JPH06101621A - High-vacuum differential-pressure pumping type power generation system - Google Patents

High-vacuum differential-pressure pumping type power generation system

Info

Publication number
JPH06101621A
JPH06101621A JP4296269A JP29626992A JPH06101621A JP H06101621 A JPH06101621 A JP H06101621A JP 4296269 A JP4296269 A JP 4296269A JP 29626992 A JP29626992 A JP 29626992A JP H06101621 A JPH06101621 A JP H06101621A
Authority
JP
Japan
Prior art keywords
water
pipe
power
pump
high vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4296269A
Other languages
Japanese (ja)
Inventor
Shunichi Matsutani
俊一 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4296269A priority Critical patent/JPH06101621A/en
Publication of JPH06101621A publication Critical patent/JPH06101621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To provide inexpensive electric power, in which an energy source is limited to water power and wind power, and which is having non-pollution, a loose site condition, and of a low cost. CONSTITUTION:In this high-vacuum differential-pressure pumping type power generation system, a pumping pipe 6 is risen to a given height on land 18 near to sea, lakes and marshes, and rivers, etc., a lead-in pipe 15 is connected to the lower part of the pumping pipe 6 from the water in a water source 17, and a hydraulic power generator 9 is provided on the tip of the lead-in pipe 15. The uppermost part of the pumping pipe 6 is adopted as a high-vacuum chamber 12, a conduit 7 is picked up from under a water surface to provide a pump 3, a water-dropping pipe 8 is connected to the pump 3 to be laid downward, and main hydraulic power generators 10 are provided on the lowermost part. An automatic vacuum breaker is fitted to the upper part of the water-dropping pipe, and moreover, discharge pipes 16 are laid to the original water source 17 from the main hydraulic power generators 10. A stage 5 is provided on the uppermost part of the pumping pipe 6, and a wind-power power generating set 1 and a high-vacuum pump 2 are installed on the stage 5. A power source for the high-vacuum pump 2 and the pump 3 is obtained from the hydraulic power generator 9 and the wind-power power generating set 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明による発電システムは、完
全無公害であり、海、湖沼、河川等の近く或は、一定量
以上の水を蓄えた貯水池等があれば非常に低いイニシア
ルコストで建設可能であり、さらに小規模発電から大規
模発電まで自由に選択出来る。またランニングコストが
非常に低くて済み、その結果非常に安価な電力の供給が
可能である。
BACKGROUND OF THE INVENTION The power generation system according to the present invention is completely pollution-free and has a very low initial cost if it is near the sea, lakes, rivers, etc., or if there is a reservoir that stores a certain amount of water or more. It can be constructed, and it is possible to freely select from small-scale power generation to large-scale power generation. Moreover, the running cost is very low, and as a result, it is possible to supply electric power at a very low cost.

【0002】[0002]

【従来の技術】従来、電力供給施設の方式は、ダム発
電、原子力発電、火力発電が主流であり、わずかに風力
発電、地熱発電、MHD発電が研究されている。
2. Description of the Related Art Conventionally, dam power generation, nuclear power generation, and thermal power generation have been the mainstream of power supply facility systems, and wind power generation, geothermal power generation, and MHD power generation have been slightly researched.

【0003】[0003]

