JPH06101794A - Fluid pressure pulsation absorbing device - Google Patents

Fluid pressure pulsation absorbing device

Info

Publication number
JPH06101794A
JPH06101794A JP25028592A JP25028592A JPH06101794A JP H06101794 A JPH06101794 A JP H06101794A JP 25028592 A JP25028592 A JP 25028592A JP 25028592 A JP25028592 A JP 25028592A JP H06101794 A JPH06101794 A JP H06101794A
Authority
JP
Japan
Prior art keywords
fluid
pipe
pressure pulsation
outlet pipe
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25028592A
Other languages
Japanese (ja)
Inventor
Tetsuya Shimazaki
哲也 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25028592A priority Critical patent/JPH06101794A/en
Publication of JPH06101794A publication Critical patent/JPH06101794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)
  • Pipe Accessories (AREA)

Abstract

PURPOSE:To provide a fluid pressure pulsation absorbing device which possesses the high reducing effect for the pressure pulsation and durability for a long period. CONSTITUTION:A fluid pressure pulsation absorbing device is equipped with an inlet pipe 12, outlet pipe 13, conduit part 11 which is made of rigid body and equipped with the fluid flow area larger than that of the inlet pipe 12 and the outlet pipe 13, a plurality of perforated plate 15 which are successively installed, keeping an interval, along the flow direction of the fluid 10 in the conduit part 11 and each of which has a number of through holes 15a, and a connecting pipe 17 whose fluid passing area installed between the terminal part 11c of the conduit part 11 and the outlet pipe 13 is gradually drawn to the fluid passing area of the outlet pipe 13 toward the downstream side of the fluid 10. Accordingly, the swirl in the fluid 10 as the main cause of the pressure pulsation is drastically reduced by the facts that the fluid 10 forms a laminar flow or the like because of the fluid passing area in the wide conduit part 11 or the fluid 10 is allowed to pass through a flow passage having a regulated narrow area in the passing in a through hole 15a having a small diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば流体を循環して
発熱する被冷却体を冷却する冷却装置などの配管系統に
挿入されて使用される流体圧力脈動吸収器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid pressure pulsation absorber which is used by being inserted into a piping system such as a cooling device for cooling an object to be cooled which circulates a fluid to generate heat.

【0002】[0002]

【従来の技術】配管によって液体または気体などの流体
を移送あるいは循環して用いる装置がしばしば使用され
ている。こうした装置では、流体の圧送のためのポンプ
装置が有限の羽根枚数を持つ羽根車によって圧力を発生
するため、また配管の曲がり部などで発生する乱流など
のため、流体の圧力に脈動を生ずる。この圧力脈動によ
って配管あるいは配管に接続された装置の機能に支障を
来さないようにするため、配管の適所に流体圧力脈動吸
収器を設置して圧力脈動を減じるようにするのが一般で
ある。図3にこのような配管系の一例として液体を循環
して発熱する被冷却体を冷却する冷却装置の配管系統図
を示す。図3において、33は有限の羽根枚数の羽根車
を持つポンプ装置、34は流体圧力脈動吸収器、35は
熱交換器、36は被冷却体、37は貯液槽、38は配管
である。図4は、図3においてポンプ装置33の吐液口
33aにおける液体の圧力の測定結果の一例のグラフで
ある。羽根車の羽根枚数が有限であること、あるいは配
管の曲がり部などで発生する乱流などのために約0.1
kg/cm2 の圧力脈動が生じている。
2. Description of the Related Art A device for transferring or circulating a fluid such as a liquid or a gas through a pipe is often used. In such a device, a pump device for pumping a fluid generates pressure by an impeller having a finite number of blades, and a turbulent flow generated at a bent portion of a pipe causes pulsation in the fluid pressure. . In order to prevent this pressure pulsation from interfering with the function of the pipe or the device connected to the pipe, it is common to install a fluid pressure pulsation absorber at an appropriate position of the pipe to reduce the pressure pulsation. . As an example of such a piping system, FIG. 3 shows a piping system diagram of a cooling device that circulates a liquid to cool a cooled object that generates heat. In FIG. 3, 33 is a pump device having a finite number of impellers, 34 is a fluid pressure pulsation absorber, 35 is a heat exchanger, 36 is an object to be cooled, 37 is a liquid storage tank, and 38 is piping. FIG. 4 is a graph showing an example of the measurement result of the liquid pressure at the liquid outlet 33a of the pump device 33 in FIG. Approximately 0.1 due to finite number of impeller blades or turbulent flow generated at curved parts of piping.
There is a pressure pulsation of kg / cm 2 .

