JPH06101000A - Mr element material and its production - Google Patents

Mr element material and its production

Info

Publication number
JPH06101000A
JPH06101000A JP4254393A JP25439392A JPH06101000A JP H06101000 A JPH06101000 A JP H06101000A JP 4254393 A JP4254393 A JP 4254393A JP 25439392 A JP25439392 A JP 25439392A JP H06101000 A JPH06101000 A JP H06101000A
Authority
JP
Japan
Prior art keywords
ferromagnetic
crystal grains
element selected
fine
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4254393A
Other languages
Japanese (ja)
Other versions
JP3374984B2 (en
Inventor
Katsuto Yoshizawa
克仁 吉沢
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP25439392A priority Critical patent/JP3374984B2/en
Publication of JPH06101000A publication Critical patent/JPH06101000A/en
Application granted granted Critical
Publication of JP3374984B2 publication Critical patent/JP3374984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids

Abstract

PURPOSE:To obtain an MR element material reduced in variance by incorporating a metallic non-ferromagnetic phase between the fine ferromagnetic crystal grains at least partly. CONSTITUTION:At least 30% of the structure of the MR element material consists of the fine ferromagnetic crystal grains having <=500Angstrom diameter. A metallic non-ferromagnetic phase is incoporated between the ferromagnetic crystal grains at least partly, and the ferromagnetic crystal grain is surrounded by the metallic non-ferromagnetic phase. The metallic non-ferromagnetic phase contains at least one element selected from Cu, Cr, Mn, Au, Ag and Ru, and the fine ferromagnetic crystal grain contains at least one element selected from Fe, Co and Ni. An MR element material appropriate for the magnetic sensor, magnetic head, etc., is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気センサや磁気ヘッド
等に好適なMR素子用材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MR element material suitable for magnetic sensors, magnetic heads and the like.

【0002】[0002]

【従来の技術】磁気抵抗効果(MR効果)を利用したM
RセンサやMRヘッドには、現在主に80wt%Niを中心
とした組成のパーマロイが用いられている。MRセンサ
やMRヘッドには通常スパッタや蒸着等により作製した
薄膜が用いられている。磁気抵抗効果(MR効果)とい
うのは電流磁気効果の一つであり試料に磁界Hを加える
と抵抗率ρが変化する現象である。ρの変化Δρは一般
に抵抗測定用電流iとHとのなす角度およびHの大きさ
に関係する。磁気抵抗効果は普通Δρ/ρで定義され、
特にiとHとが平行であるときを磁気抵抗縦効果とよ
び、iとHが直角であるときを磁気抵抗横効果と呼んで
いる。磁化困難軸方向に外部磁界Hが印加されると、磁
化回転により電気抵抗が変化する。この時の抵抗は R=R0−ΔRsin2θ と表される。ここで、Rは素子の抵抗、R0は磁化Mが
磁化容易軸方向にそろっているときの素子の抵抗、θは
磁化ベクトルMと電流ベクトルIのなす角度であり、Δ
Rは異方性磁気抵抗である。図1にi方向と垂直にHを
加えた時のΔR/R−H曲線の例を示す。MR素子用材
料としては抵抗変化率Δρm/ρ0が大きい材料が求めら
れるが、安定な動作を行うために、保磁力が小さく透磁
率が高い、磁歪定数が小さい、抵抗率の温度係数が小さ
いことも重要である。パーマロイ薄膜ではΔR/Rは室
温で最大約2〜3%程度、NiCo合金では最大約6%
のMR効果が報告されている。最近になりFe/Cr人
工格子多層膜やFe−Ni/Cu/Co人工格子多層膜
が大きなMR効果を示すことが明らかになっている。こ
れは現在通常の磁気抵抗効果と区別し巨大磁気抵抗効果
と呼ばれている。巨大磁気抵抗効果では多層膜の隣接磁
性層の磁化が反平行であることが本質的に効果を増大さ
せていると考えられている。
2. Description of the Related Art M utilizing the magnetoresistive effect (MR effect)
Permalloy having a composition mainly of 80 wt% Ni is currently used for the R sensor and the MR head. A thin film produced by sputtering or vapor deposition is usually used for the MR sensor and the MR head. The magnetoresistive effect (MR effect) is one of the current magnetic effects and is a phenomenon in which the resistivity ρ changes when a magnetic field H is applied to the sample. The change Δρ of ρ is generally related to the angle between the resistance measuring current i and H and the magnitude of H. The magnetoresistive effect is usually defined by Δρ / ρ,
Particularly, when i and H are parallel to each other, it is called a magnetoresistive longitudinal effect, and when i and H are at a right angle, it is called a magnetoresistive lateral effect. When the external magnetic field H is applied in the hard axis direction, the electric resistance changes due to the magnetization rotation. The resistance at this time is expressed as R = R 0 −ΔR sin 2 θ. Here, R is the resistance of the element, R 0 is the resistance of the element when the magnetization M is aligned in the easy axis of magnetization, θ is the angle formed by the magnetization vector M and the current vector I, and Δ
R is an anisotropic magnetoresistance. FIG. 1 shows an example of the ΔR / RH curve when H is added perpendicularly to the i direction. A material having a large resistance change rate Δρ m / ρ 0 is required as a material for the MR element. However, in order to perform stable operation, the coercive force is small, the magnetic permeability is high, the magnetostriction constant is small, and the temperature coefficient of the resistivity is small. Smallness is also important. ΔR / R of permalloy thin film is about 2-3% at room temperature, and maximum of NiCo alloy is about 6%.
MR effect of is reported. Recently, it has been clarified that the Fe / Cr artificial lattice multilayer film and the Fe-Ni / Cu / Co artificial lattice multilayer film show a large MR effect. This is called the giant magnetoresistive effect at present, in distinction from the usual magnetoresistive effect. It is considered that the giant magnetoresistive effect essentially increases the effect when the magnetizations of the adjacent magnetic layers of the multilayer film are antiparallel.

