JPH0610309B2 - Post-heat treatment method for welding heat affected zone of ERW steel pipe - Google Patents

Post-heat treatment method for welding heat affected zone of ERW steel pipe

Info

Publication number
JPH0610309B2
JPH0610309B2 JP60122773A JP12277385A JPH0610309B2 JP H0610309 B2 JPH0610309 B2 JP H0610309B2 JP 60122773 A JP60122773 A JP 60122773A JP 12277385 A JP12277385 A JP 12277385A JP H0610309 B2 JPH0610309 B2 JP H0610309B2
Authority
JP
Japan
Prior art keywords
post
affected zone
welding
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60122773A
Other languages
Japanese (ja)
Other versions
JPS61281821A (en
Inventor
煕久 大濱
研一 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP60122773A priority Critical patent/JPH0610309B2/en
Publication of JPS61281821A publication Critical patent/JPS61281821A/en
Publication of JPH0610309B2 publication Critical patent/JPH0610309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は電縫鋼管の溶接熱影響部を軟化させる後熱処理
方法に関するものである。
The present invention relates to a post heat treatment method for softening a weld heat affected zone of an electric resistance welded steel pipe.

〈従来の技術とその問題点〉 近年自動車の燃費向上に関する改善は著しく、その方策
として車体の軽量化が種々検討されている。この中で従
来棒鋼により製造されていた部品の中空化の検討は目覚
しく、棒鋼から電縫鋼管への置換が積極的に進められて
いる。
<Prior art and its problems> In recent years, the improvement of the fuel efficiency of automobiles has been remarkably improved, and various measures have been taken to reduce the weight of the vehicle body. Among these, the study of hollowing parts that were conventionally manufactured from steel bars is remarkable, and the replacement of steel bars with electric resistance welded steel pipe is being actively promoted.

この傾向は特に小径電縫鋼管について著しく、引抜き、
曲げ、拡管などこれら各方法を単独又は組合わせること
により複雑な形状部品に加工するものが多い。
This tendency is especially remarkable for small diameter ERW pipes,
Many of these methods, such as bending and expanding, are used alone or in combination to form parts with complicated shapes.

一方、電縫鋼管の溶接ビード部は、溶接時に高温に加熱
され圧接後冷却されるので、管材のC量が高くなるほ
ど、また焼入性を高める合金元素(Si,Mn,Cr,Mo,B
などの元素)が1種または2種以上含まれたり、その添
加量が多くなるほど溶接ビード部の硬化が著しくなり、
冷却後の溶接熱影響部の硬化は素菅の母材部硬さに比べ
著しくなる。
On the other hand, the weld bead portion of the electric resistance welded steel pipe is heated to a high temperature during welding and is cooled after pressure welding. Therefore, the higher the C content of the pipe material, the higher the alloying elements (Si, Mn, Cr, Mo, B) that enhance the hardenability.
Element, etc.) is contained in one kind or two kinds or more, and the larger the added amount, the more remarkable the hardening of the weld bead part,
The hardening of the weld heat affected zone after cooling becomes more remarkable than the hardness of the base metal part of the blank tube.

このため、溶接熱影響部を軟化することなくすなわち、
溶接のままの鋼管を加工すると、加工時に溶接部に割れ
が発生し加工できなかったり、溶接熱影響部と母材部の
変形能の差により、加工後溶接熱影響部の肉厚が厚くな
って偏肉が起り、加工部品の精度が得られないなどの問
題が生じる。
Therefore, without softening the heat affected zone,
When processing a steel pipe as it is welded, cracks occur in the welded part during processing and it cannot be processed, and the difference in deformability between the weld heat affected zone and the base metal causes the weld heat affected zone to become thicker after processing. As a result, uneven thickness occurs, which causes a problem that the precision of the processed parts cannot be obtained.

