JPH06102103A - X-ray stress measurement apparatus - Google Patents

X-ray stress measurement apparatus

Info

Publication number
JPH06102103A
JPH06102103A JP4248009A JP24800992A JPH06102103A JP H06102103 A JPH06102103 A JP H06102103A JP 4248009 A JP4248009 A JP 4248009A JP 24800992 A JP24800992 A JP 24800992A JP H06102103 A JPH06102103 A JP H06102103A
Authority
JP
Japan
Prior art keywords
ray
rays
stress
measured
monochromator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4248009A
Other languages
Japanese (ja)
Inventor
Yasuyo Taguchi
耕世 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4248009A priority Critical patent/JPH06102103A/en
Publication of JPH06102103A publication Critical patent/JPH06102103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To precisely measure residual stress on the surface of a material receiving neutron irradiation. CONSTITUTION:An X-ray tube 1 emitting an incident X-ray 2 for an object 3 to be measured, a shielding body 10 for shielding a gamma-ray 6 emitted from the object 3, a monochromator 11 for separating a primary diffraction X-ray 3 emitted from the object 3 and making it monochromatic and a detector of a proportional counter tube 12 having energy dependance on a detection X-ray for detecting a secondary diffraction X-ray separated with the monochromator 11 are comprised. The object 3 is a neutron-irradiated material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はたとえばプラントの原子
炉圧力容器、炉内構造物などの中性子照射を受けた材
料、つまり被測定物表面の残留応力を測定するためのX
線応力測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray measuring apparatus for measuring residual stress on the surface of a material such as a reactor pressure vessel or a reactor internal structure which has been irradiated with neutrons, that is, the surface of an object to be measured.
The present invention relates to a linear stress measuring device.

【0002】[0002]

【従来の技術】構造物の材料に高い引張の残留応力が存
在することは、構造健全性の観点から問題がある。例え
ば、引張の残留応力の平均応力の効果で疲労強度が低下
することや、オーステナイト系ステンレス鋼などで材料
が溶接等の影響で鋭敏化していると、その残留応力と水
環境との相互により応力腐食割れが生じる。また、原子
炉内構造物のように高い中性子照射を受ける部分では、
引張の残留応力により照射誘起型応力腐食割れが生じや
すくなる。
2. Description of the Related Art The presence of high tensile residual stress in a material of a structure is problematic from the viewpoint of structural integrity. For example, if the fatigue strength decreases due to the effect of the average stress of the residual tensile stress, or if the material is sensitized due to the effect of welding, etc. in austenitic stainless steel, etc., the residual stress and the water environment cause stress Corrosion cracking occurs. Also, in the part that receives high neutron irradiation, such as the internal structure of the reactor,
Irradiation-induced stress corrosion cracking is likely to occur due to residual tensile stress.

【0003】構造物の残留応力は、製造時の冷間曲げな
どにより母材部に生じたり、溶接施工時に熱履歴を受け
て溶接部近傍に生じたりする。そこで、製造あるいは施
工終了時にその残留応力を測定し、評価しておくこと
は、健全性確保のうえで重要なことである。
Residual stress of a structure is generated in the base metal portion due to cold bending during manufacturing or in the vicinity of the welded portion due to heat history during welding. Therefore, it is important to measure and evaluate the residual stress at the end of manufacturing or construction in order to ensure soundness.

【0004】ところで、最近では、構造物の材料表面の
残留応力が圧縮になるような表面改質技術、例えば、シ
ョットブラスト、アイスブラストなどが開発され、その
適用が検討されている。その適用性検討の一環として、
照射された材料が、これらの表面改質技術により確実に
圧縮残留応力が生じるのかを確かめることが不可欠にな
っている。
By the way, recently, a surface modification technique for compressing the residual stress on the material surface of the structure, such as shot blasting or ice blasting, has been developed and its application is under consideration. As part of the applicability study,
It is essential to make sure that the irradiated material reliably undergoes compressive residual stress due to these surface modification techniques.

【0005】残留応力を非破壊的にしかも精度よく測定
できる手法としてはX線応力測定が唯一の方法である。
その従来のX線応力測定装置の構成例について図2を参
照しながら説明する。
X-ray stress measurement is the only method capable of non-destructively and accurately measuring residual stress.
An example of the configuration of the conventional X-ray stress measuring device will be described with reference to FIG.