【0003】[0003]

【発明が解決しようとする課題】しかし、パ−マロイ膜
ではΔR/Rは室温でたかだか2から3%であり実用は
可能であるが高密度記録に対してはまだ十分な感度とは
いえない。NiCo合金膜では、異方性磁界が大きい問
題点がある。また、人工格子多層膜は磁性層と磁性層間
に数⇔〜数10⇔の膜を形成する必要があり膜厚制御が困
難であり膜界面が乱れ易く特性の再現性に乏しい問題が
ある。また基板の温度が上がるとこの問題が起き易く膜
作製の速度を上げるのにも限界がある。
However, in the permalloy film, ΔR / R is at most 2 to 3% at room temperature, and practical use is possible, but it cannot be said to be sufficient sensitivity for high density recording. . The NiCo alloy film has a problem that the anisotropic magnetic field is large. Further, in the artificial lattice multilayer film, it is necessary to form films of several ⇔ to several tens of ⇔ between the magnetic layers, and it is difficult to control the film thickness, the film interface is easily disturbed, and the reproducibility of characteristics is poor. Further, if the temperature of the substrate rises, this problem is likely to occur, and there is a limit to the speed of film formation.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明者らは、膜や薄帯を製造する際の冷却速度を
上げ強制的に合金化した後これを熱処理する冶金的手法
を用いることにより人工格子多層膜等のMR用材料より
特性ばらつきの小さい高性能なMR素子用材料を見いだ
した。すなわち本発明は組織の少なくとも30%が500オン
グストロ−ム以下の微細な強磁性結晶粒からなり、かつ
強磁性結晶粒間の少なくとも一部に金属非強磁性相が存
在していることを特徴とする材料がMR素子用材料とし
て優れており、高いΔR/Rが得られ、かつ人工格子多
層膜と比べ特性の再現性に優れていることを見いだした
ものである。特に金属非強磁性相が強磁性結晶粒の周囲
を囲むように存在している場合に高いΔR/Rが得られ
る。本発明合金材料は、人工格子多層膜に比べて特性の
再現性に優れている。非強磁性相はたとえば反強磁性相
等が挙げられる。本発明において組織の少なくとも30%
が500オングストロ−ム以下の微細な強磁性結晶粒であ
る必要がある。これは30%未満では大きなΔR/Rが得
られず、500オングストロ−ムを超えると軟磁気特性が
劣化し実用的でなくなるからである。金属非強磁性相が
Cu,Cr,Mn,Au,Ag,Ruから選ばれた少なくとも一種の元素
を含む場合に特に高いΔR/Rが得られる場合が多い。
微細な強磁性結晶粒はFe,Co,Niから選ばれる少なくとも
1つの元素を含有している。本発明材料の典型的な組成
は組成式:M100-xX'x (at%)で表され、ここでMはFe,C
o,Niから選ばれる少なくとも一種の元素、X'はCu,Cr,M
n,Au,Ag,Ruから選ばれた少なくとも一種の元素であり、
0¬x≦70で表される組成が挙げられる。この範囲で高い
ΔR/Rが得られる。また、組成式:M100-x-aX'xM'a
(at%)で表され、ここでMはFe,Co,Niから選ばれる少なく
とも一種の元素、M'はTi,Zr,Hf,V,Nb,Ta,Mo,Wから選ば
れた少なくとも一種の元素、X'はCu,Cr,Mn,Au,Ag,Ruか
ら選ばれた少なくとも一種の元素であり、0¬x≦70、a
≦20、a+x≦70で表される組成も高いΔR/Rを示す。
また、組成式:M100-x-a-zX'xM'aXz (at%)で表され、
ここでMはFe,Co,Niから選ばれる少なくとも一種の元
素、M'はTi,Zr,Hf,V,Nb,Ta,Mo,Wから選ばれた少なくと
も一種の元素、X'はCu,Cr,Mn,Au,Ag,Ruから選ばれた少
なくとも一種の元素であり、XはSi,B,P,C,Ga,Alから選
ばれる少なくとも一種の元素であり、0¬x≦70、a≦2
0、z≦30、a+x+z≦70で表される組成が高いΔR/Rが
得られる。本発明において、非磁性相の厚みは通常数⇔
から数100⇔程度である。また、この非磁性相は完全に
強磁性結晶粒を取り囲む必要はない。また、本発明材料
は必要に応じて多層膜としても良い。層間にはさむ膜と
してはCu,Ag,Au等の非強磁性の膜がより望ましく、強磁
性元素と固溶しにくいものがより適している。また、強
磁性相の磁歪はより好ましくは零に近いことが望まし
い。本発明材料は通常次のように製造される。液体急冷
法により構成元素が固溶したアモルファスあるいは微細
結晶粒薄帯を製造する工程と、組織の少なくとも30%以
上が500オングストロ−ム以下の微細な強磁性結晶粒か
らなり、かつ強磁性結晶粒間の少なくとも一部に金属非
強磁性相が存在するように熱処理する工程からなる製造
方法、気相急冷法により構成元素が固溶したアモルファ
スあるいは微細結晶粒からなる膜を製造する工程と、組
織の少なくとも30%以上が500オングストロ−ム以下の微
細な強磁性結晶粒からなり、かつ強磁性結晶粒間の少な
くとも一部に金属非強磁性相が存在するように熱処理す
る工程からなる製造方法、メッキ法により構成元素が固
溶したアモルファスあるいは微細結晶粒からなる膜を製
造する工程と、組織の少なくとも30%以上が500オングス
トロ−ム以下の微細な強磁性結晶粒からなり、かつ強磁
性結晶粒間の少なくとも一部に金属非強磁性相が存在す
るように熱処理する工程からなることを特徴とするMR
素子用材料の製造方法がある。本発明においては熱処理
前の状態では完全に構成元素が固溶した状態の方がばら
つきが小さく好ましい結果が得られるが、完全に固溶し
