JPH0610159A - Formation of metallic film pattern - Google Patents

Formation of metallic film pattern

Info

Publication number
JPH0610159A
JPH0610159A JP16803492A JP16803492A JPH0610159A JP H0610159 A JPH0610159 A JP H0610159A JP 16803492 A JP16803492 A JP 16803492A JP 16803492 A JP16803492 A JP 16803492A JP H0610159 A JPH0610159 A JP H0610159A
Authority
JP
Japan
Prior art keywords
film
insulating film
metal
forming
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16803492A
Other languages
Japanese (ja)
Inventor
Yasumasa Watanabe
泰正 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16803492A priority Critical patent/JPH0610159A/en
Publication of JPH0610159A publication Critical patent/JPH0610159A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain patterns of a high aspect ratio with a high accuracy by forming an insulating film of an anisotropic fine crystal having a surface bearing at which the crystal is hardly etched perpendicularly to the surface. CONSTITUTION:The insulating film (zinc oxide film) 7 is formed on a conductive substrate consisting of a quartz substrate 1 and a copper film 6. An etching resistant film (resist film) 8 is formed on its surface. The insulating film 7 is etched from the surface not coated with the mask 8 until the etching arrives at the surface of the substrate 6, by which the insulating film 7 is removed. A metallic film (copper film) 2 is packed in the removed parts by electroplating to form the desired metallic film pattern. The insulating film is constituted of the anisotropic fine crystal having the surface bearing at which the crystal is hardly etched perpendicularly to the surface. As a result, armatures of high ampere turns are obtd. in limited areas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロマシン等に用
いられる平面コイル等を作製するための金属膜パターン
形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal film pattern for producing a plane coil or the like used in a micromachine or the like.

【0002】[0002]

【従来の技術】近年、医療、バイオテクノロジー、産業
機械、半導体分野を対象にした機械要素の微小化の研究
が盛んになっている。これらはマイクロマシンとよば
れ、アクチュエータと呼ばれる駆動素子、ギヤ等の機械
要素、センシング素子等からなり、主にシリコン系の材
料を用いて機械素子の開発が行われている。またこれら
の素子と頭脳であるIC等とを組みあわせて、ミクロ世
界において高度な作業を行わせるという夢のような応用
例が提案されている。これらは半導体プロセスとを活用
して多量に生産が可能であり、しかもセルフアッセンブ
リー化により少ない工程でより知的な部品、装置を作れ
る可能性を秘めている。
2. Description of the Related Art In recent years, research into miniaturization of mechanical elements has been actively conducted in the fields of medical care, biotechnology, industrial machinery and semiconductors. These are called micromachines, and are composed of drive elements called actuators, mechanical elements such as gears, sensing elements, and the like, and mechanical elements are mainly developed using silicon-based materials. In addition, a dream-like application example has been proposed in which these devices are combined with an IC, which is a brain, to perform advanced work in a micro world. These can be mass-produced by utilizing the semiconductor process, and there is a possibility that more intelligent parts and devices can be manufactured in a small number of steps by self-assembly.

【0003】しかし、たとえば加工技術一つとってみて
も数多くの技術開発課題がある。一例として電磁アクチ
ュエータを考えてみる。アクチュエータで得られるトル
クは、電機子コイルで発生する磁束量にほぼ比例し、磁
束は電機子コイルのアンペアターン、すなわち (電流量
×コイルターン数) で決まるため、高トルク化にはコイ
ル素線の断面積を増すか、素線数を増加させなければな
らない。マイクロマシンでは、設置空間の大きさが小さ
いため、限られたスペースを限界まで活用する、言い換
えると無駄な空間を作らないような加工技術の確立が重
要なポイントとなる。
However, for example, even one processing technique has many technical development problems. Consider an electromagnetic actuator as an example. The torque obtained by the actuator is almost proportional to the amount of magnetic flux generated in the armature coil, and the magnetic flux is determined by the ampere-turn of the armature coil, that is, (current amount x number of coil turns). It is necessary to increase the cross-sectional area of or to increase the number of strands. Since the size of the installation space of a micromachine is small, it is important to establish a processing technology that utilizes the limited space to the limit, in other words, does not create a wasted space.