【0006】すなわち、図2におけるX線応力測定装置
ではX線管1で発生させた入射X線2を被測定物3に照
射し、回折X線4を比例計数管、シンチレーション計数
管などの検出器5により測定して回折X線4の強度分布
を測定する。複数のX線の入射角度ψでの回折ピーク角
度の変化を求めることで残留応力が測定できる。
That is, in the X-ray stress measuring apparatus shown in FIG. 2, the incident X-ray 2 generated by the X-ray tube 1 is applied to the DUT 3 and the diffracted X-ray 4 is detected by a proportional counter, a scintillation counter or the like. The intensity distribution of the diffracted X-ray 4 is measured by the instrument 5. Residual stress can be measured by obtaining changes in diffraction peak angles at a plurality of X-ray incident angles ψ.

【0007】[0007]

【発明が解決しようとする課題】被測定物3が中性子照
射を受けている場合、被測定物3からは回折X線4と同
様の性質を持つγ線6がバックグランドとして多数放射
しており、そのγ線6がノイズとして回折X線4と共に
検出器5に計測される。
When the DUT 3 is irradiated with neutrons, a large number of γ-rays 6 having the same properties as the diffracted X-rays 4 are emitted from the DUT 3 as the background. The γ-ray 6 is measured as noise by the detector 5 together with the diffracted X-ray 4.

【0008】その結果、図3に示すように、本来の材料
からの回折強度分布7に比べてバックグランド強度が高
くなったノイズを含んだ回折強度分布8のようになり、
回折X線4の回折ピーク9の強度IP とバックグランド
強度IB とのSN比(IP /IB )が小さくなる。
As a result, as shown in FIG. 3, a diffraction intensity distribution 8 including noise having a background intensity higher than that of the original diffraction intensity distribution 7 is obtained.
The SN ratio (I P / I B ) between the intensity I P of the diffraction peak 9 of the diffracted X-ray 4 and the background intensity I B becomes small.

【0009】このため、応力測定精度が非常に悪くなっ
たり、さらに照射量の高い材料の測定では、回折ピーク
強度が照射材からのγ線のノイズレベルと同等あるいは
それ以下となって測定が不可能になるなどの課題が生じ
る。
For this reason, the stress measurement accuracy becomes very poor, and in the measurement of a material with a high irradiation dose, the diffraction peak intensity becomes equal to or lower than the noise level of the γ-ray from the irradiation material, and the measurement cannot be performed. There will be issues such as becoming possible.

【0010】本発明は上記課題を解決するためになされ
たもので、たとえば原子力プラントの原子炉圧力容器、
炉内構造物などの中性子照射を受けた被測定物表面の残
留応力を精度よく測定できるX線応力測定装置を提供す
ることにある。
The present invention has been made to solve the above-mentioned problems, and for example, a reactor pressure vessel of a nuclear power plant,
An object of the present invention is to provide an X-ray stress measuring device capable of accurately measuring the residual stress on the surface of the object to be measured, which has been irradiated with neutrons such as internal structures of a reactor.

【0011】[0011]

【課題を解決するための手段】本発明はX線管と、この
X線管からの入射X線を中性子照射された被測定物に入
射し該被測定物からのバックグランドノイズを遮蔽する
遮蔽体と、前記被測定物からの1次回折X線の連続X線
と特性X線とを分離し単色化するモノクロメータと、こ
のモノクロメータから反射して得られた2次回折X線を
検出するX線にエネルギー依存性を有する比例計数管検
出器とを具備したことを特徴とする。
SUMMARY OF THE INVENTION The present invention is an X-ray tube and a shield for making incident X-rays from the X-ray tube incident on a neutron-irradiated DUT and shielding background noise from the DUT. A monochromator that separates the body, the continuous X-rays of the first-order diffracted X-rays from the object to be measured and the characteristic X-rays into a single color, and detects the second-order diffracted X-rays reflected by the monochromator. And a proportional counter detector having energy dependence on the X-rays.