ていなくても本発明の効果を得ることができ本発明に含
まれる。熱処理は熱処理前がアモルファス状態の場合は
結晶化の目的も含まれる。また強磁性結晶粒間の金属非
強磁性相はアモルファス相の場合もある。また、強磁性
相は1相である必要はなく2相以上存在しても良い。
In order to solve the above problems, the inventors of the present invention have proposed a metallurgical method in which a film or a ribbon is forcibly alloyed by increasing the cooling rate and then heat-treated. We have found a high-performance MR element material with less variation in characteristics than an MR material such as an artificial lattice multilayer film by using. That is, the present invention is characterized in that at least 30% of the structure consists of fine ferromagnetic crystal grains of 500 angstroms or less, and a metal non-ferromagnetic phase exists in at least a part between the ferromagnetic crystal grains. It was found that the above materials are excellent as MR element materials, high ΔR / R is obtained, and the reproducibility of characteristics is excellent as compared with the artificial lattice multilayer film. In particular, a high ΔR / R is obtained when the metal non-ferromagnetic phase exists so as to surround the periphery of the ferromagnetic crystal grains. The alloy material of the present invention has excellent reproducibility of characteristics as compared with the artificial lattice multilayer film. Examples of the non-ferromagnetic phase include antiferromagnetic phase. At least 30% of the tissue in the present invention
Is required to be a fine ferromagnetic crystal grain of 500 angstroms or less. This is because if it is less than 30%, a large ΔR / R cannot be obtained, and if it exceeds 500 angstroms, the soft magnetic properties deteriorate and it becomes impractical. Metal non-ferromagnetic phase
In many cases, particularly high ΔR / R is obtained when at least one element selected from Cu, Cr, Mn, Au, Ag, and Ru is contained.
Fine ferromagnetic crystal grains are at least selected from Fe, Co and Ni
Contains one element. The typical composition of the material of the present invention is represented by the composition formula: M 100-x X'x (at%), where M is Fe, C.
At least one element selected from o and Ni, X'is Cu, Cr, M
n, Au, Ag, at least one element selected from Ru,
A composition represented by 0¬x≤70 is mentioned. A high ΔR / R is obtained in this range. Further, the composition formula: M 100-xa X 'x M'a
(at%), M is at least one element selected from Fe, Co, Ni, M'is at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Mo, W Element, X'is at least one element selected from Cu, Cr, Mn, Au, Ag, Ru, 0 ¬ x ≤ 70, a
The composition represented by ≦ 20 and a + x ≦ 70 also shows high ΔR / R.
Further, the composition formula: represented by M 100-xaz X 'x M'aX z (at%),
Here, M is at least one element selected from Fe, Co, Ni, M'is at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Mo, W, X'is Cu, Cr , Mn, Au, Ag, at least one element selected from Ru, X is at least one element selected from Si, B, P, C, Ga, Al, 0 ¬ x ≦ 70, a ≦ 2