【0004】出力軸方向にエアギャップを持つアキシャ
ルギャップ形では、各構成要素を半導体加工技術を用い
て平面的に作製し、それらを積層することにより構成す
る。電機子コイルは、図2(a) 、(b) に示すように、中
心角60°の扇形石英基板1上に中心から外周に向けて右
廻りのスパイラル状に形成された平面コイル21〔図2
(a) 〕と中心から外周に向けて左廻りのスパイラル状に
形成された平面コイル22〔図2(b) 〕を絶縁膜を介して
積層し、下層コイル21の中心端末31を上層コイル22の中
心端末32と接続することにより、両コイル21、22に流れ
る電流によって同一方向の磁束を発生させることができ
る。図3はその積層方法を示し、扇形の石英基板1の上
に扇形の下部磁極4を鉄あるいはパーマロイで形成〔図
3(a) 〕、その上を酸化シリコンからなる層間絶縁膜51
で覆う〔図3(b) 〕。次いで絶縁膜51の上に銅薄膜を成
膜し、フォトプロセスによってスパイラル状に作製され
たマスクパターンを用いてパターンエッチングすること
により平面コイル21を形成する〔図3(c) 〕。次に再び
層間絶縁膜52で覆い、表面を平坦化する〔図3(d) 〕。
そして、平坦化された表面上への銅薄膜の成膜、パター
ニングにより平面コイル22を形成すると共に、層間絶縁
膜52の図示しない接続孔を通じて平面コイル21と接続す
る〔図3(e) 〕。このように巻き方向の異なる平面コイ
ル21、22の積層を繰り返して多段に積層する〔図3(f)
〕。電磁アクチュエータのステータは、このような積
層体の6個より組立てる。
In the axial gap type having an air gap in the output axis direction, each constituent element is formed in a plane using a semiconductor processing technique, and is laminated. As shown in FIGS. 2 (a) and 2 (b), the armature coil is a plane coil 21 formed in a clockwise spiral shape from the center to the outer periphery on a fan-shaped quartz substrate 1 having a central angle of 60 ° [Fig. Two
(a)] and a planar coil 22 [Fig. 2 (b)] formed in a counterclockwise spiral shape from the center to the outer periphery are laminated via an insulating film, and the center terminal 31 of the lower coil 21 is connected to the upper coil 22. By connecting to the central terminal 32 of the above, the magnetic flux in the same direction can be generated by the currents flowing through the coils 21 and 22. FIG. 3 shows the stacking method. A fan-shaped lower magnetic pole 4 is formed of iron or permalloy on a fan-shaped quartz substrate 1 [FIG. 3 (a)], and an interlayer insulating film 51 made of silicon oxide is formed on the fan-shaped lower magnetic pole 4.
Cover with [Fig. 3 (b)]. Then, a copper thin film is formed on the insulating film 51, and pattern etching is performed using a mask pattern formed in a spiral shape by a photo process to form the planar coil 21 [FIG. 3 (c)]. Then, it is covered again with the interlayer insulating film 52 to flatten the surface [FIG. 3 (d)].
Then, the planar coil 22 is formed by forming and patterning a copper thin film on the flattened surface, and at the same time, the planar coil 21 is connected through a connection hole (not shown) of the interlayer insulating film 52 [FIG. 3 (e)]. In this way, the planar coils 21 and 22 having different winding directions are repeatedly laminated to form multiple layers [FIG. 3 (f)].
]. The stator of the electromagnetic actuator is assembled from six such laminated bodies.

【0005】[0005]

【発明が解決しようとする課題】上記のような電磁アク
チュエータのコイルのアンペアターンを高くするには、
各平面コイルのパターニングの際に高アスペクト比のエ
ッチングにより、コイル素線間の間隔を素線の幅よりも
かなり狭くしてターン数を増加させ、同時に素線断面形
状を矩形にして素線断面積の低下を防ぐ必要がある。
In order to increase the ampere-turn of the coil of the electromagnetic actuator as described above,
When patterning each planar coil, etching with a high aspect ratio makes the spacing between coil strands much narrower than the width of the strands to increase the number of turns. It is necessary to prevent the area from decreasing.