【0003】図5は、このような圧力脈動を低減するた
めに用いられている従来例による流体圧力脈動吸収器の
側断面図である。以下図5に従って、従来技術による流
体圧力脈動吸収器について説明する。図5において、1
は、内側に流体10を通流させる流路を有し、壁面に複
数の孔2と両端部に接続用のネジ1a,1bを持つ金属
製の第1の筒状体。39は、第1の筒状体1の複数の孔
2と連通する脈動吸収空間4を、第1の筒状体1との間
に形成する第2の筒状体であり、ゴム等の弾性体の材料
から製作されている。第1の筒状体1の内側に圧力脈動
を持つ流体10が通流すると、流体10の一部10aは
孔2を通って脈動吸収空間4に流入するので、第2の筒
状体39に圧力脈動が伝達する。第2の筒状体39は弾
性体製であるので、圧力脈動の圧力上昇時にはその直径
を増大させて脈動吸収空間4の容積を増大することで圧
力上昇を減少させ、圧力降下時にはその直径を減少させ
て脈動吸収空間4の容積を減少することで圧力降下を減
少させる。すなわち圧力脈動はいわゆる吸収効果によっ
て低減される。また孔2を経由した流体の一部10aは
第1の筒状体1の中心部を流れる流体10の一部10b
よりも長い経路を通過するので、流体の一部10aの圧
力脈動の位相は流体10の一部10bの圧力脈動の位相
よりも遅れる。この結果、流体10の一部10aと流体
10の一部10bとが合流した位置での圧力脈動は、互
いに相殺される。すなわち圧力脈動はいわゆる干渉効果
によっても低減される。
FIG. 5 is a side sectional view of a conventional fluid pressure pulsation absorber used to reduce such pressure pulsations. A conventional fluid pressure pulsation absorber will be described with reference to FIG. In FIG. 5, 1
Is a metal first tubular body having a flow path for allowing the fluid 10 to flow therethrough and having a plurality of holes 2 on the wall surface and connecting screws 1a and 1b at both ends. Reference numeral 39 is a second tubular body that forms the pulsation absorbing space 4 communicating with the plurality of holes 2 of the first tubular body 1 with the first tubular body 1, and is made of rubber or the like. Made from body material. When the fluid 10 having the pressure pulsation flows through the inside of the first tubular body 1, a part 10 a of the fluid 10 flows into the pulsation absorbing space 4 through the hole 2, so that the second tubular body 39 enters the second tubular body 39. Pressure pulsations are transmitted. Since the second tubular body 39 is made of an elastic material, it increases its diameter when the pressure of the pressure pulsation rises, thereby increasing the volume of the pulsation absorbing space 4 to reduce the pressure rise, and when the pressure falls, the diameter thereof increases. The pressure drop is reduced by decreasing the volume of the pulsation absorbing space 4. That is, the pressure pulsation is reduced by the so-called absorption effect. Further, a part 10 a of the fluid that has passed through the hole 2 is a part 10 b of the fluid 10 that flows in the center of the first tubular body 1.
Since it passes through a longer path, the phase of the pressure pulsation of the part 10a of the fluid lags the phase of the pressure pulsation of the part 10b of the fluid 10. As a result, the pressure pulsations at the position where the part 10a of the fluid 10 and the part 10b of the fluid 10 merge together cancel each other out. That is, the pressure pulsation is also reduced by the so-called interference effect.

【0004】[0004]

【発明が解決しようとする課題】前述した従来技術によ
る流体圧力脈動吸収器においては、第1の筒状体との間
に脈動吸収空間を形成する脈動吸収室である第2の筒状
体が、ゴム等の機械的強度が低い弾性体から製作されれ
いるため、通常使用レベルの流体の使用圧力に対する耐
圧力(5〜10kG/cm2 )を持たせるためには弾性
体を厚肉にすることを要するので所要の吸収効果を持た
せることができないし、またゴム等の劣化があるため長
期耐久性が劣るなどの問題があった。
In the fluid pressure pulsation absorber according to the above-mentioned prior art, the second cylindrical body which is the pulsation absorption chamber forming the pulsation absorption space between the second cylindrical body and the first cylindrical body is provided. Since it is made of elastic material such as rubber, which has low mechanical strength, the elastic material should be thick in order to have withstand pressure (5-10 kG / cm 2 ) against the working pressure of the fluid at the normal usage level. Therefore, there is a problem that the required absorption effect cannot be provided, and the long-term durability is deteriorated due to deterioration of rubber and the like.

【0005】本発明は前述の従来技術の問題点に鑑みな
されたものであり、その目的は、圧力脈動の高い低減効
果を持ち、しかも長期耐久性を備えた流体圧力脈動吸収
器を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a fluid pressure pulsation absorber having a high effect of reducing pressure pulsation and having long-term durability. It is in.

【0006】[0006]

【課題を解決するための手段】本発明では前述の目的
は、 1)流体を流入させる入口管と流体を流出させる出口管
をその両端部にそれぞれ有し前記入口管ならびに前記出
口管の有する流体通流面積よりも広い流体通流面積を備
える直管状の剛体製管路部と、多数の貫通孔が穿たれて
おり前記管路部の前記流体の通流路内に前記流体の通流
する方向に沿って間隔を設けて順次装着された複数の多
孔板を備えた構成とすること、また 2)前記1項記載の手段において、管路部と出口管との
接続部の流体通流面積は、出口管の有する流体通流面積
にまで前記流体の下流側となるに従い絞られた構成とす
ること、また 3)前記1項記載の手段において、出口管が接続される
管路部の端末部に多孔板を装着した構成とすること、さ
らにまた 4)前記1項ないし3項記載の手段において、管路部と
入口管と出口管はいずれも円筒状をなし、また多孔板の
外径は前記管路部の内径と同一寸法である構成とするこ
と、により達成される。
In the present invention, the above-mentioned objects are as follows: 1) An inlet pipe through which a fluid flows and an outlet pipe through which a fluid flows out are provided at both ends of the inlet pipe and the fluid contained in the outlet pipe and the outlet pipe, respectively. A straight tubular rigid pipe section having a fluid flow area larger than the flow area and a large number of through holes are formed to allow the fluid to flow into the fluid flow path of the fluid path section. A plurality of perforated plates which are sequentially mounted at intervals along the direction, and 2) in the means described in the above item 1, the fluid flow area of the connecting portion between the pipe line portion and the outlet pipe. Is configured so as to be narrowed to the downstream side of the fluid to the fluid flow area of the outlet pipe, and 3) in the means described in the above 1, the end of the pipe line portion to which the outlet pipe is connected. A porous plate is attached to the section, and 4) the above 1 In the means described in the items 1 to 3, the pipe line portion, the inlet pipe, and the outlet pipe are all cylindrical, and the outer diameter of the perforated plate is the same as the inner diameter of the pipe line portion. To be achieved.