A high ΔR / R represented by 0, z ≦ 30, and a + x + z ≦ 70 can be obtained. In the present invention, the thickness of the non-magnetic phase is usually a number
From a few hundred ⇔. Also, this non-magnetic phase does not have to completely surround the ferromagnetic crystal grains. Further, the material of the present invention may be formed into a multilayer film if necessary. As the film sandwiched between the layers, a non-ferromagnetic film such as Cu, Ag, and Au is more desirable, and a film that is hard to form a solid solution with a ferromagnetic element is more suitable. The magnetostriction of the ferromagnetic phase is more preferably close to zero. The material of the present invention is usually manufactured as follows. The process of producing an amorphous or fine crystal grain ribbon in which the constituent elements are solid-solved by the liquid quenching method, and at least 30% or more of the structure consists of fine ferromagnetic crystal grains of 500 angstroms or less, and the ferromagnetic crystal grains A manufacturing method consisting of a step of heat-treating so that a metal non-ferromagnetic phase exists in at least a part of the space, a step of manufacturing a film composed of amorphous or fine crystal grains in which the constituent elements are solid-solved by a vapor phase quenching method, and a structure At least 30% or more of 500 angstroms or less consisting of fine ferromagnetic crystal grains, and a manufacturing method comprising a step of heat treatment so that a metal non-ferromagnetic phase exists in at least a part between the ferromagnetic crystal grains, The process of producing a film consisting of amorphous or fine crystal grains in which the constituent elements are solid-solved by the plating method, and at least 30% or more of the structure has a fineness of 500 angstroms or less. MR to Do a ferromagnetic crystal grains, and characterized by comprising the step of heat treating such that the metal non-ferromagnetic phase is present in at least a portion between the ferromagnetic crystal grains
There is a method of manufacturing a device material. In the present invention, in the state before the heat treatment, it is possible to obtain a preferable result in which the constituent elements are completely in solid solution with less variation, but it is possible to obtain the effect of the present invention even if not completely dissolved. Included in the invention. The heat treatment also includes the purpose of crystallization when the heat treatment is in an amorphous state. Further, the metal non-ferromagnetic phase between the ferromagnetic crystal grains may be an amorphous phase. Further, the ferromagnetic phase does not have to be one phase, and two or more phases may exist.