【0006】従来の平面コイル形成のためのエッチング
端面の切り立った高精度のパターニング方法としてドラ
イプロセスによる方法がある。ドライプロセスによる高
精度パターニングの方法は、被加工材料である銅とのエ
ッチング速度比が大きいタンタル等の金属マスクを用い
てイオンビームエッチングでコイル形成を実施する。ま
た、同時にイオンビームを引き出す時の加速電圧を低く
し、銅とのエッチング速度比をさらに増加させる、ある
いはエッチングガスの種類を変える等の工夫が行われて
いる。しかし、この方式でのコイル成形ではエッチング
速度が遅く大量処理に時間がかかること、また工程が複
雑化することが問題となっている。
As a conventional high-precision patterning method in which an etching end face is sharp for forming a plane coil, there is a method by a dry process. In the high-precision patterning method using a dry process, a coil is formed by ion beam etching using a metal mask such as tantalum having a large etching rate ratio with respect to the material to be processed, copper. At the same time, the accelerating voltage for extracting the ion beam is lowered, the etching rate ratio with copper is further increased, or the type of etching gas is changed. However, the coil forming by this method has a problem that the etching rate is slow and a large amount of processing takes time, and the process becomes complicated.

【0007】別の高精度パターニングの方法としてめっ
き法による方法がある。めっき法による形成は、導電性
基板上に所望形状を反転したパターンの絶縁性めっきフ
レームを形成し、フレームの開口部に銅をめっきにより
成長させてコイルパターンを形成する方式である。めっ
きフレーム形成の最も一般的な方法は、フォトレジスト
を用いる方法である。この方式では、波長400nm 程度の
可視光を用いるため光の干渉、回折により垂直なフレー
ム断面形状は得られない。垂直な断面形状を有するめっ
きフレーム形成方式としては、雑誌IEEE Sensors and A
ctuators (1991)p607 でJ.Morha らの発表したLIGAプロ
セスがあげられる。LIGAプロセスは波長0.5〜1Åの短
いX線を照射して、アスペクト比の大きい矩形断面形状
のめっきフレームを成形する方法である。このプロセス
も用いて、幅 (直径) 500 μm、深さ (軸長) 200 μm
のマイクロモータが試作され動作が確認されている。
Another high-precision patterning method is a plating method. The formation by the plating method is a method in which an insulating plated frame having a pattern in which a desired shape is inverted is formed on a conductive substrate and copper is grown by plating in the opening of the frame to form a coil pattern. The most common method of forming a plating frame is using a photoresist. In this method, a visible light having a wavelength of about 400 nm is used, so that a vertical frame cross-sectional shape cannot be obtained due to light interference and diffraction. As a method of forming a plating frame having a vertical cross-sectional shape, the magazine IEEE Sensors and A
An example is the LIGA process announced by J. Morha et al. in ctuators (1991) p607. The LIGA process is a method of irradiating a short X-ray having a wavelength of 0.5 to 1Å to form a plating frame having a rectangular cross-section with a large aspect ratio. Also using this process, width (diameter) 500 μm, depth (axial length) 200 μm
This micromotor has been prototyped and its operation has been confirmed.

【0008】このようにLIGAプロセスは有望ではある
が、シンクロトロン放射光を利用するため、大規模で複
雑な設備が必要である。またパターンマスクもX線を透
過するまで薄くする必要があり、きわめて精密な技術が
要求される。本発明の目的は、これらの問題を解決し、
薄膜をエッチングして切り立った断面の薄膜パターンを
簡便な方法で記載することができる高アスペクト比の金
属膜パターン形成方法を提供することにある。
As described above, although the LIGA process is promising, it requires large-scale and complicated equipment because it utilizes synchrotron radiation. Further, the pattern mask also needs to be thin enough to transmit X-rays, and extremely precise technology is required. The object of the present invention is to solve these problems,
It is an object of the present invention to provide a method for forming a metal film pattern having a high aspect ratio, which can describe a thin film pattern having a raised cross section by etching a thin film by a simple method.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の金属膜パターン形成方法は、導電性基板
上に絶縁膜を形成し、その絶縁膜の表面上に耐エッチン
グマスクを形成し、そのマスクで覆われない絶縁膜の表
面からエッチングして基板表面に達するまで絶縁膜を除
去し、絶縁膜の除去された部分を電気めっきにより金属
膜で充填することによって所望の金属膜パターンを形成
する方法であって、絶縁膜がその表面にほぼ垂直にエッ
チングされにくい面方位をもつ異方性の微結晶よりなる
ものとする。そして、異方性微結晶が酸化亜鉛よりなる
ことが有効である。また、導電性基板が絶縁基板上にめ
っきされる金属と同一金属よりなる表面層を有するもの
であり、金属膜の充填形成後絶縁膜の残留部分と共にそ
の下の基板の金属表面層を除去することが有効である。
In order to achieve the above object, the metal film pattern forming method of the present invention comprises forming an insulating film on a conductive substrate, and forming an etching resistant mask on the surface of the insulating film. The desired metal film is formed by etching the surface of the insulation film that is not covered with the mask, removing the insulation film until it reaches the substrate surface, and filling the removed portion of the insulation film with the metal film by electroplating. It is a method of forming a pattern, and the insulating film is made of anisotropic microcrystals having a plane orientation that is difficult to etch almost perpendicularly to the surface. Then, it is effective that the anisotropic crystallites are made of zinc oxide. Further, the conductive substrate has a surface layer made of the same metal as the metal to be plated on the insulating substrate, and after the metal film is filled and formed, the metal surface layer on the substrate below is removed together with the remaining portion of the insulating film. Is effective.

【0010】[0010]

【作用】一般に結晶の対称性の異なる面方位間では結合
エネルギーが異なるため、結晶の性質が異なり、異方性
が生ずる。結晶粒の集合体である微結晶にもこのような
異方性を引き継がせることができる。原子の解離速度に
依存するエッチング速度も結晶面方位によって異なり、
めっきフレームを絶縁性微結晶層で形成し、表面に垂直
面であるその側壁をエッチングされにくい面方位で構成
すれば、エッチングにより微結晶層の高アスペクト比加
工が可能になり、このめっきフレームを用いて側壁の切
り立った金属層パターンを形成することができる。
In general, since the bond energies are different between plane orientations having different crystal symmetries, the crystal properties are different and anisotropy occurs. Such anisotropy can be inherited even in microcrystals, which are aggregates of crystal grains. The etching rate, which depends on the dissociation rate of atoms, also differs depending on the crystal plane orientation,
If the plating frame is made of an insulating microcrystalline layer and its side wall, which is perpendicular to the surface, is configured with a plane orientation that is difficult to etch, it becomes possible to process the microcrystalline layer with a high aspect ratio by etching. It can be used to form a metal layer pattern with raised sidewalls.

【0011】[0011]

【実施例】以下、図2、図3と共通の部分に同一の符号
を付した図1(a) 〜(f) を引用して本発明の一実施例に
ついて述べる。図1(a) 〜(f) は電磁アクチュエータの
ステータのコイル1層分のみをとりあげており、図3
(c) および(d) の工程に対応する部分である。まず、石
英基板1の上にめっき電極となる銅膜6を蒸着〔図1
(a) 〕、次に高真空中で200 ℃〜400 ℃の基板上にスパ
ッタ法で微結晶性酸化亜鉛膜7を5μmの厚さに形成し
た〔図1(b) 〕。つづいて、コイルのパターンを通常の
フォトプロセスを用いてレジスト膜8に転写した〔図1
(c) 〕。さらにCF4 とO2 の混合ガスを反応ガスとし
てのドライエッチングにより酸化亜鉛膜7をパターニン
グした〔図1(d) 〕。そしてレジスト膜8を剥離したの
ち、銅膜6を電極としてのめっきにより5μmの厚さの
銅膜2を形成し、酸化亜鉛膜7を硝酸を用いて除去した
〔図1(e) 〕。次に、露出した銅膜6もエッチングして
除去したのち、シリコン酸化膜5をCVD法により形成
し、平坦化を行った〔図1(f) 〕。このあと、シリコン
酸化膜5の平坦面上にさらにシリコン酸化膜を積層して
層間絶縁膜とし、図1(a) の工程に戻れば、コイルパタ
ーン2の積層構造をつくることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 (a) to 1 (f) in which the same parts as those in FIGS. 1 (a) to 1 (f) show only one coil layer of the stator of the electromagnetic actuator.
This is the part corresponding to steps (c) and (d). First, a copper film 6 serving as a plating electrode is vapor-deposited on a quartz substrate 1 [FIG.
(a)] Next, a microcrystalline zinc oxide film 7 having a thickness of 5 μm was formed on the substrate at 200 ° C. to 400 ° C. in a high vacuum by a sputtering method [FIG. 1 (b)]. Subsequently, the coil pattern was transferred to the resist film 8 by using a normal photo process [Fig.
(c)]. Further, the zinc oxide film 7 was patterned by dry etching using a mixed gas of CF 4 and O 2 as a reaction gas [FIG. 1 (d)]. Then, after removing the resist film 8, a copper film 6 having a thickness of 5 μm was formed by plating the copper film 6 as an electrode, and the zinc oxide film 7 was removed by using nitric acid [FIG. 1 (e)]. Next, after the exposed copper film 6 was also removed by etching, the silicon oxide film 5 was formed by the CVD method and flattened [FIG. 1 (f)]. After that, if a silicon oxide film is further laminated on the flat surface of the silicon oxide film 5 to form an interlayer insulating film and the process returns to the step of FIG. 1A, the laminated structure of the coil pattern 2 can be formed.

【0012】この実施例で得られたコイルパターン2の
テーパ角θは80°であった。しかし、異方性酸化亜鉛微
結晶膜7の代わりに等方性のアモルファス・シリコン酸
化膜を用いた場合はθは65°にしかならなかった。上記
の実施例ではめっきフレームをスパッタ法による酸化亜
鉛により形成したが、異方性絶縁膜の形成技術には、蒸
着法、イオンビームスパッタリング、分子ビームエピタ
キシャル法等も適用でき、また材料としても酸化亜鉛の
ほかに他の異方性絶縁物を利用できることはいうまでも
ない。
The taper angle θ of the coil pattern 2 obtained in this example was 80 °. However, when an isotropic amorphous silicon oxide film was used instead of the anisotropic zinc oxide microcrystalline film 7, θ was only 65 °. Although the plating frame is formed of zinc oxide by the sputtering method in the above-mentioned examples, the vapor deposition method, the ion beam sputtering, the molecular beam epitaxial method, etc. can be applied to the formation technology of the anisotropic insulating film, and the material is oxidized. It goes without saying that other anisotropic insulators can be used in addition to zinc.

【0013】[0013]

【発明の効果】本発明によれば、金属膜パターンの微細
加工をめっき法で行うためのめっきフレームを、異方性
の微結晶絶縁層を異方性エッチングすることにより形成
することにより、90°近い高アスペクト比のパターンが
高精度で得られた。従って、マイクロマシンとしての電
磁アクチュエータの多段積層平面コイルをこの方法で作
製して、限られた面積に高いアンペアターンの電機子を
得ることができた。
According to the present invention, a plating frame for performing fine processing of a metal film pattern by a plating method is formed by anisotropically etching an anisotropic microcrystalline insulating layer. A pattern with a high aspect ratio close to ° was obtained with high accuracy. Therefore, a multi-stage laminated planar coil of an electromagnetic actuator as a micromachine can be manufactured by this method to obtain an armature with a high ampere-turn in a limited area.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の平面コイル作製工程を(a)
ないし(f) の順に示す断面図
FIG. 1 (a) shows a plane coil manufacturing process of one embodiment of the present invention.
To (f) in cross section

【図2】本発明により作製される平面コイルのパターン
の例を示し、(a) 、(b) はそれぞれ各層平面コイルの平
面図
FIG. 2 shows an example of a pattern of a plane coil manufactured according to the present invention, and (a) and (b) are plan views of each layer plane coil.

【図3】従来の平面コイル作製工程を(a) ないし(f) の
順に示す断面図
FIG. 3 is a cross-sectional view showing a conventional planar coil manufacturing process in the order of (a) to (f).

【符号の説明】[Explanation of symbols]