【発明が解決しようとする課題】従来の発電方式は、建
設コスト並にランニングコストが非常に高く、立地条件
も厳しく、そのエネルギー資源の残量にも限界がある。
さらに、自然破壊、放射能汚染、使用済核燃料処理、炭
酸ガス放出による地球温暖化、酸性雨の発生等、人類、
生物の生存に大きな脅威となっている。また、地熱、風
力、MHD発電は研究開発途上であり、小、中規模であ
る。本発明はこのような課題を解決すべくなされたもの
である。
The conventional power generation system has a very high running cost as well as a construction cost, severe site conditions, and a limited remaining amount of its energy resources.
In addition, nature destruction, radioactive contamination, spent nuclear fuel processing, global warming due to carbon dioxide emission, acid rain, etc.
It is a great threat to the survival of living things. Geothermal, wind power, and MHD power generation are in the process of research and development, and are of small and medium scale. The present invention has been made to solve such problems.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明における高真空差圧揚水式発電システムは
海、湖沼、河川等の近くの陸上(18)に設置する。
揚水管(6)を高く立上げその下部に水を引込む吸上げ
管(15)を水中より布設し、その先端の水中の部分に
水力発電機(9)を取付ける。揚水管(6)内上部に導
水管(7)を設け、これにより落水管(8)を接続し
て、その間にポンプ(3)を設置する。落水管(8)の
最下部に主水力発電機(10)を設け、その先に放出管
(16)を取付けて、元の水源(17)まで布設する。
落水管(8)上部には自動真空破壊弁(4)を設け
る。揚水管(6)最上部にステージ(5)を設け、その
上に風力発電装置(1)と高真空ポンプ(2)を設置し
てなるものである。
In order to achieve the above object, the high vacuum differential pressure pumped storage power generation system of the present invention is installed on land (18) near a sea, lake, river or the like.
A pumping pipe (6) is raised up and a suction pipe (15) for drawing in water is laid from underwater in the lower part of the pumping pipe (6), and a hydroelectric generator (9) is attached to the underwater portion at its tip. The water pipe (7) is provided in the upper part of the pumping pipe (6), and thereby the falling pipe (8) is connected, and the pump (3) is installed between them. The main hydraulic power generator (10) is provided at the bottom of the falling water pipe (8), and the discharge pipe (16) is attached to the tip of the main hydraulic power generator (10) to lay up to the original water source (17).
An automatic vacuum break valve (4) is provided above the falling water pipe (8). The stage (5) is provided on the uppermost part of the pumping pipe (6), and the wind turbine generator (1) and the high vacuum pump (2) are installed thereon.

【0005】[0005]

【作用】揚水管(6)最上部の高真空室(12)の真空
度を高真空ポンプ(2)によって、マイナス数10kg
/cmに保った状態にすると、水源(17)の水面
(11)にかゝる大気圧との圧力差により水源(17)
の水は吸上管(15)を通って揚水管(6)へ流入し、
圧力バランスがとれる位置まで上昇する。(例として、
高真空室の真空度を−10kg/cmにすると、理論
的には揚水管(6))内の水は110mの高さまで上昇
する。)その際吸上管(15)の先端に設けた水力発電
機(9)を回転させて発電する。
The vacuum degree of the high vacuum chamber (12) at the top of the pumping pipe (6) is reduced by the high vacuum pump (2) to a minus several 10 kg.
/ Cm 2 keeps the water source (17) due to the pressure difference between the water surface (11) of the water source (17) and the atmospheric pressure.
Water flows into the pumping pipe (6) through the suction pipe (15),
Raise to a position where pressure is balanced. (As an example,
When the degree of vacuum in the high vacuum chamber is set to −10 kg / cm 2 , the water in the pumping pipe (6) theoretically rises to a height of 110 m. ) At that time, the hydroelectric generator (9) provided at the tip of the suction pipe (15) is rotated to generate electric power.

【0006】揚水管(6)内を上昇した水は揚水管
(6)内上部の導入管(7)に流入し、ポンプ(3)に
より落水管(8)へ圧送させられる。その際落水管
(8)上部に設けた自動真空破壊弁(4)が開放になっ
ているため、水は落水管(8)内を重力によって落下
し、落水管(8)最下部の主水力発電機(10)を回転
させて発電する。
The water that has risen in the pumping pipe (6) flows into the inlet pipe (7) in the upper part of the pumping pipe (6) and is pumped to the falling pipe (8) by the pump (3). At that time, since the automatic vacuum break valve (4) provided on the upper part of the falling water pipe (8) is opened, water falls by gravity inside the falling water pipe (8), and the main hydroelectric generator (at the bottom of the falling water pipe (8) ( 10) is rotated to generate electricity.