【0005】[0005]

【実施例】以下本発明を実施例に従って説明するが本発
明はこれらに限定されるものではない。 (実施例1)Febal.Cu10Nb3Si13.5B9なる組成のアモル
ファス合金薄帯を単ロ−ル法により作製した。次に、こ
の合金薄帯を550゜Cに加熱熱処理した。得られた合金は
ミクロ組織観察の結果結晶化しており、組織のほとんど
が粒径500⇔以下の微細な結晶粒からなっていた。ま
た、形成した強磁性結晶粒の周囲は非強磁性相が形成し
ているのが電子線回折、メスバウワ−効果、およびED
Xによる組成分析により確認された。得られた合金の組
織の模式図を図2に示す。強磁性bcc結晶粒の周囲を非
磁性相が取り囲む組織となっている。非強磁性相中には
Cuがかなり含まれているのが確認され、非磁性である
ことが確認された。直流B−H曲線を図3に示す。B−
H曲線には折れ曲がりがあり特徴的なヒステリシスル−
プを示す。次に、20試料のMR効果測定により得られた
ΔR/Rの最大値ΔRm/Rのばらつきは9%でありCo(6
⇔)/Ag(25⇔)人工格子多層膜の57%より著しく小さく再
現性に優れていることが確認された。なお、ΔRm/R
のばらつきはΔRm/Rの平均値をa、最大値をm、最
小値をsで表した場合、(m−s)×100/aで定義し
た。 (実施例2)表1に示す組成(at%)の合金膜をスパ
ッタ法により作製し、次に650゜Cで1時間熱処理を行っ
た。ミクロ組織観察の結果、合金膜は、組織のほとんど
が粒径500⇔以下の微細な結晶粒からなっていた。ま
た、形成した強磁性結晶粒の周囲は非強磁性相が形成し
ているのが電子線回折、メスバウワ−効果、およびED
Xによる組成分析により確認された。次にこの合金膜の
磁気抵抗曲線を測定した。測定により得られたΔR/R
の最大値の平均ΔRm/Rおよび20試料作製した場合の
ΔRm/Rのばらつき(%)を表1に示す。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) An amorphous alloy ribbon having a composition of Fe bal. Cu 10 Nb 3 Si 13.5 B 9 was produced by a single roll method. Next, this alloy ribbon was heat-treated at 550 ° C. The obtained alloy was crystallized as a result of microstructure observation, and most of the structure was composed of fine crystal grains with a grain size of 500 or less. Further, the non-ferromagnetic phase is formed around the formed ferromagnetic crystal grains by the electron diffraction, the Mossbauer effect, and the ED.
Confirmed by compositional analysis by X. A schematic diagram of the structure of the obtained alloy is shown in FIG. The structure is such that the non-magnetic phase surrounds the ferromagnetic bcc crystal grains. It was confirmed that Cu was considerably contained in the non-ferromagnetic phase, and it was confirmed to be non-magnetic. The DC BH curve is shown in FIG. B-
The H curve has a bend and a characteristic hysteresis rule
Shows the Next, the variation of the maximum value ΔR m / R of ΔR / R obtained by the MR effect measurement of 20 samples was 9%, and Co (6
It was confirmed that it was significantly smaller than 57% of the artificial lattice multilayer film of ⇔) / Ag (25⇔) and was excellent in reproducibility. In addition, ΔR m / R
When the average value of ΔR m / R is a, the maximum value is m, and the minimum value is s, the variation is defined as (ms) × 100 / a. Example 2 An alloy film having the composition (at%) shown in Table 1 was formed by the sputtering method, and then heat-treated at 650 ° C. for 1 hour. As a result of microstructure observation, most of the structure of the alloy film was composed of fine crystal grains with a grain size of 500 or less. Further, the non-ferromagnetic phase is formed around the formed ferromagnetic crystal grains by the electron diffraction, the Mossbauer effect, and the ED.
Confirmed by compositional analysis by X. Next, the magnetoresistive curve of this alloy film was measured. ΔR / R obtained by measurement
Table 1 shows the average ΔR m / R of the maximum values and the variation (%) of ΔR m / R when 20 samples were prepared.

