JPH06103521B2 - Magnetic playback device - Google Patents

Magnetic playback device

Info

Publication number
JPH06103521B2
JPH06103521B2 JP13882983A JP13882983A JPH06103521B2 JP H06103521 B2 JPH06103521 B2 JP H06103521B2 JP 13882983 A JP13882983 A JP 13882983A JP 13882983 A JP13882983 A JP 13882983A JP H06103521 B2 JPH06103521 B2 JP H06103521B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
signal
change
ferromagnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13882983A
Other languages
Japanese (ja)
Other versions
JPS6029901A (en
Inventor
仁志 岩崎
脩 千葉
憲一 沢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13882983A priority Critical patent/JPH06103521B2/en
Priority to US06/633,912 priority patent/US4635152A/en
Publication of JPS6029901A publication Critical patent/JPS6029901A/en
Publication of JPH06103521B2 publication Critical patent/JPH06103521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/332Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、磁気記録媒体に記録された信号を再生する
装置に係り、特に磁気記録媒体からの信号磁界を磁性体
の高周波特性の変化として検出して再生を行なう磁気的
再生装置に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an apparatus for reproducing a signal recorded on a magnetic recording medium, and more particularly to detecting a signal magnetic field from the magnetic recording medium as a change in high frequency characteristics of a magnetic material. The present invention relates to a magnetic reproducing device for performing reproduction.

[発明の技術的背景とその問題点] 磁気記録媒体からの記録信号に基く磁界(信号磁界)に
よる磁性体の電磁気的特性の変化を利用して磁気記録信
号を再生する方式については、磁気抵抗効果を利用した
ものが知られているが、本発明者らは高密度記録再生に
極めてすぐれた方式として、信号磁界による磁性体の高
周波特性の変化として特にテンソル透磁率μ′およびそ
の損失項μ″の変化を利用する方式を既に提案してい
る。この方式は再生ヘッドにフェライト,パーマロイ,
アモルファス合金等の磁性体を使用し、この磁性体に結
合された高周波回路のインピーダンス変化による高周波
出力電圧の変化を検波整流することにより記録信号を再
生するものである。
[Technical Background of the Invention and Problems Thereof] For a method of reproducing a magnetic recording signal by utilizing a change in electromagnetic characteristics of a magnetic body due to a magnetic field (signal magnetic field) based on a recording signal from a magnetic recording medium, a magnetic resistance Although the one utilizing the effect is known, the present inventors have found that as a very excellent method for high-density recording / reproduction, the tensor permeability μ ′ and the loss term μ thereof are changed as a change in the high frequency characteristics of the magnetic substance due to the signal magnetic field. We have already proposed a method that utilizes the change of ″. This method uses ferrite, permalloy,
A recorded signal is reproduced by using a magnetic material such as an amorphous alloy and detecting and rectifying a change in the high frequency output voltage due to a change in impedance of a high frequency circuit coupled to the magnetic material.

ところで、一般に高周波における磁性体のμ′および
μ″は外部磁界により第1図に示したような変化を起こ
す。この図で低磁界におけるμ′,μ″変化11は磁性体
の不飽和領域で起こる低磁界損失を示し、高磁界におけ
るμ′,μ″の変化12は磁性体の飽和領域で起こる強磁
性共鳴を示す。また、HSは磁性体の飽和磁界(飽和し始
める磁界)、HRは強磁性共鳴磁界をそれぞれ示す。この
図からわかるように、低磁界損失よりも強磁性共鳴を利
用した方が磁性体のμ′,μ″の変化が格段と大きく、
したがって僅かな磁界の変化により高周波回路のインピ
ーダンス変化が大きく生じ、極めて高感度でSN比の良い
再生が可能となる。
By the way, generally, μ ′ and μ ″ of a magnetic material at a high frequency cause a change as shown in FIG. 1 due to an external magnetic field. In this figure, μ ′, μ ″ change 11 in a low magnetic field is an unsaturated region of the magnetic material. The low magnetic field loss that occurs and the change 12 of μ ′ and μ ″ in the high magnetic field indicate the ferromagnetic resonance that occurs in the saturation region of the magnetic material. Also, H S is the saturation magnetic field of the magnetic material (the magnetic field that begins to saturate), H S R indicates the ferromagnetic resonance magnetic field, respectively.As can be seen from this figure, the change in μ ′ and μ ″ of the magnetic material is significantly larger when the ferromagnetic resonance is used rather than the low magnetic field loss.
Therefore, a slight change in the magnetic field causes a large change in the impedance of the high-frequency circuit, and reproduction with extremely high sensitivity and good SN ratio becomes possible.