【0007】[0007]

【作用】本発明においては、流体を流入させる例えば円
筒状の入口管と流体を流出させる例えば円筒状の出口管
をその両端部にそれぞれ有し、入口管ならびに出口管の
有する流体通流面積よりも広い流体通流面積を備える例
えば円筒状の剛体製管路部と、多数の貫通孔が穿たれて
おり管路部の前記流体の通流路内に流体の通流する方向
に沿って間隔を設けて順次装着される例えば管路部の内
径と同一寸法の外径を有する複数の多孔板を備えた構成
とすることにより、圧力脈動の主たる原因である渦を含
んだ流体が入口管から流入したとすると、流体は、まず
広い管路部の流体通流面積によりその流速が低減される
ことにより、流体は層流域あるいはそれに近い流れとな
って管路部内を通流することとなるので、流れ込んだ流
体に含まれていた渦は下流となるに従い急速に減衰され
る。またこのように減衰された渦は、流体が多孔板に穿
たれた貫通孔を通流する際に、狭い面積に規制された流
路を通過させられることにより、強制的に抑制される。
低流速と多孔板の通流とを組み合わせることで、比較的
短い長さの管路部により、流体中の渦は大幅に減衰され
る。なお多孔板の貫通孔に流れ込んだり多孔板の貫通孔
から流れ出たりする際において、流体の流速が遅いため
に流体中に新たに渦が発生することはない。
In the present invention, for example, a cylindrical inlet pipe through which a fluid flows in and a cylindrical outlet pipe through which a fluid flows out are provided at both ends thereof, respectively. Also has a wide fluid flow area, for example, a cylindrical rigid pipe section and a large number of through holes are formed in the fluid passage of the pipe section along the direction in which the fluid flows. By providing a plurality of perforated plates having the same outer diameter as the inner diameter of the pipe line portion, which are sequentially mounted, the fluid containing vortices, which is the main cause of pressure pulsation, flows from the inlet pipe. When the fluid flows in, the flow velocity of the fluid is first reduced by the fluid flow area of the wide pipe section, so that the fluid becomes a laminar flow region or a flow close to it and flows through the pipe section. Contained in the flowing fluid It is rapidly attenuated in accordance with the downstream. Further, the vortex thus attenuated is forcibly suppressed by allowing the fluid to pass through the flow path regulated to have a small area when flowing through the through hole formed in the perforated plate.
By combining the low flow velocity with the flow through the perforated plate, the vortex in the fluid is significantly damped by the relatively short length of the conduit. When flowing into the through hole of the perforated plate or flowing out from the through hole of the perforated plate, a new vortex is not generated in the fluid due to the low flow velocity of the fluid.

【0008】また、前記構成の流体圧力脈動吸収器にお
いて、管路部と出口管との接続部の流体通流面積を、出
口管の有する流体通流面積にまで、流体の下流側となる
に従い徐々に絞られる構成とすることにより、流体が、
広い流体通流面積を有する管路部から狭い流体通流面積
を有する出口管およびそれに連なる流体の配管に流れ込
む際に、流速が緩やかに変化するために、流体中に新た
な渦が生じることはない。
Further, in the fluid pressure pulsation absorber having the above-mentioned structure, the fluid flow area of the connecting portion between the pipe line portion and the outlet pipe is made to reach the fluid flow area of the outlet pipe as the downstream side of the fluid flows. By gradually squeezing the fluid,
When flowing from a pipe section having a wide fluid flow area into an outlet pipe having a narrow fluid flow area and a fluid pipe connected to the outlet pipe, a new vortex is not generated in the fluid because the flow velocity changes gently. Absent.

【0009】さらにまた、前記構成の流体圧力脈動吸収
器において、出口管が接続される管路部の端末部に多孔
板を装着した構成とすることにより、流体が、広い流体
通流面積を有する管路部から狭い流体通流面積を有する
出口管およびそれに連なる流体の配管に流れ込む際に、
流体は多孔板に穿たれた狭い面積の貫通孔に規制を受け
ている状態のままで出口管に流れ出るために、流体中に
新たな渦が生じることはない。
Further, in the fluid pressure pulsation absorber having the above-mentioned structure, the perforated plate is attached to the end portion of the conduit portion to which the outlet pipe is connected, so that the fluid has a wide fluid flow area. When flowing into the outlet pipe having a narrow fluid flow area and the fluid piping connected to it from the pipe line part,
Since the fluid flows out to the outlet pipe while being regulated by the through hole having a small area formed in the perforated plate, no new vortex is generated in the fluid.

【0010】[0010]

【実施例】以下本発明の実施例を図面を参照して詳細に
説明する。 実施例1;図1は、本発明の請求項1,2,4に対応す
る一実施例による流体圧力脈動吸収器の、(a)は側断
面図、(b)は図1aのA−A断面図である。図1にお
いて、図5に示した従来例による流体圧力脈動吸収器と
同一部分には同じ符号を付し、その説明を省略する。
Embodiments of the present invention will now be described in detail with reference to the drawings. Embodiment 1; FIG. 1 is a side sectional view of a fluid pressure pulsation absorber according to an embodiment corresponding to claims 1, 2 and 4 of the present invention, (a) is a side sectional view, and (b) is AA of FIG. 1a. FIG. In FIG. 1, the same parts as those of the conventional fluid pressure pulsation absorber shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.