【表1】 (実施例3)表2に示す組成のアモルファス合金膜をス
パッタ法により作製し、次に650゜Cで1時間熱処理を行い
結晶化させた。ミクロ組織観察の結果、合金膜は結晶化
しており、組織のほとんどが粒径500⇔以下の微細な結
晶粒からなっていた。また、形成した強磁性結晶粒の周
囲は非強磁性相が形成しているのが電子線回折、メスバ
ウワ−効果、およびEDXによる組成分析により確認さ
れた。次にこの合金膜の磁気抵抗曲線を測定した。20試
料作製し測定により得られたΔR/Rの最大の平均値Δ
m/Rのばらつき(%)を表2に示す。
[Table 1] (Example 3) An amorphous alloy film having the composition shown in Table 2 was formed by a sputtering method, and then heat-treated at 650 ° C for 1 hour to be crystallized. As a result of microstructure observation, the alloy film was crystallized and most of the structure was composed of fine crystal grains with a grain size of 500 or less. Further, it was confirmed by electron beam diffraction, Mossbauer effect, and composition analysis by EDX that a non-ferromagnetic phase was formed around the formed ferromagnetic crystal grains. Next, the magnetoresistive curve of this alloy film was measured. Maximum average value of ΔR / R obtained by measuring 20 samples
The variation (%) of R m / R is shown in Table 2.

【表2】 [Table 2]

【0006】[0006]

【発明の効果】本発明によれば磁気センサや磁気ヘッド
等に好適な高いΔR/Rが得られかつばらつきの小さい
MR素子用材料を得ることができるためその効果は著し
いものがある。
According to the present invention, a high ΔR / R suitable for a magnetic sensor, a magnetic head and the like can be obtained and a material for an MR element having a small variation can be obtained, and the effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】i方向と垂直にHを加えた時のΔR/R−H曲
線の一例を示した図である。
FIG. 1 is a diagram showing an example of a ΔR / RH curve when H is added perpendicularly to the i direction.

【図2】本発明に係わる合金の組織の一例を示した模式
図である。
FIG. 2 is a schematic diagram showing an example of a structure of an alloy according to the present invention.