【0007】導入管(7)と落水管(8)の間に設けた
ポンプ(3)とステージ(5)上の高真空ポンプ(2)
の動力源は、ステージ(5)上の常に風の吹いて来る方
向を向くように設けられた風力発電装置(1)と吸上管
(15)先端の水中に設けた水力発電機(9)より得た
エネルギーにより作動される。
A pump (3) provided between the introduction pipe (7) and the falling water pipe (8) and a high vacuum pump (2) on the stage (5).
The power source of is a wind power generator (1) installed on the stage (5) so that the wind always blows and a hydraulic power generator (9) installed in the water at the tip of the suction pipe (15). It is activated by the energy obtained.

【0008】[0008]

【実施例】実施例について図面を参照して説明する。図
1、図2において、高真空差圧揚水式発電システムは
海、湖沼、河川等の近くの陸上(18)に揚水管(6)
を所定の高さまで立上げ、この下部に水源(17)の水
中より引込管(15)を接続し、その先端に水力発電機
(9)を設ける。揚水管(6)最頂部を高真空室(1
2)とし、水面下より導水管(7)を取り出して、ポン
プ(3)を設け、これに落水管(8)を接続して下方へ
布設し、最下部に主水力発電機(10)を設ける。落水
管(8)上部に自動真空破壊弁を取付ける。さらに、主
水力発電機(10)より元の水源(17)へ放水管(1
6)を布設する。
EXAMPLES Examples will be described with reference to the drawings. 1 and 2, the high vacuum differential pressure pumped-storage power generation system has a pumping pipe (6) on the land (18) near the sea, lakes and rivers.
Is started up to a predetermined height, and a draw-in pipe (15) is connected to the lower part of the water source (17) from the water, and a hydroelectric generator (9) is provided at the tip thereof. At the top of the pumping pipe (6), set the high vacuum chamber (1
2), take out the water conduit (7) from below the surface of the water, install the pump (3), connect the falling water pipe (8) to it, and lay it down, and install the main hydroelectric generator (10) at the bottom. . Install an automatic vacuum break valve on the top of the falling pipe (8). Furthermore, the main water generator (10) is used to discharge the water pipe (1) to the original water source (17).
Install 6).

【0009】また、揚水管(6)の最頂部にステージ
(5)を設け、その上に風力発電装置(1)と高真空ポ
ンプ(2)を設置する。
A stage (5) is provided at the top of the pumping pipe (6), and a wind turbine generator (1) and a high vacuum pump (2) are installed on the stage (5).

【0010】高真空ポンプ(2)とポンプ(3)の動力
源は、水力発電機(9)と、風力発電装置(1)より得
る。
Power sources for the high vacuum pump (2) and the pump (3) are obtained from a hydroelectric generator (9) and a wind turbine generator (1).

【0011】ステージ(5)上の各種装置の保守のた
め、エレベータ(4)を設ける。
An elevator (4) is provided for maintenance of various devices on the stage (5).

【0012】[0012]

【発明の効果】本発明は、上述の通り構成されているの
で、次に記載する効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0013】水を利用して変化させることなく、また元
に戻すだけのため、完全に無公害の発電システムであ
る。
A completely pollution-free power generation system because it uses water and does not change it and only returns it to its original state.

【0014】立地条件としては、装置に必要な量以上の
水が確保出来る場所であれば、何処でも建設可能であ
る。
As a location condition, it can be constructed at any place as long as the amount of water required for the device can be secured.

【0015】建設コストが非常に低く、また、ランニン
グコストも非常に低くて済み、エネルギー源は水力と風
力だけのため、非常に安価な電力を供給することが可能
である。
The construction cost is very low, the running cost is also very low, and since the energy sources are only hydropower and wind power, it is possible to supply very cheap electric power.

【0016】小規模発電から大規模発電まで対応が可能
である。
It is possible to handle from small-scale power generation to large-scale power generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 高真空差圧揚水式発電システムの原理を説明
するための図面である。
FIG. 1 is a diagram for explaining the principle of a high vacuum differential pressure pumped storage type power generation system.

【図2】 高真空差圧揚水式発電システムの実施例を説
明するための図面である。
FIG. 2 is a diagram for explaining an embodiment of a high vacuum differential pressure pumped storage power generation system.