ところが、磁気記録媒体からの信号磁界は媒体からの距
離dに対して、記録波長をλとすると に比例して減少するので、媒体から離れると短波長記録
信号に基く信号磁界は極めて小さくなる。その場合、不
飽和状態でしかも透磁率の高い磁性体であれば、信号磁
界の吸い上げ効果が大きく、例えばリングヘッドなどの
磁気回路の一部にその磁性体を挿入することで信号磁界
の影響を記録媒体からかなり離れたところまで及ぼすこ
とができ、短波長記録信号でも感度の良い再生が可能で
ある。しかしながら、飽和状態またはそれに近い透磁率
の低い磁性体では、信号磁界の減少による再生感度の低
下を抑えることができず、特に短波長記録信号の再生感
度が十分に得られなくなり、周波数特性の劣化を生じ
る。
However, assuming that the recording wavelength of the signal magnetic field from the magnetic recording medium is λ with respect to the distance d from the medium. , The signal magnetic field based on the short wavelength recording signal becomes extremely small as the distance from the medium increases. In that case, if the magnetic substance is in an unsaturated state and has a high magnetic permeability, it has a great effect of absorbing the signal magnetic field. For example, by inserting the magnetic substance into a part of a magnetic circuit such as a ring head, the influence of the signal magnetic field is reduced. It can be applied to a place far away from the recording medium, and sensitive reproduction is possible even with a short wavelength recording signal. However, in a saturated state or a magnetic material having a low magnetic permeability close to it, it is not possible to suppress the deterioration of the reproduction sensitivity due to the decrease of the signal magnetic field, and in particular, the reproduction sensitivity of the short wavelength recording signal cannot be sufficiently obtained and the frequency characteristic is deteriorated. Cause

[発明の目的] この発明の目的は、信号磁界を検出する磁性体が、透磁
率の高い状態で信号磁界に応じた鋭敏な高周波特性の変
化を生じるようにして、短波長記録信号についても高感
度に再生を行なうことができる磁気的再生装置を提供す
ることにある。
[Object of the Invention] An object of the present invention is to make a magnetic substance for detecting a signal magnetic field sensitively change a high frequency characteristic in accordance with the signal magnetic field in a state of high magnetic permeability, so that a short wavelength recording signal is also improved. It is an object of the present invention to provide a magnetic reproducing device capable of reproducing with high sensitivity.

[発明の概要] この発明は磁性体の強磁性共鳴磁界を飽和磁界近傍に設
定し、磁性体に不飽和領域において強磁性共鳴による高
周波特性の変化を生じせしめるようにしたことを特徴と
している。これは例えば磁気異方性を磁性体に付加し単
磁区に近い状態として、主に磁化回転機構により信号磁
界方向にこの磁性体を飽和させることにより多磁区構造
に起因する低磁界損失を抑制することで達成される。そ
の結果、磁性体は不飽和領域において信号磁界に対し鋭
敏で且つ線形性のよい、強磁性共鳴による高周波特性の
変化を生じるようになる。
SUMMARY OF THE INVENTION The present invention is characterized in that a ferromagnetic resonance magnetic field of a magnetic material is set in the vicinity of a saturation magnetic field so that the magnetic material is caused to change in high frequency characteristics due to ferromagnetic resonance in an unsaturated region. For example, the magnetic anisotropy is added to the magnetic substance to make it close to a single magnetic domain, and the magnetic rotating mechanism mainly saturates the magnetic substance in the signal magnetic field direction to suppress the low magnetic field loss due to the multi-domain structure. Can be achieved. As a result, the magnetic substance is sensitive to the signal magnetic field in the unsaturated region and has a high linearity, which causes a change in the high frequency characteristic due to the ferromagnetic resonance.

[発明の効果] この発明によれば、磁性体に透磁率の高い状態で信号磁
界に応じて鋭敏で且つ線型性のよい高周波特性の変化を
生じせしめることができる。従って、例えばリングヘッ
ドなどの磁気回路あるいはその一部としてこの磁性体を
用いることにより、短波長記録信号についても極めて高
感度に再生を行なうことが可能となる。
[Effects of the Invention] According to the present invention, it is possible to cause a change in high-frequency characteristics that is sensitive and has good linearity in response to a signal magnetic field in a state where magnetic permeability is high. Therefore, by using this magnetic material as a magnetic circuit such as a ring head or a part thereof, it becomes possible to reproduce a short wavelength recording signal with extremely high sensitivity.