【0012】[0012]

【作用】X線管から被測定物にX線を入射する。鉛板な
どの遮蔽体により被測定物からのバックグランドγ線を
遮蔽する。1次回折X線の連続X線と特性X線とをモノ
クロメータで分離(単色化)する。分離された2次回折
X線を比例計数管で検出する。
Function: X-rays are incident on the object to be measured from the X-ray tube. A shield such as a lead plate shields background γ rays from the DUT. A continuous X-ray of the first-order diffracted X-ray and a characteristic X-ray are separated (monochromatic) by a monochromator. The separated second-order diffracted X-rays are detected by a proportional counter.

【0013】本発明によるX線応力測定装置では、中性
子照射を受けた被測定物からのバックグランドノイズの
γ線を検出器で測定する程度が大幅に改善され、本来必
要である材料の回折X線(特性X線)のピークを精度よ
く検出できることになる。その結果、応力測定が可能に
なるとともに、精度も非照射の材料と同等に確保できる
ようになる。
In the X-ray stress measuring apparatus according to the present invention, the degree to which the detector measures the γ-rays of the background noise from the DUT that has been irradiated with neutrons is greatly improved, and the diffraction X The peak of the line (characteristic X-ray) can be accurately detected. As a result, the stress can be measured and the accuracy can be secured in the same level as the non-irradiated material.

【0014】[0014]

【実施例】図1および図2を参照しながら本発明に係る
X線応力測定装置の一実施例を説明する。図1における
X線応力測定装置は中性子照射された被測定物3にX線
2を入射するX線管1と、被測定物3からの回折X線測
定系として順次配置された遮蔽体10、モノクロメータ11
および比例計数管12とからなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the X-ray stress measuring apparatus according to the present invention will be described with reference to FIGS. The X-ray stress measurement apparatus in FIG. 1 is an X-ray tube 1 for injecting X-rays 2 onto a neutron-irradiated DUT 3, and a shield 10 sequentially arranged as a diffracted X-ray measurement system from the DUT 3. Monochromator 11
And a proportional counter 12.

【0015】上記実施例においては従来のX線応力測定
装置と同様にX線管1から発生した入射X線2を被測定
物3の測定面に照射する。X線の回折する方向は入射X
線2の波長、被測定物3の測定格子面によりブラッグの
式から決まるので、1次回折X線13の回折角方向近傍を
除いて鉛板などの遮蔽体10により遮蔽し、被測定物3か
らのγ線6が比例計数管12に至る量を少なくする。
In the above embodiment, the incident X-ray 2 generated from the X-ray tube 1 is applied to the measurement surface of the DUT 3 as in the conventional X-ray stress measuring apparatus. X-ray diffraction direction is incident X
Since the wavelength of the line 2 and the measurement lattice plane of the DUT 3 are determined by the Bragg's equation, the object to be measured 3 is shielded by a shield 10 such as a lead plate except in the vicinity of the diffraction angle direction of the first-order diffracted X-ray 13. The amount of .gamma.

【0016】しかし、遮蔽していない部分からγ線は1
次回折X線13と一緒に通過するので、さらにモノクロメ
ータ11を使用する。モノクロメータ11は湾曲させた反射
効率の大きい結晶、例えばグラファイトなどであり、X
線やγ線を白色成分と分離して単色化することができ
る。被測定物3からのγ線6は白色に近く、また、応力
測定に必要なのは回折X線の特性X線である。
However, the γ ray from the unshielded portion is 1
Further, the monochromator 11 is used since it passes together with the next-order diffracted X-ray 13. The monochromator 11 is a curved crystal having a high reflection efficiency, such as graphite, and
Lines and γ-rays can be separated from the white component to be monochromatic. The γ-ray 6 from the DUT 3 is close to white, and what is necessary for the stress measurement is the characteristic X-ray of the diffracted X-ray.

【0017】したがって、モノクロメータ11により、1
次回折X線13を反射して2次回折X線14を得ることで、
被測定物3からのγ線6によるノイズレベルを大幅に下
げ、かつ回折ピークが鮮明に得られる回折X線を比例計
数管12に導けることになる。
Therefore, with the monochromator 11, 1
By reflecting the second diffraction X-ray 13 and obtaining the second diffraction X-ray 14,
The noise level due to the γ-rays 6 from the DUT 3 can be greatly reduced, and the diffracted X-rays whose diffraction peaks are clearly obtained can be guided to the proportional counter 12.

