%以上、15atom%
以下となるように配合し、前記混合粉末を用いて溶射法
によって一方の電極の表面に溶射膜を形成し、次いでこ
の溶射膜を1350℃〜1500℃で熱処理することで気密質の
固体電解質膜を形成し、この固体電解質膜の表面に他方
の電極を形成する、固体電解質型燃料電池の製造方法。
3. A solid electrolyte material powder having an average particle size of 10 to 40 μm is prepared, and a compound of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc is added to the solid electrolyte. A mixed powder is prepared by mixing with the material powder, in which the content of one or more metals is 1 atom% or more and 15 atom% with respect to all metal atoms in the mixed powder.
Formulated as follows, a sprayed film is formed on the surface of one electrode by a spraying method using the mixed powder, and then the sprayed film is heat-treated at 1350 ° C to 1500 ° C to form an airtight solid electrolyte film. And forming the other electrode on the surface of the solid electrolyte membrane.
【請求項4】 前記固体電解質材料粉末が、ジルコニア
粉末と安定化剤粉末との混合粉末であるか、又はジルコ
ニアと安定化剤との固溶物からなる粉末である、請求項
3記載の固体電解質型燃料電池の製造方法。
4. The solid according to claim 3, wherein the solid electrolyte material powder is a mixed powder of zirconia powder and a stabilizer powder, or a powder composed of a solid solution of zirconia and a stabilizer. Method for manufacturing electrolyte fuel cell.
【請求項5】 前記一方の電極が空気電極基体であり、
前記他方の電極が燃料電極膜である、請求項3記載の固
体電解質型燃料電池の製造方法。
5. The one electrode is an air electrode substrate,
The method for producing a solid oxide fuel cell according to claim 3, wherein the other electrode is a fuel electrode film.
【請求項6】 平均粒径が10〜40μmである固体電解質
材料粉末を準備し、マンガン、鉄、コバルト、ニッケ
ル、銅及び亜鉛からなる群より選ばれた一種以上の金属
の化合物粉末を準備し、前記固体電解質材料粉末と前記
化合物粉末とをそれぞれ別個の粉末供給装置を通して溶
射ガン部へと運び、この際前記固体電解質材料粉末及び
前記化合物粉末における金属原子の合計量に対する前記
一種以上の金属の含有率が1atom%以上、15atom%以下
となるように供給し、前記固体電解質材料粉末と前記化
合物粉末とを溶射ガン部で溶融させて溶射膜を形成し、
次いでこの溶射膜を1350℃〜1500℃で熱処理することで
気密質の固体電解質膜を形成する、固体電解質膜の製造
方法。
6. A solid electrolyte material powder having an average particle size of 10 to 40 μm is prepared, and a compound powder of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc is prepared. , The solid electrolyte material powder and the compound powder are respectively conveyed to the spray gun through separate powder supply devices, and at this time, the solid electrolyte material powder and the compound powder are mixed with one or more of the above-mentioned one or more metals based on the total amount of metal atoms. It is supplied so that the content rate is 1 atom% or more and 15 atom% or less, and the solid electrolyte material powder and the compound powder are melted in a spray gun section to form a sprayed film,
Then, the sprayed film is heat-treated at 1350 ° C. to 1500 ° C. to form an airtight solid electrolyte film.
【請求項7】 前記固体電解質材料粉末が、ジルコニア
粉末と安定化剤粉末との混合粉末であるか、又はジルコ
ニアと安定化剤との固溶物からなる粉末である、請求項
6記載の固体電解質膜の製造方法。
7. The solid according to claim 6, wherein the solid electrolyte material powder is a mixed powder of zirconia powder and a stabilizer powder, or a powder composed of a solid solution of zirconia and a stabilizer. Method for manufacturing electrolyte membrane.
【請求項8】 平均粒径が10〜40μmである固体電解質
材料粉末を準備し、マンガン、鉄、コバルト、ニッケ
ル、銅及び亜鉛からなる群より選ばれた一種以上の金属
の化合物粉末を準備し、前記固体電解質材料粉末と前記
化合物粉末とをそれぞれ別個の粉末供給装置を通して溶
射ガン部へと運び、この際前記固体電解質材料粉末及び
前記化合物粉末における金属原子の合計量に対する前記
一種以上の金属の含有率が1atom%以上、15atom%以下
となるように供給し、前記固体電解質材料粉末と前記化
合物粉末とを溶射ガン部で溶融させ、この溶融物を一方
の電極の表面に溶射して溶射膜を形成し、次いでこの溶
射膜を1350℃〜1500℃で熱処理することで気密質の固体
電解質膜を形成し、この固体電解質膜の表面に他方の電
極を形成する、固体電解質型燃料電池の製造方法。
8. A solid electrolyte material powder having an average particle size of 10 to 40 μm is prepared, and a compound powder of one or more metals selected from the group consisting of manganese, iron, cobalt, nickel, copper and zinc is prepared. , The solid electrolyte material powder and the compound powder are respectively conveyed to the spray gun through separate powder supply devices, and at this time, the solid electrolyte material powder and the compound powder are mixed with one or more of the above-mentioned one or more metals based on the total amount of metal atoms. The solid electrolyte material powder and the compound powder are melted in a thermal spray gun section by supplying so that the content is 1 atom% or more and 15 atom% or less, and the melt is sprayed onto the surface of one electrode to form a sprayed film. Is formed, and then this sprayed film is heat-treated at 1350 ° C to 1500 ° C to form an airtight solid electrolyte membrane, and the other electrode is formed on the surface of this solid electrolyte membrane. Method of manufacturing a battery.
【請求項9】 前記固体電解質材料粉末が、ジルコニア
粉末と安定化剤粉末との混合粉末であるか、又はジルコ
ニアと安定化剤との固溶物からなる粉末である、請求項