[発明の実施例] 第2図は、本発明の一実施例を示すものである。図にお
いて、21は磁気記録媒体であり、この上に磁気ギャップ
22を有するヘッド磁極23が近接して配置されている。こ
のヘッド磁極23の一部は信号磁界に応じてμ′および
μ″の変化する薄膜磁性体24で構成されている。そして
この薄膜磁性体24に接近または被着されて結合する導体
片25が設けられ、この導体片25が高周波回路26に接続さ
れている。高周波回路26は高周波発振器27、整合用コン
デンサ28,29、および共振コンデンサ30等により構成さ
れる。
Embodiment of the Invention FIG. 2 shows an embodiment of the present invention. In the figure, 21 is a magnetic recording medium, on which a magnetic gap is placed.
Head magnetic poles 23 having 22 are arranged in close proximity. A part of the head magnetic pole 23 is composed of a thin film magnetic body 24 whose μ ′ and μ ″ change in response to a signal magnetic field. Then, a conductor piece 25 which comes close to or is attached to the thin film magnetic body 24 is connected. The conductor piece 25 is provided and is connected to a high frequency circuit 26. The high frequency circuit 26 includes a high frequency oscillator 27, matching capacitors 28 and 29, a resonance capacitor 30, and the like.

今、磁気記録媒体21からの信号磁界により薄膜磁性体24
のμ′およびμ″が変化すると、それに応じて導体片25
のインピーダンス変化が起こるので、このインピーダン
ス変化に応じて高周波回路26から導体片25を介して取出
される高周波出力電圧が変化する。そこでこの高周波出
力電圧を例えばダイオード31と抵抗32およびコンデンサ
33からなるピーク検波回路34で検波することにより、信
号再生出力35を得ることができる。
Now, the thin film magnetic material 24 is generated by the signal magnetic field from the magnetic recording medium 21.
If μ ′ and μ ″ of change, the conductor piece 25
Since the impedance change occurs, the high frequency output voltage taken out from the high frequency circuit 26 via the conductor piece 25 changes according to this impedance change. Therefore, this high frequency output voltage is applied to, for example, the diode 31, the resistor 32, and the capacitor.
A signal reproduction output 35 can be obtained by performing detection with the peak detection circuit 34 including 33.

ここで、薄膜磁性体24における信号磁界による高周波特
性の変化、すなわち強磁性共鳴の生じる条件について説
明すると、一般に第1図に示した強磁性共鳴磁界HR(x
方向)は、これに直交するy−z平面に加えられる高周
波磁界の周波数fに対して次式の関係になる。
Wherein a change in frequency characteristics due to the signal magnetic field in the thin film magnetic body 24, i.e. be described conditions that the ferromagnetic resonance, generally ferromagnetic resonance magnetic field shown in FIG. 1 in H R (x
Direction) has the following relationship with the frequency f of the high-frequency magnetic field applied to the yz plane orthogonal to this.

=γ[{HR+(Ny−Nx)Ms +(HAx−HAy)}{HR+(Nz−Nx)Ms +(HAx−HAz)}]1/2 …(1) γ:ジャイロマグネティック比で通常2.8MHz/エルステ
ッド Nx,y,z:強磁性共鳴磁界(外部磁界)の方向をx方向と
した場合の反磁界係数 Ms:飽和磁化 HAx,Ay,Az:強磁性共鳴磁界の方向をx方向とした場合の
異方性磁界 第2図の実施例では、記録トラックの長さ方向をx,トラ
ック垂直方向(記録媒体垂直方向)をy,トラック幅方向
をzとすると薄膜磁性体24の反磁界係数は、x方向、z
方向ではほぼ0,y方向では1になるので、x方向に飽和
した薄膜磁性体24の強磁性共鳴条件は以下のようにな
る。
= Γ [{H R + ( Ny-Nx) Ms + (H A x-H A y)} {H R + (Nz-Nx) Ms + (H A x-H A z)}] 1/2 ... (1) γ: Gyromagnetic ratio, usually 2.8MHz / Oersted Nx, y, z: Demagnetization factor when the direction of the ferromagnetic resonance magnetic field (external magnetic field) is the x direction Ms: Saturation magnetization H A x, A y , A z: Anisotropy magnetic field when the direction of the ferromagnetic resonance magnetic field is the x direction. In the embodiment of FIG. 2, the recording track length direction is x, the track vertical direction (recording medium vertical direction) is y, When the track width direction is z, the diamagnetic field coefficient of the thin film magnetic body 24 is z direction, z
Since it is almost 0 in the direction and 1 in the y direction, the ferromagnetic resonance condition of the thin film magnetic body 24 saturated in the x direction is as follows.