そこで、加工用途に用いる電縫鋼管は溶接後、溶接熱影
響部に焼なましを施しているのが現状である。しかし、
従来の方法による焼なまし法すなわち、後熱処理法は特
公昭59-42731、59-48848号公報および電縫鋼管溶接部焼
鈍装置(製鉄研究第295(1978)、p12673〜12678)など
の文献に見られるように、溶接後溶接熱影響部をA3
以上の温度に加熱するため、再加熱後の冷却において溶
接部が硬化しないようにすなわちフェライト+パーライ
ト組織に変態するよう変態点近傍の温度域を徐冷する事
が必要である。したがって、装置は再加熱帯の後に長い
徐冷帯が必要となり造管機ラインも非常に長い大がかり
な設備となる。また、徐冷帯が短い場合には変態点近傍
の温度域を急冷しないよう造管速度を遅くしなければな
らず、生産能率を大幅に低下させる。
Therefore, it is the current situation that the welded heat-affected zone of the electric resistance welded steel pipe used for processing is annealed after welding. But,
The conventional annealing method, that is, the post-heat treatment method is described in Japanese Patent Publication No. 59-42731, 59-48848, and ERW steel pipe weld annealing equipment (Steelmaking Research No. 295 (1978), p12673-12678). As can be seen, since the weld heat affected zone is heated to a temperature of A 3 point or higher after welding, the temperature near the transformation point is set so that the weld zone does not harden during cooling after reheating, that is, it transforms into a ferrite + pearlite structure. It is necessary to gradually cool the area. Therefore, the apparatus requires a long annealing zone after the reheating zone, and the pipe forming machine line is also very long and large-scale equipment. Further, when the slow cooling zone is short, the pipe forming speed must be slowed down so as not to rapidly cool the temperature range near the transformation point, which significantly lowers the production efficiency.

さらにC量が高い材料や焼入性を向上させる合金元素
(Mn,Cr,Mo,Bなど)を含む材料からの造管では、オ
ーステナイトからフェライト+パーライト組織に変態す
るに要する時間は長くなるので、これらの問題がさらに
顕著になる。
Furthermore, in the pipe making from a material having a high C content or a material containing an alloying element (Mn, Cr, Mo, B, etc.) that improves hardenability, the time required to transform from austenite to ferrite + pearlite structure becomes long. , These problems become more prominent.

したがって、現状の後熱処理方法は設備、生産能率の両
面で大きな欠点を有している。
Therefore, the current post-heat treatment method has major drawbacks in terms of both equipment and production efficiency.

〈問題を解決する手段〉 本発明の目的はこのような現状に鑑み、溶接後の冷却条
件と再加熱条件を種々検討した結果、溶接後再加熱する
までに溶接部をマルテンサイト生成開始温度(以下Ms点
と略記する)以下の温度まで一たん急冷し、その後焼も
どしすることにより、長い徐冷帯を必要とすることな
く、また造管速度を遅くすることなく短時間で溶接熱影
響部の硬さを能率よく軟化する後熱処理方法を見出し
た。
<Means for solving the problem> In view of the present situation, the object of the present invention is to examine various cooling conditions and reheating conditions after welding, and as a result, the martensite formation start temperature ( It will be abbreviated as Ms point below.) By rapidly quenching to the temperature below, and then tempering, the welding heat-affected zone can be obtained in a short time without the need for a long annealing zone and without slowing the pipe forming speed. We have found a post-heat treatment method that efficiently softens the hardness.

〈発明の構成〉 本発明は低周波および高周波溶接による電縫鋼管の製造
方法において、溶接後加熱された電縫溶接部を管材のMs
点よりも50℃以上低い温度まで一たん急冷し、溶接時の
高温加熱によって生成したオーステナイト組織が20%以
上残留しないように冷却し、マルテンサイト組織化す
る。
<Structure of the Invention> The present invention is a method for manufacturing an electric resistance welded steel pipe by low-frequency and high-frequency welding.
It is rapidly cooled to a temperature lower than the point by 50 ° C or more, and cooled so that 20% or more of the austenite structure generated by high-temperature heating during welding does not remain, forming a martensite structure.

その後、500℃から(Ac1+50℃)の温度まで再加熱し、
急冷により生成したマルテンサイトを焼もどしすること
により、溶接熱影響部を軟化することを特徴とする後熱
処理方法である。
After that, reheat from 500 ℃ to (Ac 1 + 50 ℃),
This is a post-heat treatment method characterized by softening the weld heat affected zone by tempering martensite produced by quenching.

本方法では再加熱後に残留オーステナイトが20%以上残
存することがないため、その後に急冷しても溶接熱影響
部は軟化することがなく、徐冷帯を長くもうける必要も
ない。また造管速度を遅くして変態を完了さすことも必
要なくなる。
In this method, since 20% or more of the retained austenite does not remain after reheating, the weld heat affected zone does not soften even after rapid cooling, and it is not necessary to keep the annealing zone long. It is also unnecessary to slow down the pipe forming speed to complete the transformation.