【符号の説明】[Explanation of symbols]

1. 風力発電装置 2. 高真空ポンプ 3. ポンプ 4. 自動真空破壊弁 5. ステージ 6. 揚水管 7. 導水管 8. 落水管 9. 水力発電機 10. 主水力発電機 11. 水面 12. 高真空室 13. 支持鋼索 14. エレベータ 15. 引込管 16. 放水管 17. 水源 18. 陸 1. Wind power generator 2. High vacuum pump 3. Pump 4. Automatic vacuum break valve 5. Stage 6. Pumping pipe 7. Water pipe 8. Falling pipe 9. Hydroelectric power generator 10. Main hydroelectric generator 11. Water surface 12. High vacuum chamber 13. Support steel rope 14. Elevator 15. Service pipe 16. Water discharge pipe 17. Water source 18. land

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 海、湖沼、河川等または、ある一定量以
上の水を蓄えた貯水池等の水中より、水面(11)上ま
たは、陸上に揚水管(6)を高く立上げ、その先端を完
全気密な構造としかつ、高真空状態に保持した場合、水
は立上げた揚水管(6)、最上部の高真空室(12)の
真空度と、水源の水面(11)にかかる大気圧との圧力
差に応じて常に立上げた揚水管内部を圧力差がバランス
するレベルまで上昇する。この上昇した水を最上部の水
面下から導水管(7)により取出して、これより下方に
布設した落水管(8)内部を重力により落下させ、立下
げた落水管(8)最下部に設けた主水力発電機(10)
を回転させることにより発電させる方式の発電システ
ム。
1. A pumping pipe (6) is set up higher on the water surface (11) or on land than underwater such as the sea, lakes, rivers, etc., or reservoirs that store a certain amount of water or more, and When the structure is completely airtight and kept in a high vacuum state, the water is pumped up (6), the degree of vacuum of the uppermost high vacuum chamber (12), and the atmospheric pressure on the water surface (11) of the water source. Depending on the pressure difference between the pump and the pump, the inside of the pumping pipe always rises to a level where the pressure difference is balanced. This rising water is taken out from below the uppermost water surface by a water conduit (7), and the inside of the falling water pipe (8) laid below this is dropped by gravity to lower the falling water pipe (8). Hydroelectric generator (10)
A power generation system that generates electric power by rotating.
【請求項2】 揚水管(6)の最項部の高真空室(1
2)の真空度を保持するため、高真空ポンプ(2)を設
ける。また、導水管(7)から落水管(8)へ水を移行
させるため、ポンプ(3)を設ける。高真空室(12)
の真空度は一度所定の真空度に保持すれば、導水管
(7)により取出した水の量を圧力差が常にバランスす
るように、水源より水が揚水管(6)内を上昇してく
る。このため発電装置の運転中に必要な動力は、減圧効
果による水中からのガス体の発生等による高真空室(1
2)の圧力上昇分を補なう程度の高真空ポンプ(2)と
ポンプ(3)のわずかな動力があれば良く、その動力源
としてステージ(5)上に設けた風力発電装置(1)
と、吸込管(15)先端の水中に設けた水力発電機
(9)から得たエネルギーを利用してなる発電システ
ム。
2. A high vacuum chamber (1) at the outermost part of the pumping pipe (6).
A high vacuum pump (2) is provided to maintain the degree of vacuum of 2). A pump (3) is provided to transfer water from the water pipe (7) to the falling pipe (8). High vacuum chamber (12)
Once the vacuum degree is maintained at a predetermined vacuum degree, water rises from the water source in the pumping pipe (6) so that the pressure difference always balances the amount of water taken out by the water guiding pipe (7). . Therefore, the power required during the operation of the power generator is the high vacuum chamber (1
It is sufficient that the high vacuum pump (2) and the pump (3) have a small amount of power to supplement the pressure increase in (2), and the wind power generator (1) provided on the stage (5) as the power source.
And a power generation system using energy obtained from a hydroelectric generator (9) provided in the water at the tip of the suction pipe (15).
【請求項3】 主水力発電機(10)及び、風力発電装
置(1)は1本の揚水管(6)に対して1台又は複数の
設置が可能であり、また、水力発電機(9)も1台また
は、複数の設置が可能である発電システム。
3. The main hydroelectric generator (10) and the wind turbine generator (1) can be installed in one or plural units for one pumping pipe (6), and the hydroelectric generator (9) can be installed. ) Is also a power generation system that can be installed one or more.
JP4296269A 1992-09-24 1992-09-24 High-vacuum differential-pressure pumping type power generation system Pending JPH06101621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296269A JPH06101621A (en) 1992-09-24 1992-09-24 High-vacuum differential-pressure pumping type power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296269A JPH06101621A (en) 1992-09-24 1992-09-24 High-vacuum differential-pressure pumping type power generation system