f=γ[{HR+(HAx−HAz)}{HR+Ms +(HAx−HAy)}]1/2 …(2) そこで(2)式における高周波磁界の周波数あるいは
異方性磁界HAx,HAy,HAzを適当に決めることにより、強
磁性共鳴磁界HRを薄膜磁性体24のx方向における飽和磁
界近傍に設定できる。その一設定例を第3図に示した。
この図は、薄膜磁性体24にCo系アモルファス合金を用
い、実際に外部磁界Hによりμ″がどのように変化する
かを示したもので、飽和磁界Hsよりも僅かに大きなとこ
ろに強磁性共鳴磁界HRを設定したものである。すなわ
ち、飽和磁界Hsよりも小さく、しかも急激なμ″の変化
が生じるところにバイアス磁界Hbを設定し、このバイア
ス磁界Hbに信号磁界を重畳させる。これにより、薄膜磁
性体24を不飽和で透磁率の大きい状態、換言すればヘッ
ド磁極23の一部として磁気抵抗の低い状態を保ち、しか
も薄膜磁性体24に十分大きなμ″の変化を生じせしめる
ことができる。
f = γ [{H R + (H A x −H A z)} {H R + Ms + (H A x −H A y)}] 1/2 (2) Then, the high frequency magnetic field in the formula (2) is By appropriately determining the frequency or the anisotropic magnetic fields H A x, H A y, H A z, the ferromagnetic resonance magnetic field H R can be set near the saturation magnetic field of the thin film magnetic body 24 in the x direction. An example of one setting is shown in FIG.
This figure shows how Co ″ amorphous alloy is used for the thin film magnetic body 24, and how μ ″ actually changes by the external magnetic field H. Ferromagnetic resonance is observed at a place slightly larger than the saturation magnetic field Hs. The magnetic field H R is set, that is, the bias magnetic field Hb is set at a place smaller than the saturation magnetic field Hs and a sudden change in μ ″ occurs, and the signal magnetic field is superimposed on this bias magnetic field Hb. As a result, the thin film magnetic body 24 is maintained in an unsaturated and large magnetic permeability state, in other words, a state in which the magnetic resistance is low as a part of the head magnetic pole 23, and a sufficiently large change of μ ″ is caused in the thin film magnetic body 24. be able to.

さらに、薄膜磁性体24に対し信号磁界と直交する方向を
磁化容易軸とする面内−軸磁気異方性を付加することに
より(これにより生じる異方性磁界をHKとする)、第3
図の磁界0におけるμ″の値を小さくし、従って信号磁
界に対するμ″の変化を鋭敏にすることができる。
Furthermore, by adding an in-plane-axis magnetic anisotropy having an easy axis of magnetization in the direction orthogonal to the signal magnetic field to the thin film magnetic body 24 (the anisotropic magnetic field generated thereby is referred to as H K ).
It is possible to reduce the value of μ ″ at the magnetic field 0 in the figure, and thus to make the change of μ ″ sensitive to the signal magnetic field.