1 石英基板 2 銅膜 5 シリコン酸化膜 6 銅膜 7 酸化亜鉛膜 8 レジスト膜 1 Quartz substrate 2 Copper film 5 Silicon oxide film 6 Copper film 7 Zinc oxide film 8 Resist film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】導電性基板上に絶縁膜を形成し、その絶縁
膜の表面上に耐エッチングマスクを形成し、そのマスク
で覆われない絶縁膜の表面からエッチングして基板表面
に達するまで絶縁膜を除去し、絶縁膜の除去された部分
に電気めっきにより金属膜で充填することによって所望
の金属膜パターンを形成する方法であって、絶縁膜が表
面にほぼ垂直にエッチングされにくい面方位をもつ異方
性の微結晶よりなることを特徴とする金属膜パターン形
成方法。
1. An insulating film is formed on a conductive substrate, an etching resistant mask is formed on the surface of the insulating film, and etching is performed from the surface of the insulating film not covered with the mask until insulation reaches the substrate surface. This is a method of forming a desired metal film pattern by removing the film and filling the removed portion of the insulation film with a metal film by electroplating. A method of forming a metal film pattern, which comprises an anisotropic fine crystal.
【請求項2】異方性微結晶が酸化亜鉛よりなる請求項1
記載の金属膜パターン形成方法。
2. The anisotropic crystallite of zinc oxide.
A method for forming a metal film pattern as described.
【請求項3】導電性基板が絶縁基板上にめっきされる金
属と同一金属よりなる表面層を有するものであり、金属
膜の充填形成後絶縁膜の残留部分と共にその下の基板の
金属表面層を除去する請求項1あるいは2記載の金属膜
パターン形成方法。
3. The conductive substrate has a surface layer made of the same metal as the metal to be plated on the insulating substrate, and after the metal film is filled and formed, the remaining portion of the insulating film and the metal surface layer of the underlying substrate are provided. The method for forming a metal film pattern according to claim 1 or 2, wherein the metal is removed.
JP16803492A 1992-06-26 1992-06-26 Formation of metallic film pattern Pending JPH0610159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16803492A JPH0610159A (en) 1992-06-26 1992-06-26 Formation of metallic film pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16803492A JPH0610159A (en) 1992-06-26 1992-06-26 Formation of metallic film pattern

Publications (1)

Publication Number Publication Date
JPH0610159A true JPH0610159A (en) 1994-01-18

Family

ID=15860596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16803492A Pending JPH0610159A (en) 1992-06-26 1992-06-26 Formation of metallic film pattern

Country Status (1)

Country Link
JP (1) JPH0610159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358602A (en) * 2003-06-04 2004-12-24 Fuji Xerox Co Ltd Manufacturing method of laminated structure and laminated structure
JP2007268831A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Mold and method of manufacturing mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358602A (en) * 2003-06-04 2004-12-24 Fuji Xerox Co Ltd Manufacturing method of laminated structure and laminated structure
JP4575651B2 (en) * 2003-06-04 2010-11-04 富士ゼロックス株式会社 Manufacturing method of laminated structure and laminated structure
JP2007268831A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Mold and method of manufacturing mold

Similar Documents

Publication Publication Date Title
US5327033A (en) Micromechanical magnetic devices
US11145452B2 (en) Inductor and method for manufacturing the same
US7932182B2 (en) Creating novel structures using deep trenching of oriented silicon substrates
JP3641018B2 (en) Manufacturing method of magnetic micro contactor
US6781732B2 (en) Electromagnetically actuated micromirror actuator and fabrication method thereof
JPH06224178A (en) Microminiature structure and its assembly method
DE19522287C2 (en) Manufacturing process for planar micromotors
US9704951B2 (en) Apparatus and method for magnetic-field guided metal-assisted chemical etching
Löchel et al. Electrodeposited magnetic alloys for surface micromachining
Ahn et al. A fully integrated micromagnetic actuator with a multilevel meander magnetic core
US6724290B1 (en) Microcoil
US7005952B2 (en) Torque motor
JPH0610159A (en) Formation of metallic film pattern
US20040189106A1 (en) Microactuator having a ferromagnetic substrate
EP3799084B1 (en) Nanomagnetic inductor cores, inductors and devices incorporating such cores, and associated manufacturing methods
JPH03105712A (en) Method of forming pull piece and gap of magnetic head for audio ,video, and computer in film layer
EP3393966B1 (en) A method for manufacturing a hollow mems structure
JPH04262132A (en) Manufacture of micro-machine
CN213738598U (en) Atomic-level flattening device with microstructure
US10784332B2 (en) Methods for producing integrated circuits with magnets and a wet etchant for the same
CN110182752B (en) Method for forming fine structure by electroplating, fine structure and electronic device
WO1998034287A9 (en) Vialess integrated inductive elements for electromagnetic applications
EP1000442A1 (en) Vialess integrated inductive elements for electromagnetic applications
JPH0917679A (en) Manufacture of laminated coil
Ota et al. Coil winding process for radial gap type electromagnetic devices with cylindrical stator