【0018】比例計数管12としては、ガイガーミュラー
(GM)計数管、シンチレーション計数管(SC)、比
例計数管(PC)などがあるが、本実施例においては計
数するX線のエネルギー依存性のある比例計数管12を採
用することで、被測定物3からの高いエネルギーのγ線
を識別して計数しないようにする。
As the proportional counter 12, there are a Geiger-Muller (GM) counter, a scintillation counter (SC), a proportional counter (PC) and the like. In the present embodiment, the energy dependence of the X-rays to be counted is used. By adopting a certain proportional counter 12, the high energy γ-rays from the DUT 3 are identified and not counted.

【0019】この結果、図3に示すように、従来のX線
応力測定装置(図2参照)ではバックグランド強度が高
くなった回折強度分布8であったものが、本実施例によ
ると、照射材からのγ線ノイズだけを大幅に低減でき、
本来の被測定物3からの回折ピーク9が鮮明に得られる
ような回折強度分布7が得られる。なお、θは回折角
で、材料の持っている格子面と回折X線との角度を示
す。
As a result, as shown in FIG. 3, in the conventional X-ray stress measuring device (see FIG. 2), the diffraction intensity distribution 8 having the high background intensity was used. Only γ-ray noise from the material can be significantly reduced,
The diffraction intensity distribution 7 is obtained so that the original diffraction peak 9 from the DUT 3 can be obtained clearly. In addition, θ is a diffraction angle and represents an angle between the lattice plane of the material and the diffracted X-ray.

【0020】すなわち、回折X線の回折ピーク9の強度
P とバックグランド強度IB とのSN比(IP
B )のよいデータが得られることになり、X線回折に
よる応力測定が可能となり、しかも未照射材と同等程度
の精度が期待できる。
That is, the SN ratio of the intensity I P of the diffraction peak 9 of the diffracted X-ray and the background intensity I B (I P /
Since good data of I B ) can be obtained, the stress can be measured by X-ray diffraction, and the accuracy comparable to that of the unirradiated material can be expected.

【0021】[0021]

【発明の効果】本発明によれば従来の装置では困難であ
った照射された被測定物の表層の残留応力を精度よく測
定することができる。この結果、炉内構造材料の残留応
力測定により照射誘起型応力腐食割れ感受性が把握で
き、健全性評価に役立つとともに、構造物の材料表面に
残留応力が圧縮になるような表面改質技術の適用性検討
に不可欠な確認の測定が可能になるなどの利点が生じ
る。
According to the present invention, it is possible to accurately measure the residual stress in the surface layer of the irradiated object to be measured, which was difficult with the conventional apparatus. As a result, the irradiation-induced stress corrosion cracking susceptibility can be grasped by measuring the residual stress of the structural material inside the reactor, which is useful for soundness evaluation and the application of surface modification technology that compresses the residual stress on the material surface of the structure. There are advantages such as the ability to measure confirmations that are essential for sex studies.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る照射材のX線応力測定装置の一実
施例を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of an X-ray stress measuring apparatus for irradiated material according to the present invention.

【図2】従来のX線応力測定装置を示す構成図。FIG. 2 is a configuration diagram showing a conventional X-ray stress measurement device.

【図3】従来例と本発明例との効果を説明するための回
折強度分布図。
FIG. 3 is a diffraction intensity distribution diagram for explaining the effect of the conventional example and the present invention example.

【符号の説明】[Explanation of symbols]