第4図は、第2図における薄膜磁性体24に対し異方性磁
界HKをz方向に付加し、信号磁界Hsigをx方向に印加
し、さらに、高周波磁界HRFを第2図における導体片25
によりy方向に印加したときのHsigに対する磁気モーメ
ントMの変化を示したものである。第4図(a)は、Hs
ig=0の状態を示し、薄膜磁性体24の磁気モーメントM
は異方性磁界HKの方向に保たれる。この状態で信号磁界
Hsigが加わると、信号磁界のHsigの方向に磁気モーメン
トMが回転し第4図(b)に示すようになる。また信号
磁界Hsigが異方性磁界HKを越えると、第4図(c)に示
すように磁気モーメントMはx方向に固定され薄膜磁性
体24は飽和状態になる。第4図(a)におけるHsig=0
の状態では高周波磁界HRFと磁気モーメントMの方向が
平行であるため強磁性共鳴は起こらない。従って異方性
磁界HK近傍に強磁性共鳴磁界HRを設定することにより、
信号磁界Hsigが加わり磁気モーメントMが信号磁界Hsig
の方向に回転するにつれて急激なμ′およびμ″の変化
を生じせしめることができる。
FIG. 4 shows that an anisotropic magnetic field H K is applied to the thin film magnetic body 24 in FIG. 2 in the z direction, a signal magnetic field Hsig is applied in the x direction, and a high frequency magnetic field H RF is applied to the conductor in FIG. Piece 25
3 shows the change of the magnetic moment M with respect to Hsig when applied in the y direction. Figure 4 (a) shows Hs
ig = 0, indicating the magnetic moment M of the thin film magnetic body 24
Are kept in the direction of the anisotropic magnetic field H K. Signal magnetic field in this state
When Hsig is applied, the magnetic moment M rotates in the direction of Hsig of the signal magnetic field, as shown in FIG. 4 (b). Further, when the signal magnetic field Hsig exceeds the anisotropy field H K, Figure 4 magnetic moment M, as shown in (c) is a thin film magnetic 24 is fixed to the x direction is saturated. Hsig = 0 in FIG. 4 (a)
In the state, the ferromagnetic resonance does not occur because the directions of the high frequency magnetic field H RF and the magnetic moment M are parallel. Therefore, by setting the ferromagnetic resonance magnetic field H R near the anisotropic magnetic field H K ,
Signal magnetic field Hsig is added and magnetic moment M becomes signal magnetic field Hsig
It is possible to cause abrupt changes in μ ′ and μ ″ with rotation in the direction.

以上のような磁気異方性を付与したパーマロイ薄膜の外
部磁界Hに対するμ″の変化の様子を第5図に示した。
異方性磁界HKはほぼ3[Oe]で外部共鳴磁界は4.5[O
e]である。高周波磁界HRFの周波数は350MHzである。
なお、強磁性共鳴磁界HRは飽和磁界HSすなわち異方性磁
界HKよりも小さな値に設定することも可能である。
FIG. 5 shows how μ ″ changes with respect to the external magnetic field H of the permalloy thin film having the above magnetic anisotropy.
Anisotropic magnetic field H K is approximately 3 [Oe] and external resonance magnetic field is 4.5 [Oe]
e]. The frequency of the high frequency magnetic field H RF is 350 MHz.
The ferromagnetic resonance magnetic field H R can be set to a value smaller than the saturation magnetic field H S, that is, the anisotropic magnetic field H K.

この発明の実施例を第6図に示す。これは垂直磁気記録
された信号の再生にこの発明を適用したもので、磁気記
録媒体61はCo−Cr等の垂直磁気記録層62,パーマロイ等
の高透磁率でしかも信号磁界により高周波特性の変化す
る磁性層63およびベース層64により構成されている。65
は主磁極を、66は副磁極を示し、これらは垂直磁気記録
ヘッドとしても用いられる。また、主磁極65には第2図
に示したような高周波回路26に接続されているコイル67
が巻回されている。この場合、主磁極65の直下の磁気記
録層62の記録磁気モーメントにより発生する磁束が主磁
極65、磁性層63および副磁極66を通る磁気回路を形成し
ている。また、高周波特性の変化する主磁極65や磁性層
63、場合によっては副磁極66の一部において強磁性共鳴
磁界HRは飽和磁界近傍に設定されている。従って第2図
の場合と同じ様にして磁気回路の透磁率を下げることな
く、主磁極65、磁性層62、場合によっては副磁極66に信
号磁界に対し鋭敏な高周波特性の変化を生じさせること
ができる。
An embodiment of the present invention is shown in FIG. This is a case where the present invention is applied to the reproduction of a perpendicularly magnetically recorded signal.The magnetic recording medium 61 has a perpendicular magnetic recording layer 62 such as Co--Cr, a high magnetic permeability such as permalloy, and a change in high frequency characteristics due to a signal magnetic field. And a magnetic layer 63 and a base layer 64. 65
Is a main magnetic pole and 66 is a sub magnetic pole, and these are also used as a perpendicular magnetic recording head. The main magnetic pole 65 has a coil 67 connected to the high frequency circuit 26 as shown in FIG.
Is wound. In this case, the magnetic flux generated by the recording magnetic moment of the magnetic recording layer 62 immediately below the main magnetic pole 65 forms a magnetic circuit passing through the main magnetic pole 65, the magnetic layer 63 and the auxiliary magnetic pole 66. In addition, the main magnetic pole 65 and the magnetic layer whose high-frequency characteristics change
63, in some cases the ferromagnetic resonance magnetic field H R in some sub pole 66 is set in the saturation magnetic field near. Therefore, similarly to the case of FIG. 2, it is possible to cause the main magnetic pole 65, the magnetic layer 62, and in some cases, the auxiliary magnetic pole 66 to change the high frequency characteristics sensitive to the signal magnetic field without lowering the magnetic permeability of the magnetic circuit. You can