8記載の固体電解質型燃料電池の製造方法。
9. The solid according to claim 8, wherein the solid electrolyte material powder is a mixed powder of zirconia powder and a stabilizer powder, or a powder composed of a solid solution of zirconia and a stabilizer. Method for manufacturing electrolyte fuel cell.
【請求項10】 前記一方の電極が空気電極基体であ
り、前記他方の電極が燃料電極膜である、請求項8記載
の固体電解質型燃料電池の製造方法。
10. The method for producing a solid oxide fuel cell according to claim 8, wherein the one electrode is an air electrode substrate and the other electrode is a fuel electrode film.
【請求項11】 マンガン、鉄、コバルト、ニッケル、
銅及び亜鉛からなる群より選ばれた一種以上の金属の化
合物と固体電解質材料粉末とを混合し、造粒して造粒粉
末を作製し、この際この造粒粉末中の全金属原子に対す
る前記一種以上の金属の含有率が1atom%以上、15atom
%以下となるように前記化合物と前記固体電解質材料粉
末とを混合し、かつ前記造粒粉末の平均粒径が10〜40μ
mとなるように造粒し、この造粒粉末を用いて溶射法に
よって溶射膜を形成し、次いでこの溶射膜を1350℃〜15
00℃で熱処理することで気密質の固体電解質膜を形成す
る、固体電解質膜の製造方法。
11. Manganese, iron, cobalt, nickel,
A compound of at least one metal selected from the group consisting of copper and zinc and a solid electrolyte material powder are mixed and granulated to prepare a granulated powder, in which case the aforesaid metal atom in the granulated powder Content of one or more metals is 1 atom% or more, 15 atom
% And the solid electrolyte material powder is mixed such that the average particle diameter of the granulated powder is 10 to 40 μm.
granulation to obtain m, and a sprayed film is formed by a spraying method using this granulated powder.
A method for producing a solid electrolyte membrane, comprising forming an airtight solid electrolyte membrane by heat treatment at 00 ° C.
【請求項12】 前記固体電解質材料粉末が、ジルコニ
ア粉末と安定化剤粉末との混合粉末であるか、又はジル
コニアと安定化剤との固溶物からなる粉末である、請求
項11記載の固体電解質膜の製造方法。
12. The solid according to claim 11, wherein the solid electrolyte material powder is a mixed powder of zirconia powder and a stabilizer powder, or a powder composed of a solid solution of zirconia and a stabilizer. Method for manufacturing electrolyte membrane.
【請求項13】 マンガン、鉄、コバルト、ニッケル、
銅及び亜鉛からなる群より選ばれた一種以上の金属の化
合物と固体電解質材料粉末とを混合し、造粒して造粒粉
末を作製し、この際この造粒粉末中の全金属原子に対す
る前記一種以上の金属の含有率が1atom%以上、15atom
%以下となるように前記化合物と前記固体電解質材料粉
末とを混合し、かつ前記造粒粉末の平均粒径が10〜40μ
mとなるように造粒し、この造粒粉末を用いて溶射法に
よって一方の電極の表面に溶射膜を形成し、次いでこの
溶射膜を1350℃〜1500℃で熱処理することで気密質の固
体電解質膜を形成し、この固体電解質膜の表面に他方の
電極を形成する、固体電解質型燃料電池の製造方法。
13. Manganese, iron, cobalt, nickel,
A compound of one or more metals selected from the group consisting of copper and zinc and a solid electrolyte material powder are mixed and granulated to prepare a granulated powder, in which case the total metal atoms in the granulated powder are Content of one or more metals is 1 atom% or more, 15 atom
% And the solid electrolyte material powder is mixed such that the average particle diameter of the granulated powder is 10 to 40 μm.
m to form a sprayed film on the surface of one electrode by the spraying method using this granulated powder, and then heat-treating this sprayed film at 1350 ° C to 1500 ° C to obtain an airtight solid. A method for manufacturing a solid oxide fuel cell, comprising forming an electrolyte membrane and forming the other electrode on the surface of the solid electrolyte membrane.
【請求項14】 前記固体電解質材料粉末が、ジルコニ
ア粉末と安定化剤粉末との混合粉末であるか、又はジル
コニアと安定化剤との固溶物からなる粉末である、請求
項13記載の固体電解質型燃料電池の製造方法。
14. The solid according to claim 13, wherein the solid electrolyte material powder is a mixed powder of zirconia powder and a stabilizer powder, or a powder composed of a solid solution of zirconia and a stabilizer. Method for manufacturing electrolyte fuel cell.
【請求項15】 前記一方の電極が空気電極基体であ
り、前記他方の電極が燃料電極膜である、請求項13記載
の固体電解質型燃料電池の製造方法。
15. The method for producing a solid oxide fuel cell according to claim 13, wherein the one electrode is an air electrode substrate and the other electrode is a fuel electrode film.
JP4252986A 1992-09-17 1992-09-22 Manufacture of solid electrolytic film and manufacture of solid electrolytic type fuel cell Withdrawn JPH06103991A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4252986A JPH06103991A (en) 1992-09-22 1992-09-22 Manufacture of solid electrolytic film and manufacture of solid electrolytic type fuel cell
US08/119,690 US5527633A (en) 1992-09-17 1993-09-13 Solid oxide fuel cells, a process for producing solid electrolyte films and a process for producing solid oxide fuel cells
EP93307308A EP0588632B1 (en) 1992-09-17 1993-09-16 Solid oxide fuel cells
DE69317970T DE69317970T2 (en) 1992-09-17 1993-09-16 Solid oxide fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4252986A JPH06103991A (en) 1992-09-22 1992-09-22 Manufacture of solid electrolytic film and manufacture of solid electrolytic type fuel cell

Publications (1)

Publication Number Publication Date
JPH06103991A true JPH06103991A (en) 1994-04-15

Family

ID=17244918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4252986A Withdrawn JPH06103991A (en) 1992-09-17 1992-09-22 Manufacture of solid electrolytic film and manufacture of solid electrolytic type fuel cell

Country Status (1)

Country Link
JP (1) JPH06103991A (en)

Similar Documents

Publication Publication Date Title
Maric et al. Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni‐Samaria‐Doped Ceria Cermet Anode
Taillades et al. High performance anode-supported proton ceramic fuel cell elaborated by wet powder spraying
JP2719049B2 (en) Method for producing lanthanum chromite membrane and method for producing interconnector for solid oxide fuel cell
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
KR20110086016A (en) Advanced materials and design for low temperature sofcs
JPH04115469A (en) Solid electrolyte film and solid electrolyte type fuel cell therewith and manufacture thereof
KR20130099704A (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer
JPH0693404A (en) Production of lanthanum chromite film and lanthanum chromite coating
CN102420332A (en) Chromium poisoning-resistant doped CeO2-coated LaNi0.6Fe0.4O3-delta cathode of solid oxide fuel cell and preparation method thereof
CN111009675B (en) Solid oxide fuel cell and preparation method thereof
AU2003229677B2 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
US5672437A (en) Solid electrolyte for a fuel cell
JP5470559B2 (en) Solid oxide fuel cell and method for producing the same
CN112647089A (en) Preparation method of ternary composite anode of solid oxide electrolytic cell
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP2004303712A (en) Solid oxide fuel cell
JPH06103991A (en) Manufacture of solid electrolytic film and manufacture of solid electrolytic type fuel cell
KR101698210B1 (en) Solid oxide electrolyte, solid oxide fuel cell containing solid oxide electrolyte, and preparation method thereof
JP3339299B2 (en) Method for forming dense lanthanum chromite thin film
CN111224110A (en) Proton type solid oxide fuel cell cathode material and application thereof
JP2771090B2 (en) Solid oxide fuel cell
CN114628705B (en) Catalyst containing lanthanum strontium metal oxide with surface deficient strontium, preparation and application
JPH05266892A (en) Manuifacture of electrode material for solid electrolyte fuel cell
Bozza et al. Electrophoretic Deposition of Dense La0. 8Sr0. 2Ga0. 8Mg0. 115Co0. 085O3− δ Electrolyte Films from Single‐Phase Powders for Intermediate Temperature Solid Oxide Fuel Cells
JP4644326B2 (en) Lanthanum gallate sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130