1…X線管、2…入射X線、3…被測定物、4…回折X
線、5…検出器、6…γ線、7…回折強度分布、8…ノ
イズを含んだ回折強度分布、9…回折ピーク、10…遮蔽
体、11…モノクロメータ、12…比例計数管、13…1次回
折X線、14…2次回折X線。
1 ... X-ray tube, 2 ... Incident X-ray, 3 ... DUT, 4 ... Diffraction X
Lines, 5 ... Detector, 6 ... γ-ray, 7 ... Diffraction intensity distribution, 8 ... Diffraction intensity distribution including noise, 9 ... Diffraction peak, 10 ... Shield, 11 ... Monochromator, 12 ... Proportional counter, 13 … First-order diffracted X-rays, 14… Second-order diffracted X-rays.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X線管と、このX線管からの入射X線を
中性子照射された被測定物に入射し該被測定物からのバ
ックグランドノイズを遮蔽する遮蔽体と、前記被測定物
からの1次回折X線の連続X線と特性X線とを分離し単
色化するモノクロメータと、このモノクロメータから反
射して得られた2次回折X線を検出するX線にエネルギ
ー依存性を有する比例計数管検出器とを具備したことを
特徴とするX線応力測定装置。
1. An X-ray tube, a shield for making incident X-rays from the X-ray tube incident on a neutron-irradiated object to be measured, and shielding background noise from the object to be measured, and the object to be measured. Dependence of energy on the monochromator that separates the continuous X-rays of the first-order diffracted X-rays and the characteristic X-rays into a single color and the X-rays that detect the second-order diffracted X-rays obtained by reflecting from the monochromator An X-ray stress measuring device, comprising: a proportional counter detector having
JP4248009A 1992-09-17 1992-09-17 X-ray stress measurement apparatus Pending JPH06102103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248009A JPH06102103A (en) 1992-09-17 1992-09-17 X-ray stress measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248009A JPH06102103A (en) 1992-09-17 1992-09-17 X-ray stress measurement apparatus

Publications (1)

Publication Number Publication Date
JPH06102103A true JPH06102103A (en) 1994-04-15

Family

ID=17171842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248009A Pending JPH06102103A (en) 1992-09-17 1992-09-17 X-ray stress measurement apparatus

Country Status (1)

Country Link
JP (1) JPH06102103A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229881A (en) * 1996-02-28 1997-09-05 Shimadzu Corp X-ray diffraction apparatus
CN103630564A (en) * 2013-03-29 2014-03-12 南车青岛四方机车车辆股份有限公司 Measure method for residual stress of high-speed train body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229881A (en) * 1996-02-28 1997-09-05 Shimadzu Corp X-ray diffraction apparatus
CN103630564A (en) * 2013-03-29 2014-03-12 南车青岛四方机车车辆股份有限公司 Measure method for residual stress of high-speed train body
CN103630564B (en) * 2013-03-29 2016-08-03 中车青岛四方机车车辆股份有限公司 High-speed train body residual stress measuring method

Similar Documents

Publication Publication Date Title
JP2632712B2 (en) Equipment for criticality control and concentration measurement of fissile material
US4680470A (en) Method and apparatus for crack detection and characterization
EP0886759A1 (en) Compton backscatter pipe wall thickness gauge employing focusing collimator and annular detector
CN113703029A (en) On-line monitoring method and system for obtaining gadolinium concentration by measuring gamma rays
US4622200A (en) Non-destructive method for determining neutron exposure and constituent concentrations of a body
JPH10123070A (en) Hydrogen content analyzer
JPH06102103A (en) X-ray stress measurement apparatus
US2967937A (en) Method and apparatus for measuring thickness
US4510117A (en) Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond
JP3349180B2 (en) How to measure spent fuel
JP2526392B2 (en) Nondestructive inspection system for fuel rods for nuclear reactors
Meyer et al. Nondestructive examination guidance for dry storage casks
JP2008157763A (en) Moisture measuring device and method
JPS58223006A (en) Method and device for measuring thickness of pure zirconium liner of fuel coating pipe
KR102641920B1 (en) Method on non-destructive measurement of characteristics and distribution of radioactive materials inside concrete structures of nuclear power plants
RU2800807C1 (en) Method for control of radiation-protective properties of sheet materials for workwear
Berger et al. Neutron radiographic inspection of heavy metals and hydrogenous materials
JP4088455B2 (en) Method and apparatus for measuring thickness of multi-layer material
US4031387A (en) Method of determining whether radioactive contaminants are inside or outside a structure
Bossi et al. Novel methods for aircraft corrosion monitoring
Chulapakorn et al. Determination of neutron image quality of compact collimator facility for non-destructive testing
Xu A high speed Compton scatter imaging system: Theory, experiments and implementation
JP3830644B2 (en) Fuel assembly verification method and verification system
McGonnagle Nondestructive testing of nuclear reactor components
JPH0464438B2 (en)