以下に本発明に係る限定の理由について述べる。The reasons for limitation of the present invention will be described below.

溶接後の電縫溶接部の冷却温度が(Ms−50℃)より高い
と、溶接熱影響部の組織は未変態の残留オーステナイト
を含む組織となりやすい。この残留オーステナイトは再
加熱後の冷却においてマルテンサイトに変態するので、
残留オーステナイトの量が20%以上であると溶接部は硬
化する。また、再加熱後に、20%以上の残留オーステナ
イトをフェライト+パーライト組織に変態させ軟化させ
るためには造管速度を遅くしたり、長い徐冷帯を設ける
ことが必要となる。
If the cooling temperature of the electric resistance welded portion after welding is higher than (Ms-50 ° C), the structure of the heat-affected zone of the welding tends to be a structure containing untransformed retained austenite. Since this retained austenite transforms to martensite in the cooling after reheating,
If the amount of retained austenite is 20% or more, the weld will be hardened. In addition, after reheating, in order to transform and soften 20% or more of retained austenite into a ferrite + pearlite structure, it is necessary to slow the pipe forming speed or provide a long annealing zone.

したがって、溶接後の溶接熱影響部のマルテンサイト量
を20%未満におさえるために、冷却温度は(Ms−50℃)
以下の温度に限定した。
Therefore, in order to keep the amount of martensite in the heat affected zone after welding to less than 20%, the cooling temperature is (Ms-50 ℃).
The temperature was limited to the following.

冷却後の再加熱は冷却時に溶接熱影響部に生成したマル
テンサイトを焼もどすためであり、後加熱温度が500℃
未満ではマルテンサイトが短時間の後熱処理条件では充
分焼もどしきれず、また、Ac1+50℃の温度を越えて加
熱すると、再度オーステナイト組織に変態し、冷却時こ
のオーステナイト組織がマルテンサイトに変態するた
め、溶接熱影響部は軟化しない。したがって、溶接熱影
響部を軟化させるために後加熱温度は500℃〜(Ac1+50
℃)の温度範囲に限定した。
Reheating after cooling is to temper the martensite formed in the weld heat affected zone during cooling, and the postheating temperature is 500 ° C.
If it is less than 1, the martensite cannot be sufficiently tempered under the post heat treatment condition for a short time, and if heated above the temperature of Ac 1 + 50 ° C, it transforms into an austenite structure again, and this austenite structure transforms into martensite during cooling. Therefore, the weld heat affected zone does not soften. Therefore, in order to soften the heat affected zone, the post-heating temperature is 500 ℃ ~ (Ac 1 +50
(° C) temperature range.

実施例1 第1表(イ)の化学成分を有し第1表(ロ)の変態点を有する
素材を用いて、従来法ならびに本発明法による後熱処理
後の冷却条件について検討するために、変態点測定装置
(フォーマスタ-F)により電縫鋼管製造(溶接および後
熱処理)を模した熱サイクルを付与した。従来法と本発
明法に相当する熱サイクルを、第2図及び第1図に示
す。従来法では第2図に示すように再加熱装置(ポスト
アニーラ)で溶接部をA3以上の温度に加熱するので、
その後の冷却速度により変態組織が異なり、得られる硬
さも異なる。900℃から500℃までの温度範囲の冷却速度
を変えて冷却したときの硬さを第2表に示す。
Example 1 In order to examine cooling conditions after the post heat treatment according to the conventional method and the method of the present invention, using materials having the chemical components shown in Table 1 (a) and the transformation points shown in Table 1 (b), The transformation cycle measuring device (Formaster-F) was used to apply a heat cycle simulating the production of ERW steel pipes (welding and post heat treatment). The heat cycles corresponding to the conventional method and the method of the present invention are shown in FIGS. 2 and 1. In the conventional method, as shown in FIG. 2, the reheater (post-annealer) heats the weld to a temperature of A 3 or higher.
The transformation structure and the obtained hardness also differ depending on the subsequent cooling rate. Table 2 shows the hardness when cooled by changing the cooling rate in the temperature range from 900 ° C to 500 ° C.