第7図は垂直磁気記録信号の再生にこの発明を適用した
別の実施例を示したもので、71は第6図の主磁極65に対
応する高周波特性の変化する薄膜磁性体であり、72は矢
印で示した磁気回路を構成するための磁性体ヨークであ
る。また、薄膜磁性体71には導体層73が被着され、この
導体層73は第2図の高周波回路26に接続されている。磁
性体71の強磁性共鳴磁界HRは飽和磁界近傍に設定されて
いる。この実施例によっても第6図の実施例と同様な効
果が得られる。
FIG. 7 shows another embodiment in which the present invention is applied to the reproduction of a perpendicular magnetic recording signal. Reference numeral 71 is a thin film magnetic body corresponding to the main magnetic pole 65 of FIG. Is a magnetic yoke for forming the magnetic circuit indicated by the arrow. A conductor layer 73 is attached to the thin film magnetic body 71, and the conductor layer 73 is connected to the high frequency circuit 26 of FIG. The ferromagnetic resonance magnetic field H R of the magnetic body 71 is set near the saturation magnetic field. With this embodiment, the same effect as that of the embodiment shown in FIG. 6 can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は外部磁界に対する磁性体のテンソル透磁率μ′
および損失分μ″の変化を示す図、第2図はこの発明の
一実施例に係る磁気的再生装置の構成を示す図、第3図
はCo系アモルファス合金の外部磁界の大きさに対する
μ″の変化を示す図、第4図は磁性体に信号磁界と直交
し、高周波磁界と平行になるように異方性磁界を付与し
た場合の磁性体の磁気モーメント変化を示す図、第5図
は第4図に示した異方性磁界を付与したNi-Fe合金の外
部磁界の大きさに対するμ″の変化を示す図、第6図お
よび第7図はこの発明を垂直磁気記録信号の再生に適用
した実施例を示す図である。 21……磁気記録媒体、22……磁気ギャップ、23……ヘッ
ド磁極、24……磁性体、25……導体片、26……高周波回
路、34……検波回路、35……信号再生出力、61……磁気
記録媒体、62……垂直磁気記録層、63……磁性体、65…
…主磁極、66……副磁極、71……薄膜磁性体、72……磁
性体ヨーク、73……導体層。
Figure 1 shows the tensor permeability μ'of a magnetic material against an external magnetic field.
And FIG. 2 is a diagram showing a change in loss μ ″, FIG. 2 is a diagram showing a configuration of a magnetic reproducing apparatus according to an embodiment of the present invention, and FIG. 3 is μ ″ with respect to the magnitude of an external magnetic field of a Co type amorphous alloy. FIG. 4 is a diagram showing a change in the magnetic moment of the magnetic substance when an anisotropic magnetic field is applied to the magnetic substance so as to be orthogonal to the signal magnetic field and parallel to the high frequency magnetic field, and FIG. FIGS. 6 and 7 show the change of μ ″ with respect to the magnitude of the external magnetic field of the Ni—Fe alloy to which an anisotropic magnetic field is applied as shown in FIG. 4, FIGS. 6 and 7 for reproducing the perpendicular magnetic recording signal. It is a figure which shows the applied example: 21 ... magnetic recording medium, 22 ... magnetic gap, 23 ... head magnetic pole, 24 ... magnetic body, 25 ... conductor piece, 26 ... high-frequency circuit, 34 ... Detection circuit, 35 ... Signal reproduction output, 61 ... Magnetic recording medium, 62 ... Perpendicular magnetic recording layer, 63 ... Magnetic material, 65 ...
… Main magnetic pole, 66 …… Sub magnetic pole, 71 …… Thin film magnetic material, 72 …… Magnetic material yoke, 73 …… Conductor layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁気記録媒体からの信号磁界に応じた磁性
体の高周波特性の変化に伴なう該磁性体に結合された高
周波回路の高周波信号出力の変化を検出して前記磁気記
録媒体に記録された信号を再生する装置において、 前記磁性体の強磁性共鳴磁界を飽和磁界近傍に設定し、
前記磁性体に対し不飽和領域で強磁性共鳴による高周波
特性の変化を生じせしめるようにしたことを特徴とする
磁気的再生装置。
1. A magnetic recording medium, which detects a change in a high-frequency signal output of a high-frequency circuit coupled to a magnetic body according to a change in a high-frequency characteristic of the magnetic body according to a signal magnetic field from the magnetic recording medium. In a device for reproducing a recorded signal, the ferromagnetic resonance magnetic field of the magnetic material is set near a saturation magnetic field,
A magnetic reproducing apparatus characterized in that a change in high-frequency characteristics due to ferromagnetic resonance is caused to occur in the unsaturated region of the magnetic body.
【請求項2】前記磁性体に磁気異方性を付加することに
より強磁性共鳴磁界を飽和磁界近傍に設定するようにし
たことを特徴とする特許請求の範囲第1項記載の磁気的
再生装置。
2. A magnetic reproducing apparatus according to claim 1, wherein the ferromagnetic resonance magnetic field is set in the vicinity of a saturation magnetic field by adding magnetic anisotropy to the magnetic material. .
【請求項3】磁気異方性の磁化容易軸の方向を磁気記録
媒体からの信号磁界の方向とほぼ直交させたことを特徴
とする特許請求の範囲第2項記載の磁気的再生装置。
3. A magnetic reproducing apparatus according to claim 2, wherein the direction of the easy axis of magnetic anisotropy is substantially orthogonal to the direction of the signal magnetic field from the magnetic recording medium.
JP13882983A 1983-07-29 1983-07-29 Magnetic playback device Expired - Lifetime JPH06103521B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13882983A JPH06103521B2 (en) 1983-07-29 1983-07-29 Magnetic playback device
US06/633,912 US4635152A (en) 1983-07-29 1984-07-24 Magnetic resonance-type playback apparatus including a magnetic material having magnetic anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13882983A JPH06103521B2 (en) 1983-07-29 1983-07-29 Magnetic playback device

Publications (2)

Publication Number Publication Date
JPS6029901A JPS6029901A (en) 1985-02-15
JPH06103521B2 true JPH06103521B2 (en) 1994-12-14

Family

ID=15231191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13882983A Expired - Lifetime JPH06103521B2 (en) 1983-07-29 1983-07-29 Magnetic playback device

Country Status (1)

Country Link
JP (1) JPH06103521B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69431614T2 (en) * 1993-08-25 2003-06-12 Nippon Telegraph & Telephone Magnetic field measuring method and device

Also Published As

Publication number Publication date
JPS6029901A (en) 1985-02-15

Similar Documents

Publication Publication Date Title
US5830590A (en) Magnetic storage and reproducing system with a low permeability keeper and a self-biased magnetoresistive reproduce head
EP0099127A2 (en) Magnetic reproducing system
US4464691A (en) Magnetic reproducing system
EP0132852B1 (en) Magnetic reproducing apparatus
US4635152A (en) Magnetic resonance-type playback apparatus including a magnetic material having magnetic anisotropy
JPH0370844B2 (en)
JPH0370843B2 (en)
JPH06103521B2 (en) Magnetic playback device
JP3037335B2 (en) Shield for magnetic field sensitive transducer
JP2814741B2 (en) Perpendicular magnetization type magnetoresistance element and magnetoresistance effect type magnetic head using the same
JP2583851B2 (en) Magnetoresistive magnetic head
JPH0490101A (en) Vertical magnetic recorder
JPH0344364B2 (en)
JP3607815B2 (en) Magnetic head, double-layered perpendicular magnetic recording medium, and magnetic reproducing method
JPH0441453Y2 (en)
JP3537380B2 (en) Magnetic head and magnetic reproducing device
Tanno et al. Magnetic tape recorder with a reproducing head using parametric oscillation for low frequency
JPH071522B2 (en) Magnetic recording signal reproducing device
JP2601850B2 (en) Magnetic playback device
JPS5848203A (en) Magnetic recording and reproducing device
JPH08249615A (en) Magnetic head
JPS60138706A (en) Magnetic recording signal reproducing device
JPS6029902A (en) Magnetic reproducer
JPH0370845B2 (en)
JPH05101340A (en) Composite magnetic head