【0011】図1において、11は、内側に流体10を
通流させる流路を持つ円筒状でしかも金属製の管路部で
あり、流体10が流入する側に金属製の入口管12が、
流体10が流出する側に金属製の出口管13がそれぞれ
装着されている。管路部11は、入口管12ならびに出
口管13の持つ流体10が通流するための流体通流面積
よりも、十分に広い流体通流面積を備える直管状の管路
部本体11aと、管路部本体11aの流体10が流入す
る側に溶接により取り付けられて、入口管12を装着す
るためのフランジ11bとで構成されている。入口管1
2は、配管38と同一径を持つ円筒状の入口管本体12
aと、入口管本体12aに溶接により取り付けられて、
入口管12をフランジ11bに装着するためのフランジ
12bと、入口管本体12aに溶接により取り付けられ
て、入口管12を配管38に取り付けるためのフランジ
12cとで構成され、出口管13は、配管38と同一径
を持つ円筒状の出口管本体13aと、出口管本体13a
に溶接により取り付けられて、出口管13を配管38に
取り付けるためのフランジ13bとで構成されている。
In FIG. 1, reference numeral 11 denotes a cylindrical pipe portion having a flow passage for allowing the fluid 10 to flow therethrough, and a metal inlet pipe 12 is provided on the side where the fluid 10 flows.
Metal outlet pipes 13 are attached to the sides where the fluid 10 flows out. The pipe passage portion 11 has a straight pipe-like pipe passage portion main body 11a having a fluid passage area sufficiently wider than the fluid passage area for the fluid 10 of the inlet pipe 12 and the outlet pipe 13 to pass through, and A flange 11b for mounting the inlet pipe 12 is attached by welding to the side of the passage body 11a on which the fluid 10 flows. Inlet pipe 1
2 is a cylindrical inlet pipe body 12 having the same diameter as the pipe 38.
a and by being attached to the inlet pipe body 12a by welding,
A flange 12b for mounting the inlet pipe 12 on the flange 11b and a flange 12c for mounting the inlet pipe 12 on the pipe 38 by welding to the inlet pipe main body 12a, and the outlet pipe 13 is constituted by the pipe 38. And a cylindrical outlet pipe body 13a having the same diameter as the outlet pipe body 13a
And a flange 13b for attaching the outlet pipe 13 to the pipe 38 by welding.

【0012】17は、管路部11の端末部11cと出口
管13の出口管本体13aとを接続するための円筒状で
しかも金属製の接続管であり、管路部11側の端部は管
路部本体11aの内径と同一の外径とし、出口管13側
の端部は出口管本体13aの径と同一径とし、管路部1
1側の端部から出口管13側の端部に向かって、その内
径が連続して徐々に低減する形状をなしており、管路部
11側の端部は管路部11の端末部11cと、また、出
口管13側の端部は出口管本体13aとそれぞれ溶接に
より取り付けられている。
Reference numeral 17 denotes a cylindrical connecting pipe made of metal for connecting the terminal portion 11c of the pipe passage portion 11 and the outlet pipe main body 13a of the outlet pipe 13, and the end portion on the pipe passage portion 11 side is The outer diameter is the same as the inner diameter of the conduit body 11a, and the end on the outlet pipe 13 side is the same diameter as the outlet body 13a.
The inner diameter thereof is continuously and gradually reduced from the end on the side of 1 toward the end on the side of the outlet pipe 13, and the end on the side of the pipeline 11 is the terminal portion 11c of the pipeline 11. Further, the end portion on the outlet pipe 13 side is attached to the outlet pipe main body 13a by welding.

【0013】15は、外径が管路部本体11aの内径と
同一寸法を有する円板状をした金属製の多孔板であり、
多数の小径の貫通孔15aを設けている。多孔板15
は、外径が管路部本体11aの内径と同一寸法を有する
円筒状をした金属製の間隔管16と交互に管路部本体1
1a内に挿入され、管路部11の流体10の通流路内に
流体10の通流する方向に沿って、間隔管16の長さ方
向寸法に従う間隔を設けて順次装着される。多孔板15
の管路部本体11aへの装着後、フランジ11bとフラ
ンジ12bは、ボルト等の締結手段により密閉構造によ
り一体に締結される。
Reference numeral 15 is a disk-shaped metal perforated plate having an outer diameter equal to the inner diameter of the conduit body 11a,
A large number of small-diameter through holes 15a are provided. Perforated plate 15
Are alternately arranged with the cylindrical metal spacing pipe 16 having an outer diameter equal to the inner diameter of the conduit body 11a.
1a, and is sequentially mounted in the passage of the fluid 10 in the pipe line portion 11 along the direction in which the fluid 10 flows, at intervals according to the lengthwise dimension of the spacing pipe 16. Perforated plate 15
After being mounted on the conduit body 11a, the flange 11b and the flange 12b are integrally fastened together by a fastening structure such as a bolt with a hermetically sealed structure.

【0014】本発明では前述の構成としたので、圧力脈
動の主たる原因である渦を含んだ流体10が入口管12
から流入したとすると、流体10は、まず広い流体通流
面積を備える管路部11の流体通流部位を通流すること
になるが、その流速は、「配管38の流体通流面積」/
「管路部11の流体通流面積」により大幅に低減される
ことになる。これにより、流体10の流れの状態は、層
流域あるいはそれに近い流れとなって管路部11内を通
流することとなるので、流れ込んだ流体10に含まれて
いた渦は、管路部11内を通流するに従い急速に減衰さ
れる。渦が減衰されることにより、流体10の圧力変動
も減少される。またこのように減衰されて渦流の弱まっ
た渦は、流体10が多孔板15に穿たれた小径の貫通孔
15aを通流する際に、狭い面積に規制された流路を通
過させられることによる整流効果で、さらに強制的に抑
制される。このように、低流速と小径の貫通孔15a中
の通流とを組み合わせることで、比較的短い長さの管路
部11により、流体10中の渦は大幅に減衰される。
Since the present invention has the above-mentioned structure, the fluid 10 containing the vortex which is the main cause of the pressure pulsation is the inlet pipe 12.
Assuming that the fluid 10 has flowed in from, the fluid 10 first flows through the fluid passage portion of the pipe line portion 11 having a large fluid passage area, and the flow velocity is "the fluid passage area of the pipe 38" /
It is significantly reduced by the "fluid flow area of the conduit portion 11". As a result, the flow state of the fluid 10 becomes a laminar flow region or a flow close to it and flows through the inside of the pipe line portion 11. Therefore, the vortex contained in the flowing-in fluid 10 is generated. It is rapidly attenuated as it flows through. The damping of the vortices also reduces the pressure fluctuations of the fluid 10. Further, the vortex thus attenuated and weakened in vortex flow is caused when the fluid 10 flows through the small-diameter through hole 15a formed in the perforated plate 15 and passes through the flow passage restricted to a small area. With the rectification effect, it is suppressed even further. In this way, by combining the low flow velocity and the flow in the small-diameter through hole 15a, the vortex in the fluid 10 is significantly attenuated by the pipe path portion 11 having a relatively short length.