S45C相当の供試材Aを20℃/secの冷却速度で冷却した
とき得られる硬さはHRC35であり、40℃/secで冷却した
ときの硬さはHRC52である。一方SCM435相当の供試材B
を4℃/secの冷却速度で冷却したとき得られる硬さはH
RC33であり、40℃/secで冷却したときの硬さはHRC54で
ある。すなわち、HRC33〜35の硬さを得るには供試材A
ではポストアニーラで加熱後約20秒、供試材Bでは100
秒の変態に要する時間が必要である。今、造管速度を毎
分30mで製造する場合、徐冷帯の長さは供試材Aでは10
m、供試材Bでは50mの長さが必要である。さらに低い
硬さを得るには徐冷帯の長さはさらに長くなる。
The hardness obtained when the test material A equivalent to S45C is cooled at a cooling rate of 20 ° C./sec is H R C35, and the hardness when cooled at 40 ° C./sec is H R C52. On the other hand, test material B equivalent to SCM435
The hardness obtained when the steel is cooled at a cooling rate of 4 ° C / sec is H
R C33, and the hardness when cooled at 40 ° C / sec is H R C54. In other words, to obtain a hardness of H R C33~35 test materials A
About 20 seconds after heating with post-annealer, 100 for sample B
It takes time to transform the seconds. Now, when producing at a pipe making speed of 30 m / min, the length of the annealing zone is 10
m, the length of 50 m is required for test material B. To obtain even lower hardness, the length of the annealing zone becomes longer.

これに対し第1図に示す本発明法では溶接後溶接部をMs
点よりも50℃以上低い温度250℃まで一たん急冷し、マ
ルテンサイト組織に変態させ、その後720℃に5秒間再
加熱して3秒で室温まで冷却した。得られた硬さは供試
材AでHRC32、供試材BでHRC36であった。
On the other hand, in the method of the present invention shown in FIG.
The material was rapidly cooled to a temperature of 250 ° C lower than the point by 250 ° C, transformed into a martensite structure, reheated to 720 ° C for 5 seconds, and cooled to room temperature in 3 seconds. The resulting hardness test specimen A in H R C32, was H R C36 in the test material B.

今造管速度を毎分30mで製造すると冷却帯は1.5mあれ
ば良く、従来法に比較してポストアニーラ後の冷却帯の
長さは本発明法は従来法に比し大幅に短かくて良い。
Now, if the pipe making speed is 30 m / min, the cooling zone needs to be 1.5 m, and the length of the cooling zone after post-annealing in the present invention method may be significantly shorter than that in the conventional method as compared with the conventional method. .

実施例2 第3表(イ)の化学成分を有し第3表(ロ)の変態点を有する
素材を用いて22.2φ×2.6t(mm)の寸法の電縫鋼管を製
造するにあたり、素材帯鋼を管状に成形した後、高周波
加熱により管状体のエッジを加熱し、スクイズロールで
加圧溶接した。その後、溶接部を水冷により約5秒で、
本発明法の範囲であるMs点より約180℃低い250℃まで冷
却し、ポストアニーラにより各種温度に3秒間加熱し
た。また再加熱後は水冷により15秒以内で約150℃まで
冷却した。なお造管速度は毎分30mである。
Example 2 In producing an electric resistance welded steel pipe having a size of 22.2φ × 2.6 t (mm) by using a material having the chemical composition shown in Table 3 (b) and the transformation point shown in Table 3 (b), After forming the steel strip into a tubular shape, the edge of the tubular body was heated by high frequency heating and pressure welding was performed with a squeeze roll. After that, the welded part is cooled with water in about 5 seconds,
The sample was cooled to 250 ° C., which is about 180 ° C. lower than the Ms point, which is the range of the method of the present invention, and heated to various temperatures by a post annealer for 3 seconds. Further, after reheating, it was cooled to about 150 ° C within 15 seconds by water cooling. The pipe forming speed is 30 m / min.

第3図は600℃の再加熱による溶接熱影響部の硬さ分布
を示したものである。
Figure 3 shows the hardness distribution in the weld heat affected zone due to reheating at 600 ° C.

第4表は第3図に示した溶接熱影響部の最高硬さ、後熱
温度および電縫鋼管の曲げ試験結果を示した。表より後
熱温度が500℃未満では溶接熱影響部の硬さの軟化はあ
まり見られないが、500℃以上(Ac1+50℃)の温度範囲
では加熱温度が高くなるほど溶接熱影響部の硬さは大幅
に軟化する。
Table 4 shows the maximum hardness of the heat affected zone, the post heat temperature, and the bending test result of the electric resistance welded steel pipe shown in FIG. From the table, when the post heat temperature is less than 500 ° C, the hardness of the welding heat affected zone does not tend to soften, but in the temperature range of 500 ° C or higher (Ac 1 + 50 ° C), the higher the heating temperature, the harder the welding heat affected zone becomes. Sa significantly softened.

また(Ac1+50℃)の温度を越えて加熱すると、加熱部
は再度オーステナイトに変態するため、その後の冷却に
よりマルテンサイトが生成し、かえって溶接熱影響部は
硬くなる。
Further, when the temperature exceeds (Ac 1 + 50 ° C.) and is heated, the heated portion is transformed into austenite again, so that martensite is generated by subsequent cooling and the weld heat affected zone becomes harder.

また、本発明法の後熱温度範囲では、曲げ角度180°の
曲げ試験では溶接熱影響部の割れ発生もなく、複雑な形
状の製品に加工が出来、良好な加工特性を示す。
Further, in the post-heat temperature range of the method of the present invention, cracks do not occur in the weld heat affected zone in a bending test with a bending angle of 180 °, a product having a complicated shape can be processed, and good processing characteristics are exhibited.

実施例3 第3表(イ)の化学成分を有し第3表(ロ)の変態点を有する
素材を用いて22.2φ×2.6t(mm)の寸法の電縫鋼管を製
造するにあたり、素材帯鋼を管状に成形した後、高周波
加熱により管状体のエッジ部を加熱し、スクイズロール
で加圧溶接した。その後溶接部を水冷により約5秒で各
温度まで冷却し、ポストアニーラにより670℃の温度に
3秒間加熱した。また再加熱後は水冷により15秒以内で
約150℃まで冷却した。なお造管速度は毎分30mであ
る。
Example 3 In producing an electric resistance welded steel pipe having a size of 22.2φ × 2.6 t (mm) by using a material having the chemical composition shown in Table 3 (b) and the transformation point shown in Table 3 (b), After the steel strip was formed into a tubular shape, the edge portion of the tubular body was heated by high frequency heating and pressure welding was performed with a squeeze roll. After that, the welded portion was cooled to each temperature by water cooling in about 5 seconds and heated by a post annealer to a temperature of 670 ° C. for 3 seconds. Further, after reheating, it was cooled to about 150 ° C within 15 seconds by water cooling. The pipe forming speed is 30 m / min.

第4図は冷却温度による溶接熱影響部の最高硬さの関係
を示す図である。図よりMs点より50℃以上低い温度に冷
却すると冷却時に生成されたマルテンサイトが焼もどし
されて溶接熱影響部の硬さは低下する。これに対し、
(Ms点−50℃)を越える冷却温度では残留オーステナイ
トの量が20%以上となり、再加熱後にマルテンサイトが
生成し、後熱処理後に高い溶接部硬さを示す。
FIG. 4 is a diagram showing the relationship between the maximum hardness of the welding heat affected zone and the cooling temperature. From the figure, when cooled to a temperature lower than the Ms point by 50 ° C or more, the martensite produced during cooling is tempered and the hardness of the weld heat affected zone decreases. In contrast,
At a cooling temperature exceeding (Ms point −50 ° C.), the amount of retained austenite becomes 20% or more, martensite is generated after reheating, and high weld zone hardness is exhibited after post heat treatment.

実施例4 第5表の化学成分を有する素材を用いて電縫鋼管を製造
するにあたり、素材帯鋼を管状に成形した後、高周波加
熱により管状体のエッジを加熱し、スクイズロールで加
圧溶接した。その後水冷により約5秒で各温度まで冷却
し、引続きポストアニーラにより3秒間加熱し、水冷し
た。
Example 4 In manufacturing an electric resistance welded steel pipe using a material having the chemical composition shown in Table 5, the material strip steel is formed into a tubular shape, the edge of the tubular body is heated by high frequency heating, and pressure welding is performed with a squeeze roll. did. After that, it was cooled to each temperature by water cooling in about 5 seconds, and subsequently heated by a post annealer for 3 seconds and water cooled.

なお造管速度はいずれも毎分30mである。このような条
件で製造した電縫鋼管の溶接熱影響部の硬さ測定と曲げ
試験を実施した。その結果を第6表に示した。
The pipe making speed is 30 m / min. The hardness measurement and bending test of the welding heat affected zone of the electric resistance welded steel pipe manufactured under such conditions were performed. The results are shown in Table 6.

供試材A(S35C)、B(S55C)およびC(SCM435)の各
電縫鋼管とも冷却温度が本発明法よりも高いA-1,B-1,
C-1は冷却時点でマルテンサイトに変態することなく、
引続き再加熱されるため、後熱後の冷却時に残留オース
テナイトがマルテンサイトに変態して溶接熱影響部は焼
入れ組織となり非常に硬く、曲げ試験では溶接部に割れ
が発生して加工部品用電縫鋼管としては使用できない。
For each of the ERW steel pipes of the test materials A (S35C), B (S55C) and C (SCM435), the cooling temperatures are higher than those of the method of the present invention A-1, B-1,
C-1 does not transform into martensite at the time of cooling,
Since it is continuously reheated, residual austenite transforms to martensite during cooling after post-heating and the weld heat affected zone becomes a hardened structure and is very hard. It cannot be used as a steel pipe.

また、冷却温度は、本発明法の条件であるが、後熱温度
が本発明法よりも低いA-2,B-2,C-2の電縫鋼管は、冷
却時にマルテンサイトに変態するが、後熱温度が低いた
めマルテンサイトの焼もどしが不充分で、溶接熱影響部
は非常に硬く、曲げ試験で溶接部に割れが発生する。
Further, the cooling temperature is a condition of the method of the present invention, but the electric resistance welded steel pipes of A-2, B-2, C-2 whose post-heating temperature is lower than that of the method of the present invention are transformed into martensite during cooling. Since the post-heat temperature is low, the tempering of martensite is insufficient, the heat affected zone of welding is extremely hard, and cracks occur in the welded portion in the bending test.

これに対し、本発明法のA-3,B-3,C-3の電縫鋼管は冷
却時に生成したマルテンサイトが後熱時高い温度で焼も
どしされるため溶接熱影響部の軟化は顕著で曲げ試験に
おいても溶接部の割れはなく、加工部品用電縫鋼管とし
て使用できる。
On the other hand, in the electric resistance welded steel pipes of A-3, B-3, and C-3 of the method of the present invention, the martensite formed during cooling is tempered at a high temperature during post-heating, so that the heat-affected zone of welding is significantly softened. Even in the bending test, there is no crack in the welded part and it can be used as an electric resistance welded steel pipe for processed parts.

〈発明の効果〉 本発明は溶接により加熱された電縫溶接部を管材のMs点
よりも50℃以上低い温度まで一たん急冷し、溶接時の高
温加熱によるオーステナイト組織をマルテンサイト組織
に変態させ、その後500℃から最高(Ac1+50℃)の温度
で再加熱し、急冷により生成したマルテンサイトを焼も
どしすることにより、溶接熱影響部を短時間の熱サイク
ルで軟化さす後熱処理法で、従来のポストアニーラ後に
長い徐冷帯を設けたり、造管速度を遅くして製造する必
要がなく設備面、生産能率面での欠点を改善した。また
本発明法による電縫鋼管の特性は苛酷な曲げ成形も可能
で、良好な品質特性を示す。
<Effect of the Invention> The present invention is to rapidly cool the electric resistance welded portion heated by welding to a temperature lower than the Ms point of the pipe material by 50 ° C. or more, and transform the austenite structure into the martensite structure by high temperature heating during welding. After that, by reheating at a temperature from 500 ° C to the maximum (Ac 1 + 50 ° C) and tempering the martensite generated by quenching, the post heat treatment method softens the heat affected zone in a short heat cycle, There is no need to provide a long annealing zone after the conventional post-annealer, or to slow down the pipe making speed for manufacturing, thus improving the defects in terms of equipment and production efficiency. Further, the characteristics of the electric resistance welded steel pipe produced by the method of the present invention can be subjected to severe bending, and show good quality characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は鋼素材に溶接と本発明法の後熱処理を模した熱
サイクルを与えた時の温度と時間の関係を示す図、第2
図は鋼素材に溶接と従来法後熱処理を模した熱サイクル
を与えた時の温度と時間の関係を示す図、第3図は600
℃に再加熱したときの溶接熱影響部の硬さ分布を示す
図、第4図は冷却温度と670℃で後熱処理したときの溶
接熱影響部の硬さの関係を示す図である。
FIG. 1 is a diagram showing the relationship between temperature and time when a heat cycle imitating welding and post heat treatment of the present invention is applied to a steel material;
The figure shows the relationship between temperature and time when a heat cycle imitating welding and conventional post heat treatment is applied to a steel material.
FIG. 4 is a diagram showing the hardness distribution of the weld heat affected zone when reheated to 0 ° C., and FIG. 4 is a diagram showing the relationship between the cooling temperature and the hardness of the weld heat affected zone after the post heat treatment at 670 ° C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】低周波および高周波溶接による電縫鋼管の
製造方法において、溶接後の電縫溶接部を管材のMs点よ
りも50℃以上低い温度まで一たん冷却し、その後500℃
から(Ac1+50℃)の温度範囲に再加熱し冷却すること
により、溶接熱影響部を軟化させる後熱処理方法。
1. In a method for producing an electric resistance welded steel pipe by low frequency and high frequency welding, the electric resistance welded portion after welding is cooled once to a temperature lower than the Ms point of the pipe material by 50 ° C. or more, and then 500 ° C.
To (Ac 1 + 50 ° C), a post-heat treatment method that softens the heat affected zone by reheating and cooling.
JP60122773A 1985-06-07 1985-06-07 Post-heat treatment method for welding heat affected zone of ERW steel pipe Expired - Lifetime JPH0610309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122773A JPH0610309B2 (en) 1985-06-07 1985-06-07 Post-heat treatment method for welding heat affected zone of ERW steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122773A JPH0610309B2 (en) 1985-06-07 1985-06-07 Post-heat treatment method for welding heat affected zone of ERW steel pipe

Publications (2)

Publication Number Publication Date
JPS61281821A JPS61281821A (en) 1986-12-12
JPH0610309B2 true JPH0610309B2 (en) 1994-02-09

Family

ID=14844255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122773A Expired - Lifetime JPH0610309B2 (en) 1985-06-07 1985-06-07 Post-heat treatment method for welding heat affected zone of ERW steel pipe

Country Status (1)

Country Link
JP (1) JPH0610309B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031210A1 (en) * 2006-09-15 2008-03-20 Algoma Steel Inc. Method for manufacturing a welded assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153839A (en) * 1983-02-23 1984-09-01 Nippon Steel Corp Production of high tension electric welded steel pipe having excellent low temperature toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153839A (en) * 1983-02-23 1984-09-01 Nippon Steel Corp Production of high tension electric welded steel pipe having excellent low temperature toughness

Also Published As

Publication number Publication date
JPS61281821A (en) 1986-12-12

Similar Documents

Publication Publication Date Title
US7032809B1 (en) Seam-welded metal pipe and method of making the same without seam anneal
EP2468904A1 (en) Method for manufacturing thick-walled seamless steel pipe
KR20000069212A (en) Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
CN112063826B (en) 1300 MPa-level low-alloy heat treatment steel rail postweld heat treatment method
JPS6145688B2 (en)
JPH0610309B2 (en) Post-heat treatment method for welding heat affected zone of ERW steel pipe
EP0112608B1 (en) Method for improving the ductility of autogenous welds in unstabilized, ferritic stainless steel coils
JP6390677B2 (en) Low carbon martensitic stainless steel welded pipe and method for producing the same
JP2003321713A (en) Method of producing steel pipe
JPH0319286B2 (en)
JP4132246B2 (en) Method for producing ERW steel pipe for hydroforming
JPS6149365B2 (en)
JPS5925931A (en) Production of electric welded steel pipe for automobile
JPH04289122A (en) Production of as-rolled type ultrahigh tensile strength resistance welded tube for vehicle door impact bar
JPS5942731B2 (en) Method for improving the toughness of the welded heat-affected zone of ERW steel pipes
JPS58117832A (en) Production of seamless steel pipe of low-carbon equivalent component type having high strength and toughness
JP2914133B2 (en) Forging die with excellent heat check resistance and plastic flow resistance
JPS61272320A (en) Manufacture of seam welded steel pipe superior in weld zone toughness
JPS5825430A (en) Manufacture of electric welded steel pipe having high toughness in weld zone
JPS5952232B2 (en) Continuous repeated bending treatment method for welded intermediate steel strip
JPS59193715A (en) Production of electric welded steel pipe of low alloy having high toughness
RU2235628C1 (en) Method for making welded articles of low-carbon, low-alloy and plain steels
JPH04143015A (en) Manufacture of high tensile electric resistance welded tube having excellent toughness of welded part
JPS5835021A (en) Manufacture of curved tube
JPH0953145A (en) Resistance welded tube excellent in corrosion resistance to carbon dioxide gas and its production