【図3】本発明に係わる直流B−H曲線の一例を示した
図である。
FIG. 3 is a diagram showing an example of a DC BH curve according to the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 組織の少なくとも30%以上が500オングス
トロ−ム以下の微細な強磁性結晶粒からなり、かつ強磁
性結晶粒間の少なくとも一部に金属非強磁性相が存在し
ていることを特徴とするMR素子用材料。
1. At least 30% or more of the structure is composed of fine ferromagnetic crystal grains of 500 angstroms or less, and a metal nonferromagnetic phase exists in at least a part between the ferromagnetic crystal grains. Characteristic material for MR element.
【請求項2】 金属非強磁性相が強磁性結晶粒の周囲を
囲むように存在していることを特徴とする請求項1に記
載のMR素子用材料。
2. The MR element material according to claim 1, wherein the metallic non-ferromagnetic phase exists so as to surround the periphery of the ferromagnetic crystal grains.
【請求項3】 金属非強磁性相がCu,Cr,Mn,Au,Ag,Ruか
ら選ばれた少なくとも一種の元素を含むことを特徴とす
る請求項1乃至請求項2に記載のMR素子用材料。
3. The MR element according to claim 1, wherein the metallic non-ferromagnetic phase contains at least one element selected from Cu, Cr, Mn, Au, Ag and Ru. material.
【請求項4】 微細な強磁性結晶粒がFe,Co,Niから選ば
れる少なくとも1つの元素を含有していることを特徴と
する請求項1乃至請求項3に記載のMR素子用材料。
4. The MR element material according to claim 1, wherein the fine ferromagnetic crystal grains contain at least one element selected from Fe, Co and Ni.
【請求項5】 組成式:M100-xX'x (at%)で表され、こ
こでMはFe,Co,Niから選ばれる少なくとも一種の元素、
X'はCu,Cr,Mn,Au,Ag,Ruから選ばれた少なくとも一種の
元素であり、0¬x≦70であることを特徴とする請求項1
乃至請求項4に記載のMR素子用材料。
5. A composition formula: M 100-x X'x (at%), wherein M is at least one element selected from Fe, Co and Ni,
X'is at least one element selected from Cu, Cr, Mn, Au, Ag, Ru, and 0 ≤ x ≤ 70, wherein
To the MR element material according to claim 4.
【請求項6】 組成式:M100-x-aX'xM'a (at%)で表さ
れ、ここでMはFe,Co,Niから選ばれる少なくとも一種の
元素、M'はTi,Zr,Hf,V,Nb,Ta,Mo,Wから選ばれた少なく
とも一種の元素、X'はCu,Cr,Mn,Au,Ag,Ruから選ばれた
少なくとも一種の元素であり、0¬x≦70、a≦20、a+x≦
70であることを特徴とする請求項1乃至請求項4に記載
のMR素子用材料。
6. The composition formula: 'is represented by x M'a (at%), where at least one element M is Fe, Co, chosen from Ni, M' M 100-xa X is Ti, Zr, Hf, V, Nb, Ta, Mo, at least one element selected from W, X'is at least one element selected from Cu, Cr, Mn, Au, Ag, Ru, 0¬x ≦ 70 , A ≦ 20, a + x ≦
70. The MR element material according to claim 1, wherein the material is 70.
【請求項7】 組成式:M100-x-a-zX'xM'aXz (at%)で
表され、ここでMはFe,Co,Niから選ばれる少なくとも一
種の元素、M'はTi,Zr,Hf,V,Nb,Ta,Mo,Wから選ばれた少
なくとも一種の元素、X'はCu,Cr,Mn,Au,Ag,Ruから選ば
れた少なくとも一種の元素であり、XはSi,B,P,C,Ga,Al
から選ばれる少なくとも一種の元素であり、0¬x≦70、
a≦20、z≦30、a+x+z≦70であることを特徴とする請求
項1乃至請求項4に記載のMR素子用材料。
7. A composition formula: 'is represented by x M'aX z (at%), wherein M is at least one element selected Fe, Co, from Ni, M' M 100-xaz X is Ti, Zr , Hf, V, Nb, Ta, Mo, at least one element selected from W, X'is at least one element selected from Cu, Cr, Mn, Au, Ag, Ru, X is Si, B, P, C, Ga, Al
At least one element selected from 0 ¬ x ≦ 70,
The MR element material according to claim 1, wherein a ≦ 20, z ≦ 30, and a + x + z ≦ 70.
【請求項8】 液体急冷法により構成元素が固溶したア
モルファスあるいは微細結晶粒薄帯を製造する工程と、
組織の少なくとも30%以上が500オングストロ−ム以下の
微細な強磁性結晶粒からなり、かつ強磁性結晶粒間の少
なくとも一部に金属非強磁性相が存在するように熱処理
する工程からなることを特徴とするMR素子用材料の製
造方法。
8. A step of producing an amorphous or fine crystal grain ribbon in which constituent elements are solid-solved by a liquid quenching method,
At least 30% or more of the structure is composed of fine ferromagnetic crystal grains of 500 angstroms or less, and the heat treatment is performed so that the metal non-ferromagnetic phase exists in at least a part of the ferromagnetic crystal grains. A method for producing a material for an MR element, which is characterized.
【請求項9】 気相急冷法により構成元素が固溶したア
モルファスあるいは微細結晶粒からなる膜を製造する工
程と、組織の少なくとも30%以上が500オングストロ−ム
以下の微細な強磁性結晶粒からなり、かつ強磁性結晶粒
間の少なくとも一部に金属非強磁性相が存在するように
熱処理する工程からなることを特徴とするMR素子用材
料の製造方法。
9. A process for producing a film composed of amorphous or fine crystal grains in which constituent elements are solid-solved by a vapor phase quenching method, and at least 30% or more of the structure is formed from fine ferromagnetic crystal grains of 500 Å or less. And a heat treatment step such that a metal non-ferromagnetic phase exists in at least a part of the ferromagnetic crystal grains.
JP25439392A 1992-09-24 1992-09-24 Material for MR element and method for manufacturing the same Expired - Fee Related JP3374984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25439392A JP3374984B2 (en) 1992-09-24 1992-09-24 Material for MR element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25439392A JP3374984B2 (en) 1992-09-24 1992-09-24 Material for MR element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06101000A true JPH06101000A (en) 1994-04-12
JP3374984B2 JP3374984B2 (en) 2003-02-10