Publications (1)

Publication Number Publication Date
JPH06101621A true JPH06101621A (en) 1994-04-12

Family

ID=17831389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296269A Pending JPH06101621A (en) 1992-09-24 1992-09-24 High-vacuum differential-pressure pumping type power generation system

Country Status (1)

Country Link
JP (1) JPH06101621A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012288A1 (en) * 2001-07-30 2003-02-13 Hidemi Ito Pulsation type water raising and falling equipment
WO2007001154A1 (en) * 2005-06-28 2007-01-04 Korea New Solar Energy Co., Ltd. Power generation apparatus using wind power and small hydro power
KR100728939B1 (en) * 2005-06-28 2007-06-15 한국신태양에너지 주식회사 Annexation power generation apparatus using wind power and small hydro power
KR20140037615A (en) * 2012-09-19 2014-03-27 현대중공업 주식회사 The fixed offshore wind turbine have asistance electricity used the sea bottom water pressure
JP2015086851A (en) * 2013-10-28 2015-05-07 末夫 井手 Differential pressure water power generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012288A1 (en) * 2001-07-30 2003-02-13 Hidemi Ito Pulsation type water raising and falling equipment
WO2007001154A1 (en) * 2005-06-28 2007-01-04 Korea New Solar Energy Co., Ltd. Power generation apparatus using wind power and small hydro power
KR100728939B1 (en) * 2005-06-28 2007-06-15 한국신태양에너지 주식회사 Annexation power generation apparatus using wind power and small hydro power
KR20140037615A (en) * 2012-09-19 2014-03-27 현대중공업 주식회사 The fixed offshore wind turbine have asistance electricity used the sea bottom water pressure
JP2015086851A (en) * 2013-10-28 2015-05-07 末夫 井手 Differential pressure water power generation device

Similar Documents

Publication Publication Date Title
US5872406A (en) Tidal generator
JP4571134B2 (en) Energy generator driven by tidal current
NO324938B1 (en) Offshore power plant
US20100117364A1 (en) Buoyancy hydro power generator and method
JP3220944U (en) Seawater power generator
JP3687790B2 (en) Hydroelectric power generation equipment
JPH06101621A (en) High-vacuum differential-pressure pumping type power generation system
US8749086B2 (en) Deep water hydro-electric power system
JP2004183637A (en) Power generator using buoyancy of air bubble generated in high water pressure
KR20120003791A (en) Pumping-up power generation system
JPS58178878A (en) Pumped hydroelectric power generating device
CN102828894A (en) Tidal energy generating device and method
US20230323849A1 (en) An Improved Apparatus And Method For Extracting Energy From A Fluid
JP3460044B2 (en) Tidal power generation method
KR20140109216A (en) Repulsion power generation system using aberration
JP2005273464A (en) Generating equipment and deep water pumping device using sea-bottom tidal current hydraulic turbine
WO2008054226A1 (en) Underwater power plant and method of using sea currents
KR20110128187A (en) The electronic power plant which uses the buoyancy of the bubble
CN109306933A (en) Ocean energy of flow gas storage device
JP2012233437A (en) Offshore pumped-storage hydroelectricity water storage system
CN210164571U (en) Auxiliary equipment for water power generation
CN113756267B (en) Energy ecological system
CN216304594U (en) Underwater ducted hydroelectric generation system
JP2021143667A (en) Buoyant force power generation device with spiral rotary machine
US20050127678A1 (en) System for generating power through the capture of gas bubbles and method therefor