【0015】なお、多孔板15の貫通孔15aに流れ込
んだり多孔板15の貫通孔15aから流れ出たりする際
において、流体10の流速が遅いために流体10中に新
たに渦が発生することはない。渦が大幅に減衰されて圧
力変動を減少された流体10は、出口管13から流体通
流面積の狭い配管38へ流れ出すのであるが、管路部本
体11aと出口管13とは、接続管17により接続さて
いるので、管路部11から出口管13の間の流体10の
流速が緩やかに変化するために、流体10中に新たな渦
が生じることは防止される。
When flowing into the through hole 15a of the perforated plate 15 or flowing out from the through hole 15a of the perforated plate 15, a new vortex is not generated in the fluid 10 because the flow velocity of the fluid 10 is slow. . The fluid 10 in which the vortex is significantly attenuated and the pressure fluctuation is reduced flows out from the outlet pipe 13 to the pipe 38 having a small fluid flow area. The pipe line main body 11a and the outlet pipe 13 are connected to each other by the connecting pipe 17 The flow velocity of the fluid 10 between the pipe portion 11 and the outlet pipe 13 changes gently, so that a new vortex is prevented from being generated in the fluid 10.

【0016】また、流体圧力脈動吸収器を構成している
各部品の素材が、全て剛体である金属であるので、十分
に高い長期耐久性を備えるものである。 実施例2;図2は、本発明の請求項1,3,4に対応す
る一実施例による流体圧力脈動吸収器の、(a)は側断
面図、(b)は図2aのB−B断面図である。図2にお
いて、図1に示した本発明の請求項1,2,4に対応す
る流体圧力脈動吸収器、および図5に示した従来例によ
る流体圧力脈動吸収器と同一部分には同じ符号を付し、
その説明を省略する。
Further, since the material of each part constituting the fluid pressure pulsation absorber is a metal which is a rigid body, it has sufficiently high long-term durability. Embodiment 2; FIG. 2 shows a fluid pressure pulsation absorber according to an embodiment corresponding to claims 1, 3 and 4 of the present invention, (a) is a side sectional view, (b) is BB of FIG. 2a. FIG. 2, the same parts as those of the fluid pressure pulsation absorber corresponding to claims 1, 2 and 4 of the present invention shown in FIG. 1 and the conventional fluid pressure pulsation absorber shown in FIG. Attached
The description is omitted.

【0017】図2において、18は、管路部本体11a
の内径と同一径の外径および出口管本体13aの内径と
同一径の貫通孔を有する金属製の端板であり、その外径
部で管路部11の端末部11cに、その貫通孔部で出口
管本体13aに、それぞれ溶接により取り付けられる。
なお端板18に隣接して、多孔板15が装着される。本
発明では前述の構成としたので、前述の実施例1の場合
と同様に管路部1と多孔板15との組み合わせにより、
流体10中の渦が大幅に減衰される。また、渦が大幅に
減衰されて圧力変動を減少された流体10は、出口管1
3から流体通流面積の狭い配管38へ流れ出すのである
が、管路部本体11aと出口管13とは端板18で接続
され、しかも端板18に隣接して多孔板15が配置され
ているので、管路部11から流れ出る流体10は、出口
管本体13aの内径部分の貫通孔15a中を通流した
後、直ちに、この貫通孔15aによる流体通流面積の合
計面積よりも広い面積である出口管13中を流れること
となる。これにより、流体10は貫通孔15aで層流状
態の流れとされる規制を受けるとともに、これに引き続
きより流速の遅い出口管13中を流れるので、流体10
中に新たな渦が生じることは防止される。
In FIG. 2, reference numeral 18 is a conduit main body 11a.
Is an end plate made of metal having an outer diameter that is the same as the inner diameter of the outlet pipe body 13a and an inner diameter that is the same as the inner diameter of the outlet pipe body 13a. Are attached to the outlet pipe body 13a by welding.
The perforated plate 15 is mounted adjacent to the end plate 18. Since the present invention has the above-mentioned configuration, the combination of the conduit portion 1 and the perforated plate 15 is similar to the case of the above-described first embodiment.
The vortices in the fluid 10 are greatly dampened. Further, the fluid 10 in which the vortex is greatly damped and the pressure fluctuation is reduced is
Although it flows out from the pipe 3 to the pipe 38 having a small fluid flow area, the conduit body 11a and the outlet pipe 13 are connected by the end plate 18, and the perforated plate 15 is arranged adjacent to the end plate 18. Therefore, the fluid 10 flowing out from the pipe line portion 11 has a larger area than the total area of the fluid flow areas by the through holes 15a immediately after passing through the through holes 15a in the inner diameter portion of the outlet pipe body 13a. It will flow through the outlet pipe 13. As a result, the fluid 10 is regulated as a laminar flow state in the through hole 15a, and subsequently flows through the outlet pipe 13 having a slower flow velocity.
A new vortex is prevented from being generated inside.

【0018】今までの実施例1,2における説明では、
流体圧力脈動吸収器を構成している各部品の素材は、全
て金属であるとしてきたが、これに限定されるものでは
無く、例えば硬質の合成樹脂等であってもよく、また、
異種材料を混用してもよいものである。要は、長期の耐
久製を備える素材であればよいものである。またこれと
関連して、多孔板15と間隔管16を除く流体圧力脈動
吸収器の各部品は、溶接により取り付けるとしたが、こ
れに限定されるものでは無く、使用する素材に応じて、
例えば接着により取り付けてもよいものである。
In the description of Embodiments 1 and 2 above,
The material of each component constituting the fluid pressure pulsation absorber is assumed to be all metal, but the material is not limited to this, and may be, for example, a hard synthetic resin, or the like.
Different materials may be mixed. In short, any material can be used as long as it has long-term durability. Further, in connection with this, although each component of the fluid pressure pulsation absorber except for the perforated plate 15 and the interval pipe 16 is attached by welding, the present invention is not limited to this, and depending on the material used,
For example, it may be attached by adhesion.

【0019】また、今までの実施例1,2における説明
では、多孔板15は、間隔管16に挟持されることで、
所定の間隔を保持するとした。この方法によると、多孔
板15を、流体圧力脈動吸収器が装着される装置の流体
10の流速等の条件に適した孔径を有するものに随時交
換できることから、本発明による流体圧力脈動吸収器の
備える圧力変動を低減する効果を、有効に発揮すること
ができるとの利点を持つことができる。しかし、これに
限定されるものではなく、例えば流体圧力脈動吸収器の
使用条件が定まれば、それ対応した構成を備える多孔板
15を使用し、この多孔板15を所定の間隔で、溶接,
接着等の適宜の工法により管路部11に固着するもので
あってもよいものである。またこれと関連して、フラン
ジ11bとフランジ12bは、ボルト等の締結手段によ
り密閉構造により一体に締結されるとしたが、多孔板1
5が管路部11に固着される場合においては、フランジ
11bとフランジ12bの間も、溶接,接着等の適宜の
工法により互いに固着されるものであってもよいもので
ある。
Further, in the description of the first and second embodiments up to now, the perforated plate 15 is sandwiched between the spacing tubes 16,
It is assumed that the predetermined interval is maintained. According to this method, the perforated plate 15 can be replaced at any time with one having a hole diameter suitable for the conditions such as the flow velocity of the fluid 10 of the device to which the fluid pressure pulsation absorber is mounted. It is possible to have an advantage that the effect of reducing the pressure fluctuation provided can be effectively exhibited. However, the present invention is not limited to this. For example, if the usage conditions of the fluid pressure pulsation absorber are determined, a perforated plate 15 having a corresponding structure is used, and the perforated plate 15 is welded at predetermined intervals.
It may be fixed to the conduit portion 11 by an appropriate construction method such as adhesion. Further, in connection with this, the flange 11b and the flange 12b are integrally fastened by a fastening structure such as a bolt by a hermetically sealed structure.
When 5 is fixed to the conduit portion 11, the flange 11b and the flange 12b may be fixed to each other by an appropriate method such as welding or bonding.

【0020】さらにまた、今までの実施例1,2におけ
る説明では、流体圧力脈動吸収器を構成している管路部
11,多孔板15等の部品は円筒状あるいは円板状とし
てきたが、これに限定されるものではなく、例えば角筒
状あるいは長方形状としたものであってもよいものであ
る。
Furthermore, in the above description of the first and second embodiments, the components such as the pipe line portion 11 and the perforated plate 15 which constitute the fluid pressure pulsation absorber are cylindrical or disc-shaped. The shape is not limited to this, and may be, for example, a rectangular tube shape or a rectangular shape.

【0021】[0021]

【発明の効果】本発明においては、流体を流入させる入
口管と、流体を流出させる出口管をその両端部にそれぞ
れ有し、入口管ならびに出口管の有する流体が通流する
面積よりも広い流体通流面積を備える剛体製の管路部
と、多数の貫通孔が穿たれており管路部の前記流体の通
流路内に流体の通流する方向に沿って間隔を設けて順次
装着される例えば管路部の内径と同一寸法の外径を有す
る複数の多孔板を備えた構成とすることにより、圧力脈
動の主たる原因である渦を含んだ流体が入口管から流入
したとすると、流体は、まず広い管路部の流体通流面積
によりその流速が低減されることにより、流体は層流域
あるいはそれに近い流れにとなって管路部内を通流する
こととなるので、流れ込んだ流体に含まれていた渦は下
流となるに従い急速に減衰される。またこのように減衰
された渦は、流体が多孔板に穿たれた貫通孔を通流する
際に、狭い面積に規制された流路を通過させられること
により、強制的に抑制される。低流速と多孔板の通流と
を組み合わせることで、比較的短い長さの管路部によ
り、流体中の渦は大幅に減衰される。なお多孔板の貫通
孔に流れ込んだり多孔板の貫通孔から流れ出たりする際
において、流体の流速が遅いために流体中に新たに渦が
発生することはない。
According to the present invention, an inlet pipe for letting in a fluid and an outlet pipe for letting out a fluid are provided at both ends of the inlet pipe, respectively, and the fluid is wider than the area of the inlet pipe and the outlet pipe through which the fluid flows. A rigid pipe section having a flow area and a large number of through-holes are bored, and are sequentially mounted in the fluid passage of the fluid in the pipe section at intervals along the fluid flow direction. For example, if a fluid containing vortices, which is the main cause of pressure pulsation, flows in from the inlet pipe by configuring with a plurality of perforated plates that have the same outer diameter as the inner diameter of the pipeline, First, since the flow velocity is reduced due to the large fluid flow area of the pipeline, the fluid becomes a laminar flow region or a flow close to it and flows through the pipeline. The vortex included in the vortex rapidly increases in the downstream direction. It is attenuated. Further, the vortex thus attenuated is forcibly suppressed by allowing the fluid to pass through the flow path regulated to have a small area when flowing through the through hole formed in the perforated plate. By combining the low flow velocity with the flow through the perforated plate, the vortex in the fluid is significantly damped by the relatively short length of the conduit. When flowing into the through hole of the perforated plate or flowing out from the through hole of the perforated plate, a new vortex is not generated in the fluid due to the low flow velocity of the fluid.

【0022】また、前記構成の流体圧力脈動吸収器にお
いて、管路部と出口管との接続部の流体通流面積を、出
口管の有する流体通流面積にまで流体の下流側となるに
従い徐々に絞られる構成としたり、出口管が接続される
管路部の端末部に多孔板を装着した構成とすることによ
り、流体が、広い流体通流面積を有する管路部から狭い
流体通流面積を有する入口管およびそれに連なる流体の
配管に流れ込む際に、流速が緩やかに変化すること、あ
るいは、流体は多孔板に穿たれた狭い面積の貫通孔に規
制を受けている状態のままで出口管に流れ出ることのた
めに、流体中に新たな渦が生じることは防止される。
Further, in the fluid pressure pulsation absorber having the above structure, the fluid flow area of the connecting portion between the pipeline and the outlet pipe is gradually increased to the fluid flow area of the outlet pipe on the downstream side of the fluid. The fluid can be narrowed from the pipe line part with a wide fluid flow area by adopting a structure in which the perforated plate is attached to the end part of the pipe line part to which the outlet pipe is connected. The flow velocity changes slowly when it flows into the inlet pipe and the fluid pipe connected to it, or the outlet pipe remains in a state where the fluid is regulated by the through-hole with a small area formed in the perforated plate. New vortices are prevented from forming in the fluid due to the outflow to the.

【0023】以上を総合して備えることにより、液体中
の圧力脈動を大幅に低減することが可能となるととも
に、圧力脈動の低減を剛体製の構成部品で実現できるこ
とから、長期耐久性を備えることも可能となるとの効果
を奏する。
By comprehensively providing the above, it is possible to significantly reduce the pressure pulsation in the liquid, and it is possible to realize the long-term durability because the pressure pulsation can be reduced by the rigid component parts. The effect is also possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1,2,4に対応する一実施例
による流体圧力脈動吸収器の、(a)は側断面図、
(b)は図1aのA−A断面図
1 is a side sectional view of a fluid pressure pulsation absorber according to an embodiment corresponding to claims 1, 2, and 4 of the present invention, FIG.
(B) is a sectional view taken along line AA of FIG. 1a.

【図2】本発明の請求項1,3,4に対応する一実施例
による流体圧力脈動吸収器の、(a)は側断面図、
(b)は図2aのB−B断面図
FIG. 2 (a) is a side sectional view of a fluid pressure pulsation absorber according to an embodiment corresponding to claims 1, 3, and 4 of the present invention,
2B is a sectional view taken along line BB of FIG. 2A.

【図3】冷却装置の配管系統図[Fig. 3] Piping system diagram of cooling device

【図4】図3における液体圧力の測定結果の一例のグラ
FIG. 4 is a graph showing an example of the measurement result of the liquid pressure in FIG.

【図5】従来例による流体圧力脈動吸収器の側断面図FIG. 5 is a side sectional view of a conventional fluid pressure pulsation absorber.

【符号の説明】[Explanation of symbols]

10 流体 11 管路部 11c 端末部 12 入口管 13 出口管 15 多孔板 15a 貫通孔 17 接続管 DESCRIPTION OF SYMBOLS 10 Fluid 11 Pipe line part 11c Terminal part 12 Inlet pipe 13 Outlet pipe 15 Perforated plate 15a Through hole 17 Connection pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】流体を流入させる入口管と流体を流出させ
る出口管をその両端部にそれぞれ有し前記入口管ならび
に前記出口管の有する流体が通流する面積よりも広い流
体通流面積を備える直管状の剛体製管路部と、多数の貫
通孔が穿たれており前記管路部の前記流体の通流路内に
前記流体の通流する方向に沿って間隔を設けて順次装着
された複数の多孔板を備えたことを特徴とする流体圧力
脈動吸収器。
1. An inlet pipe through which a fluid flows in and an outlet pipe through which a fluid flows out are provided at both ends thereof, and have a fluid flow area larger than the area through which the fluid flows in the inlet pipe and the outlet pipe. A straight tubular rigid pipe line portion and a large number of through holes are bored, and they are sequentially mounted in the flow passage of the fluid of the pipe line portion at intervals along the direction in which the fluid flows. A fluid pressure pulsation absorber comprising a plurality of perforated plates.
【請求項2】請求項1記載の流体圧力脈動吸収器におい
て、管路部と出口管との接続部の流体通流面積は出口管
の有する流体通流面積にまで前記流体の下流側となるに
従い絞られていることを特徴とする流体圧力脈動吸収
器。
2. The fluid pressure pulsation absorber according to claim 1, wherein the fluid passage area of the connecting portion between the pipeline and the outlet pipe is on the downstream side of the fluid up to the fluid passage area of the outlet pipe. A fluid pressure pulsation absorber characterized by being throttled according to.
【請求項3】請求項1記載の流体圧力脈動吸収器におい
て、出口管が接続される管路部の端末部に多孔板を装着
したことを特徴とする流体圧力脈動吸収器。
3. The fluid pressure pulsation absorber according to claim 1, wherein a perforated plate is attached to a terminal portion of a conduit portion to which the outlet pipe is connected.
【請求項4】請求項1ないし3記載の流体圧力脈動吸収
器において、管路部と入口管と出口管はいずれも円筒状
をなし、また多孔板の外径は前記管路部の内径と同一寸
法であることを特徴とする流体圧力脈動吸収器。
4. The fluid pressure pulsation absorber according to claim 1, wherein each of the pipe line portion, the inlet pipe and the outlet pipe has a cylindrical shape, and the outer diameter of the perforated plate is the inner diameter of the pipe line portion. A fluid pressure pulsation absorber having the same dimensions.
JP25028592A 1992-09-21 1992-09-21 Fluid pressure pulsation absorbing device Pending JPH06101794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25028592A JPH06101794A (en) 1992-09-21 1992-09-21 Fluid pressure pulsation absorbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25028592A JPH06101794A (en) 1992-09-21 1992-09-21 Fluid pressure pulsation absorbing device

Publications (1)

Publication Number Publication Date
JPH06101794A true JPH06101794A (en) 1994-04-12

Family

ID=17205633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25028592A Pending JPH06101794A (en) 1992-09-21 1992-09-21 Fluid pressure pulsation absorbing device

Country Status (1)

Country Link
JP (1) JPH06101794A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538178C1 (en) * 1995-10-13 1997-03-20 Erwin W Koetter Damper plate inside pipe has perforated sectors separated from each
KR100476189B1 (en) * 2001-08-11 2005-03-16 현대자동차주식회사 Device for stabilizing pressure for diesel engine
WO2011158416A1 (en) * 2010-06-18 2011-12-22 株式会社神戸製鋼所 Low-temperature liquefied gas vaporizer
KR101294083B1 (en) * 2011-12-01 2013-08-08 (주)진양오일씰 Device for reducing air current noise of turbo-charger engine
CN103591008A (en) * 2012-08-17 2014-02-19 李宁 Reciprocating pump pulse buffer device
CN103912753A (en) * 2014-04-22 2014-07-09 合肥美的电冰箱有限公司 Pipe-expanding-type silencer
JP2016106202A (en) * 2016-01-22 2016-06-16 株式会社神戸製鋼所 Vaporizing device of low-temperature liquefied gas
EP2573449A4 (en) * 2010-06-18 2016-11-23 Kobe Steel Ltd Vaporizer for low-temperature liquefied gas
CN109253064A (en) * 2017-07-12 2019-01-22 国家电投集团科学技术研究院有限公司 Prepressing type pulse buffer applied to injecting systems
US10677503B2 (en) * 2008-01-02 2020-06-09 Johnson Controls Technology Company Heat exchanger
CN114458500A (en) * 2022-02-24 2022-05-10 哈尔滨工程大学 Multi-stage resistance-capacitance type pressure fluctuation suppression device
CN114623029A (en) * 2022-02-24 2022-06-14 哈尔滨工程大学 Double-piston series resistance-capacitance type fuel pressure fluctuation dissipation device
CN114635817A (en) * 2022-02-24 2022-06-17 哈尔滨工程大学 Pressure fluctuation suppression device based on two-stage piston spring system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538178C1 (en) * 1995-10-13 1997-03-20 Erwin W Koetter Damper plate inside pipe has perforated sectors separated from each
KR100476189B1 (en) * 2001-08-11 2005-03-16 현대자동차주식회사 Device for stabilizing pressure for diesel engine
US10677503B2 (en) * 2008-01-02 2020-06-09 Johnson Controls Technology Company Heat exchanger
EP2573449A4 (en) * 2010-06-18 2016-11-23 Kobe Steel Ltd Vaporizer for low-temperature liquefied gas
WO2011158416A1 (en) * 2010-06-18 2011-12-22 株式会社神戸製鋼所 Low-temperature liquefied gas vaporizer
JP2012002311A (en) * 2010-06-18 2012-01-05 Kobe Steel Ltd Low-temperature liquefied gas vaporizer
EP3225901A1 (en) * 2010-06-18 2017-10-04 Kabushiki Kaisha Kobe Seiko Sho Vaporizer for low-temperature liquefied gas
KR101294083B1 (en) * 2011-12-01 2013-08-08 (주)진양오일씰 Device for reducing air current noise of turbo-charger engine
CN103591008A (en) * 2012-08-17 2014-02-19 李宁 Reciprocating pump pulse buffer device
CN103912753A (en) * 2014-04-22 2014-07-09 合肥美的电冰箱有限公司 Pipe-expanding-type silencer
JP2016106202A (en) * 2016-01-22 2016-06-16 株式会社神戸製鋼所 Vaporizing device of low-temperature liquefied gas
CN109253064A (en) * 2017-07-12 2019-01-22 国家电投集团科学技术研究院有限公司 Prepressing type pulse buffer applied to injecting systems
CN109253064B (en) * 2017-07-12 2024-03-29 国家电投集团科学技术研究院有限公司 Pre-compression type pulse buffer applied to injection system
CN114458500A (en) * 2022-02-24 2022-05-10 哈尔滨工程大学 Multi-stage resistance-capacitance type pressure fluctuation suppression device
CN114623029A (en) * 2022-02-24 2022-06-14 哈尔滨工程大学 Double-piston series resistance-capacitance type fuel pressure fluctuation dissipation device
CN114635817A (en) * 2022-02-24 2022-06-17 哈尔滨工程大学 Pressure fluctuation suppression device based on two-stage piston spring system
CN114635817B (en) * 2022-02-24 2023-02-10 哈尔滨工程大学 Pressure fluctuation suppression device based on two-stage piston spring system

Similar Documents

Publication Publication Date Title
JPH06101794A (en) Fluid pressure pulsation absorbing device
US4562036A (en) Shock wave absorber having apertured plate
CN208845368U (en) Pulsation and vibration control apparatus
JPH0526539A (en) Heat-exchanger
US6158472A (en) Apparatus for damping a pulsation of a fluid conveyed through a conveying device
US3578107A (en) Pulsation dampener using nonlinear decoupling means
US3150689A (en) Fluid pulsation dampening apparatus
CN111735236A (en) Refrigerant noise reduction device and equipment with refrigeration function
US7040350B2 (en) Perforated pulsation dampener and dampening system
RU2505734C2 (en) Gas pipeline pressure pulsation damper
JPH0633917A (en) Liquid pressure reducing device
US3523557A (en) Pulsation dampener
KR20220011732A (en) Valve silencer and electronic expansion valve thereof
JPH0348395B2 (en)
JPH0247638B2 (en) HAIKANKEINOATSURYOKUMYAKUDOKYUSHUSOCHI
JPH04314978A (en) Fluid pressure pulsation absorbing device
CN221300526U (en) Pipeline multi-stage orifice plate energy dissipation device
Hubballi et al. Noise Control in Oil Hydraulic System
JPH0115993Y2 (en)
JP2001193713A (en) Orifice plate
CN216897558U (en) Refrigerant noise elimination pipeline and air conditioner
KR200233432Y1 (en) Car muffler
JPH0796109A (en) Cylindrical porous filter
JP2020045846A (en) Exhaust heat recovery device
JPH027343Y2 (en)