Family

ID=17264358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25439392A Expired - Fee Related JP3374984B2 (en) 1992-09-24 1992-09-24 Material for MR element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3374984B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425819A (en) * 1993-08-31 1995-06-20 Yamaha Corporation Magnetoresistive material
US5585198A (en) * 1993-10-20 1996-12-17 Sanyo Electric Co., Ltd. Magnetorsistance effect element
US5680091A (en) * 1994-09-09 1997-10-21 Sanyo Electric Co., Ltd. Magnetoresistive device and method of preparing the same
US5736921A (en) * 1994-03-23 1998-04-07 Sanyo Electric Co., Ltd. Magnetoresistive element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425819A (en) * 1993-08-31 1995-06-20 Yamaha Corporation Magnetoresistive material
US5585198A (en) * 1993-10-20 1996-12-17 Sanyo Electric Co., Ltd. Magnetorsistance effect element
US5738929A (en) * 1993-10-20 1998-04-14 Sanyo Electric Co., Ltd. Magnetoresistance effect element
US5736921A (en) * 1994-03-23 1998-04-07 Sanyo Electric Co., Ltd. Magnetoresistive element
US5680091A (en) * 1994-09-09 1997-10-21 Sanyo Electric Co., Ltd. Magnetoresistive device and method of preparing the same

Also Published As

Publication number Publication date
JP3374984B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
JP3088478B2 (en) Magnetoresistive element
KR100192192B1 (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
JP3411626B2 (en) Magnetic multilayer film, magnetoresistive effect element, and method of manufacturing the same
JP3285937B2 (en) Magnetic multilayer film, magnetoresistive variable element, and manufacturing method thereof
JP3207477B2 (en) Magnetoresistance effect element
US5858125A (en) Magnetoresistive materials
JPH08127864A (en) Magneto resistance effect film and its production
US5756191A (en) Exchange coupling film and magnetoresistance effect element
EP0526044A1 (en) Magnetoresistance effect element
JP3088519B2 (en) Magnetoresistive element
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
JP2629583B2 (en) Magnetoresistive film and method of manufacturing the same
JP3247535B2 (en) Magnetoresistance effect element
US20010047930A1 (en) Method of producing exchange coupling film and method of producing magnetoresistive sensor by using the exchange coupling film
JP3374984B2 (en) Material for MR element and method for manufacturing the same
US5432661A (en) Magnetoresistance effect element
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
JPH07192919A (en) Artificial lattice film and magnetoresistive effect element using artificial lattice film
JP3393963B2 (en) Exchange coupling film and magnetoresistive element
JP3337732B2 (en) Magnetoresistance effect element
KR0177922B1 (en) Soft magnetic thin film
JPH0794326A (en) Magnetoresistance effect film and manufacture thereof
JP3286244B2 (en) Magnetoresistive element, magnetic head and magnetic recording device using the same
Kitade et al. Giant magnetoresistance effect in CoNiFe/Cu spin valves
JPH0629589A (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees