JPH0610015A - Production of superfine particles of gold - Google Patents

Production of superfine particles of gold

Info

Publication number
JPH0610015A
JPH0610015A JP19324692A JP19324692A JPH0610015A JP H0610015 A JPH0610015 A JP H0610015A JP 19324692 A JP19324692 A JP 19324692A JP 19324692 A JP19324692 A JP 19324692A JP H0610015 A JPH0610015 A JP H0610015A
Authority
JP
Japan
Prior art keywords
gold
extracting
phase
extractant
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19324692A
Other languages
Japanese (ja)
Inventor
Sumiko Sanuki
須美子 佐貫
Hiroshi Mashima
宏 真嶋
Akio Sugiyama
明夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP19324692A priority Critical patent/JPH0610015A/en
Publication of JPH0610015A publication Critical patent/JPH0610015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the superfine particles of gold having excellent distribution state, large surface area and surface activity by extracting aqua regia dissolved liq. of gold with org. phase, then back-extracting the extract with the aq. soln. containing prescribed amount of a reductant. CONSTITUTION:The aqua regia dissolved liq. of gold obtained by dissolving gold in aqua regia, etc., and the hydrochloric acid or nitric acid dissolved liq. of gold chloride acid are prepared. The org. phase containing a solvating extractant (e.g. keton, ether, alkohl, etc.) or a neutral extractant (e.g. neutral phosphoric ester, trialkylphosphin oxide) is prepared. The org. phase is allowed to contact with the dissolved liq. of gold and gold is extracted into the org. phase. Then, the extract is back-extracted with the aq. soln. containing the reductant (e.g. HCHO, H2C2O4, Na2SO3, etc.) whose amount is below equivalent weight of gold reducing reaction and superfine particles of gold is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は金超微粒子の製造方法に関する。The present invention relates to a method for producing ultrafine gold particles.

【0002】粒度1μm以下の金の超微粒子は装飾水金
用、ペースト用および触媒用の材料として広く用いられ
ている。このような用途の金超微粒子の製造方法として
は、その用途に応じて水溶液中での還元法、有機溶媒中
での水素ガス還元法、エマルジョン型液膜溶媒抽出法
(特開平3ー253506)や、マイクロエマルジョン
法などが提案され実用化されている。
Ultrafine gold particles having a particle size of 1 μm or less are widely used as materials for decorative water gold, pastes and catalysts. As a method for producing ultrafine gold particles for such use, a reduction method in an aqueous solution, a hydrogen gas reduction method in an organic solvent, an emulsion type liquid film solvent extraction method (JP-A-3-253506) is used depending on the use. The microemulsion method has been proposed and put to practical use.

【0003】しかし、上記のような従来の製造方法によ
り得られる金粒子は数μm程度の粒径の比較的大きな粒
子であり、触媒などの用途に使用する場合には、表面積
が小さく、また表面活性が弱いという欠点があり、これ
らの問題点の解決が望まれていた。
However, the gold particles obtained by the conventional manufacturing method as described above are relatively large particles having a particle size of about several μm, and when used for applications such as catalysts, the surface area is small and the surface is small. Since it has a weak activity, it has been desired to solve these problems.

【0004】本発明は、上記の問題点を解決する、良好
な分布状態を有し、大きな表面積、大きな表面活性を有
する金超微粒子の製造方法を提供するものである。すな
わち、本発明は、金の王水溶解液、または塩化金酸の塩
酸または硝酸溶解液を、溶媒和抽出剤または中性抽出剤
を含む有機相に抽出する工程、および金還元反応の当量
以下の還元剤を含む水溶液で逆抽出する工程を含む、金
超微粒子の製造方法に関する。さらに本発明は、金の王
水溶解液、または塩化金酸の塩酸または硝酸溶解液を、
溶媒和抽出剤または中性抽出剤を含む有機相に抽出する
工程、有機相中で光化学反応を利用して金を部分的に還
元する工程、および金還元反応の当量以下の還元剤を含
む水溶液で逆抽出する工程を含む、金超微粒子の製造方
法に関する。
The present invention provides a method for producing ultrafine gold particles having a good distribution state, a large surface area and a large surface activity, which solves the above problems. That is, the present invention comprises a step of extracting an aqua regia solution of gold or a hydrochloric acid or nitric acid solution of chloroauric acid into an organic phase containing a solvating extractant or a neutral extractant, and an equivalent amount of gold reduction reaction or less. And a method for producing ultrafine gold particles, which comprises a step of back-extracting with an aqueous solution containing a reducing agent. Further, the present invention, a gold aqua regia solution, or hydrochloric acid or nitric acid solution of chloroauric acid,
Extracting into an organic phase containing a solvating extractant or a neutral extractant, partially reducing gold using a photochemical reaction in the organic phase, and an aqueous solution containing a reducing agent in an amount equal to or less than the equivalent amount of the gold reduction reaction. The present invention relates to a method for producing ultrafine gold particles, which includes a step of back-extracting with.

【0005】本発明において金は王水溶解液、または塩
化金酸の塩酸または硝酸溶解液として利用されるが、金
の塩素による溶解液の形でも使用できる。
In the present invention, gold is used as an aqua regia solution or a hydrochloric acid or nitric acid solution of chloroauric acid, but it can also be used in the form of a solution of gold in chlorine.

【0006】また金の濃度は、必要に応じて幅広く選択
することができるが、好ましくは6x10-4〜6x10
-3モル/リットルの範囲である。
The concentration of gold can be widely selected according to need, but is preferably 6 × 10 −4 to 6 × 10.
-3 mol / liter range.

【0007】本明細書において溶媒和抽出剤とは、ケト
ン、エーテル、アルコール類などの抽出剤をいい、例え
ば、メチルイソブチルケトン(MIBK)やジエチレン
グリコールジノルマルブチルエーテル(DBC)が好ま
しく使用される。また、中性抽出剤とは、中性燐酸エス
テル、トリアルキルホスフィンオキシドなどの抽出剤を
いい、例えばトリブチルリン酸(TBP)が好ましく使
用される。
[0007] In the present specification, the solvating extractant refers to an extractant such as ketone, ether or alcohol, and for example, methyl isobutyl ketone (MIBK) or diethylene glycol dinormal butyl ether (DBC) is preferably used. The neutral extractant refers to an extractant such as neutral phosphoric acid ester and trialkylphosphine oxide, and for example, tributyl phosphoric acid (TBP) is preferably used.

【0008】抽出および逆抽出は、公知の方法により行
えばよい。また、その条件は特に制限するものでなく、
例えば室温で振盪機により両相を混合接触することによ
り行われる。逆抽出は例えば約1昼夜の間行われる。
The extraction and back extraction may be performed by known methods. The conditions are not particularly limited,
For example, it is performed by mixing and contacting both phases with a shaker at room temperature. The back extraction is performed for about one day and night, for example.

【0009】王水などに溶解された金は溶媒和抽出剤を
含む有機相に容易に抽出されるのに対し、白金やイリジ
ウムなどの金属イオンは抽出されないので、金と他の貴
金属を分離することができる。次いで有機相中の金を還
元剤を含む水溶液で逆抽出すると、逆抽出された金は水
中で還元され、金属超微粒子を形成する。また、中和抽
出剤を含む有機相には、金の他に白金などの貴金属も抽
出されるが、還元剤を含む水溶液で逆抽出を行っても金
以外の貴金属は還元されないので、金と他の貴金属を分
離することができる。たとえば、MIBKで抽出された
金はチオ硫酸ナトリウム水溶液で逆抽出すると容易にA
u(S232 3-として水相に移行する。
Gold dissolved in aqua regia is easily extracted into an organic phase containing a solvation extractant, whereas metal ions such as platinum and iridium are not extracted, so gold and other noble metals are separated. be able to. Next, when gold in the organic phase is back-extracted with an aqueous solution containing a reducing agent, the back-extracted gold is reduced in water to form ultrafine metal particles. In addition to gold, precious metals such as platinum are also extracted into the organic phase containing the neutralizing extractant, but no precious metal other than gold is reduced even if back-extracting with an aqueous solution containing a reducing agent. Other precious metals can be separated. For example, gold extracted with MIBK can be easily extracted by back-extracting with an aqueous sodium thiosulfate solution.
Transferred to the aqueous phase as u (S 2 O 3 ) 2 3- .

【0010】この時、水溶液中に適当な金の還元剤、た
とえばHCHO、H224、HCOOH、CH30H、
25OH、Na2SO3、(COONa)2、およびH
COONaなどを存在させると逆抽出と同時に金イオン
は金に還元され、金超微粒子として水相中に回収され
る。還元剤の添加量は、金の還元反応に必要な当量以下
でよく、たとえば0.2モル当量以下でよい。逆抽出の
際に水溶液中に含有させる還元剤の量および種類により
還元反応速度は影響を受けず、また得られる金超微粒子
も影響を受けない。
At this time, a suitable gold reducing agent, such as HCHO, H 2 C 2 O 4 , HCOOH, CH 3 0H, is added to the aqueous solution.
C 2 H 5 OH, Na 2 SO 3 , (COONa) 2 , and H
When COONa or the like is present, gold ions are reduced to gold at the same time as back extraction, and are recovered in the aqueous phase as ultrafine gold particles. The amount of the reducing agent added may be equal to or less than the equivalent required for the reduction reaction of gold, for example, 0.2 molar equivalent or less. The reduction reaction rate is not affected by the amount and type of the reducing agent contained in the aqueous solution during the back extraction, and the obtained ultrafine gold particles are not affected.

【0011】本発明においては、有機相中で光化学反応
を利用して部分的に還元した後、金還元反応の当量以下
の還元剤を含有する水溶液で逆抽出することもできる
が、この場合には逆抽出速度が極めて速くなるという効
果が得られる。なお、得られる金超微粒子に有意差は認
められない。
In the present invention, it is possible to carry out partial reduction by utilizing a photochemical reaction in the organic phase, and then back-extract with an aqueous solution containing a reducing agent in an amount equivalent to or less than the gold reduction reaction. Has an effect that the back extraction speed becomes extremely high. Note that no significant difference was found in the obtained ultrafine gold particles.

【0012】光化学反応の光源としては、太陽光でもよ
く、その他公知の光源が使用できる。部分的に還元と
は、例えば金を抽出した有機相の黄色の着色が無色にな
るまで還元する場合をいう。例えば、MIBKにより塩
化金酸の3mol/cc塩酸水溶液から抽出されたAu
(III)は黄色を呈するが、光を遮断しない条件下で
は、約10日の放置により完全に無色になり部分的に還
元される。また、紫外線ランプを使って波長290〜4
00nm、密度2.6mW/cm2の照射を4〜5時間
行えば完全に無色になる。
The light source for the photochemical reaction may be sunlight, or any other known light source can be used. Partially reducing means, for example, reducing gold until the yellow color of the organic phase extracted from gold becomes colorless. For example, Au extracted from a 3 mol / cc hydrochloric acid aqueous solution of chloroauric acid by MIBK
Although (III) has a yellow color, it is completely colorless and partially reduced under a condition of not blocking light for about 10 days. Also, using an ultraviolet lamp, the wavelength is 290-4
Irradiation at 00 nm and a density of 2.6 mW / cm 2 is performed for 4 to 5 hours to obtain completely colorless.

【0013】さらに、逆抽出の際に、界面活性剤を存在
させると粒子径を小さくすることができる。界面活性剤
としては、たとえばドデシル硫酸ナトリウム(SD
S)、ピロリン酸ナトリウム(NaPP)、およびヘキ
サメタリン酸ナトリウム(NaHMP)が好ましく使用
できる。
Further, in the back extraction, the presence of a surfactant can reduce the particle size. Examples of the surfactant include sodium dodecyl sulfate (SD
S), sodium pyrophosphate (NaPP), and sodium hexametaphosphate (NaHMP) can be preferably used.

【0014】以下に実施例により本発明をより詳細に説
明するが、これらは本発明の好ましい実施態様の例示に
すぎず、本発明の範囲を何ら制限するものではない。実施例 1 .濃度3×10-3mol・dm-3の塩化金酸
の3mol・dm-3HCl水溶液とMIBKを(有機
相)/(水溶液相)容積比、(O/A)=1で室温で振
盪機で両相を混合接触するとAu(III)は容易に有機
相に抽出され、黄色を示した。この液を無色透明のガラ
ス瓶中で数日間室温で放置すると液の黄色は殆んど消失
し無色となった。
The present invention will be described in more detail below with reference to examples, but these are merely examples of preferred embodiments of the present invention, and do not limit the scope of the present invention in any way. Example 1 . A shaker at room temperature with a concentration of 3 × 10 −3 mol · dm −3 of 3 mol · dm −3 HCl aqueous solution of chloroauric acid and MIBK (organic phase) / (aqueous phase) (O / A) = 1. When both phases were mixed and contacted with each other, Au (III) was easily extracted into the organic phase and exhibited a yellow color. When this liquid was allowed to stand at room temperature for several days in a colorless and transparent glass bottle, the yellow color of the liquid almost disappeared and the liquid became colorless.

【0015】この液を有機相中のAuの0.1モル当量
のH224を含む水溶液で室温で逆抽出すると、18
時間後には有機相中のAuは100%逆抽出され、Au
の超微粒子が得られた。得られた超微粒子の透過型電子
顕微鏡写真(30,000倍)を第1図に示す。得られ
た粒子は粒子径0.2〜0.3μmの粒度の揃った超微
粒子であり、電子顕微鏡観察下での電場の強さで容易に
凝集するほど表面活性な粒子である。そのX線回折像
を、第3図に示す。これより、Au金属の単相であるこ
とが判る。実施例 2 .Au濃度2.8×10-3mol・dm-3
MIBK溶液に、密度2.6mW/cm2の紫外線照射
を5時間行うと黄色は消失し無色になった。これを有機
相中のAuの0.1モル当量のH224を含むチオ硫
酸ナトリウム水溶液で逆抽出すると、6時間の逆抽出で
98%は水相に移行し、0.1μm以下の超微粒の金粒
子が得られた。制限視野電子回折法により、Au結晶で
あることが確認された。実施例 3 .濃度3×10-3mol・dm-3の塩化金酸
の3mol・dm-3HCl水溶液をDBCで抽出すると
Au(III)は容易に有機相中に抽出され、液は黄色を呈
した。この液を無色透明のガラス瓶中で数日間放置する
と黄色は殆んど消失した。この有機相中のAuを0.2
モル当量のHCOOHを含む水溶液で逆抽出すると、6
時間の逆抽出で78%の純粋な0.2〜0.3μmの超
微粒子の金粒子が得られた。実施例 4 .Au濃度2.6×10-3mol・dm-3
TBP溶液を水で1度洗浄後、密度2.6mW/cm2
の紫外線照射を7時間行った。引き続き、有機相中のA
uの0.2モル当量のNa2SO3を含むチオ硫酸ナトリ
ウム水溶液で逆抽出すると、12時間の逆抽出で98%
は水相に移行し金の超微粒子として析出できた。実施例 5 .Au濃度5×10-3mol・dm-3の塩化
金酸の3mol・dm-3HCl水溶液をMIBKで抽出
し数日間放置後黄色が消失した有機相を、その中に含ま
れるAuの0.1モル当量のH224と3重量%のピ
ロリン酸ナトリウム(NaPP)で逆抽出すると、紺色
を呈したのち水相中に逆抽出された。24時間の逆抽出
により100%がAuの超微粒子として水相中に回収さ
れた。第2図の透過型電子顕微鏡写真(30,000
倍)による観察で、得られた粒子は平均粒径0.1μm
以下の超微粒であることが判る。実施例 6 .塩化金酸のHNO3水溶液中のAuをMI
BKで抽出し、Au(III)の還元に必要な還元剤の
0.2モル当量のHCOOHを含む水溶液で室温で逆抽
出すると、6時間の逆抽出で51%、また24時間後に
は98%のAuが水相中に逆抽出され、0.2〜0.3
μmのAu単相の超微粒子が回収された。逆抽出液中の
HCOOH量を2モル当量にしても18時間後のAuの
還元逆抽出率は0.1モル当量の場合と変わらなかっ
た。
When this solution was back-extracted at room temperature with an aqueous solution containing 0.1 molar equivalent of H 2 C 2 O 4 in the organic phase, 18
After time, 100% of the Au in the organic phase was back-extracted,
Ultrafine particles of were obtained. A transmission electron micrograph (30,000 times) of the obtained ultrafine particles is shown in FIG. The obtained particles are ultrafine particles having a uniform particle size of 0.2 to 0.3 μm and surface active particles that are easily aggregated by the strength of an electric field under an electron microscope observation. The X-ray diffraction image is shown in FIG. From this, it can be seen that it is a single phase of Au metal. Example 2 . When the MIBK solution having an Au concentration of 2.8 × 10 −3 mol · dm −3 was irradiated with ultraviolet rays having a density of 2.6 mW / cm 2 for 5 hours, the yellow color disappeared and the material became colorless. When this was back-extracted with an aqueous sodium thiosulfate solution containing 0.1 molar equivalent of H 2 C 2 O 4 in the organic phase, 98% was transferred to the aqueous phase in 6 hours of back-extraction and was 0.1 μm or less. As a result, ultrafine gold particles were obtained. It was confirmed to be an Au crystal by a selected area electron diffraction method. Example 3 . When a 3 mol · dm −3 HCl aqueous solution of chloroauric acid having a concentration of 3 × 10 −3 mol · dm −3 was extracted with DBC, Au (III) was easily extracted into the organic phase, and the liquid became yellow. When this solution was left in a colorless and transparent glass bottle for several days, the yellow color almost disappeared. 0.2 in Au in this organic phase
Back extraction with an aqueous solution containing molar equivalents of HCOOH gives 6
Back extraction in time gave 78% pure 0.2-0.3 μm ultrafine gold particles. Example 4 . A TBP solution with an Au concentration of 2.6 × 10 −3 mol · dm −3 was washed once with water, and then the density was 2.6 mW / cm 2.
UV irradiation was performed for 7 hours. Next, A in the organic phase
When back-extracted with an aqueous sodium thiosulfate solution containing 0.2 molar equivalent of u 2 of Na 2 SO 3 , 98% was obtained by back-extraction for 12 hours.
Was transferred to the water phase and could be deposited as ultrafine gold particles. Example 5 . The organic phase in which 3 mol · dm −3 HCl aqueous solution of chloroauric acid having an Au concentration of 5 × 10 −3 mol · dm −3 was extracted with MIBK and the yellow color disappeared after standing for several days was adjusted to 0. Back-extraction with 1 molar equivalent of H 2 C 2 O 4 and 3% by weight of sodium pyrophosphate (NaPP) gave a dark blue color and then back-extraction into the aqueous phase. After 24 hours of back extraction, 100% was recovered in the aqueous phase as ultrafine particles of Au. Transmission electron micrograph of FIG. 2 (30,000
The obtained particles have an average particle size of 0.1 μm.
It can be seen that they are the following ultrafine particles. Example 6 . MI in Au in HNO 3 aqueous solution of chloroauric acid
After extraction with BK and back-extraction at room temperature with an aqueous solution containing 0.2 molar equivalent of HCOOH of the reducing agent necessary for the reduction of Au (III), it was 51% after 6 hours of back-extraction and 98% after 24 hours. Au is back-extracted into the aqueous phase and 0.2-0.3
μm Au single-phase ultrafine particles were recovered. Even if the amount of HCOOH in the back extraction liquid was 2 molar equivalents, the reduction and back extraction ratio of Au after 18 hours was the same as that in the case of 0.1 molar equivalents.

【0016】これに対し有機相を透明びん中に数日間保
持し、液が無色になった後に0.2モル当量のHCOO
Hを含む水溶液で逆抽出すると6時間後の還元逆抽出率
は81%であった。
On the other hand, the organic phase was kept in a transparent bottle for several days, and after the liquid became colorless, 0.2 molar equivalent of HCOO was used.
When back-extracted with an aqueous solution containing H, the reduction back-extraction ratio after 6 hours was 81%.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1により得られた金粒子の電子顕
微鏡写真である。
FIG. 1 is an electron micrograph of gold particles obtained in Example 1.

【図2】図2は実施例4により得られた金粒子の電子顕
微鏡写真である。
FIG. 2 is an electron micrograph of gold particles obtained in Example 4.

【図3】図3は実施例1により得られた金粒子のX線回
折像である。
FIG. 3 is an X-ray diffraction image of the gold particles obtained in Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金の王水溶解液、または塩化金酸の塩酸
または硝酸溶解液を、溶媒和抽出剤または中性抽出剤を
含む有機相に抽出する工程、および金還元反応の当量以
下の還元剤を含む水溶液で逆抽出する工程を含む、金超
微粒子の製造方法。
1. A step of extracting a gold aqua regia solution or a hydrochloric acid or nitric acid solution of chloroauric acid into an organic phase containing a solvation extractant or a neutral extractant, and an amount equal to or less than the equivalent of the gold reduction reaction. A method for producing ultrafine gold particles, comprising the step of back-extracting with an aqueous solution containing a reducing agent.
【請求項2】 金の王水溶解液、または塩化金酸の塩酸
または硝酸溶解液を、溶媒和抽出剤または中性抽出剤を
含む有機相に抽出する工程、有機相中で光化学反応を利
用して金を部分的に還元する工程、および金還元反応の
当量以下の還元剤を含む水溶液で逆抽出する工程を含
む、金超微粒子の製造方法。
2. A step of extracting a gold aqua regia solution or a hydrochloric acid or nitric acid solution of chloroauric acid into an organic phase containing a solvating extractant or a neutral extractant, and utilizing a photochemical reaction in the organic phase. And partially reducing the gold, and back-extracting with an aqueous solution containing a reducing agent in an amount equal to or less than the equivalent amount of the gold reduction reaction.
【請求項3】 前記、逆抽出する工程で使用される還元
剤を含む水溶液が、さらに界面活性剤を含むことを特徴
とする請求項1または2記載の金超微粒子の製造方法。
3. The method for producing ultrafine gold particles according to claim 1, wherein the aqueous solution containing a reducing agent used in the step of back-extracting further contains a surfactant.
JP19324692A 1992-06-26 1992-06-26 Production of superfine particles of gold Pending JPH0610015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19324692A JPH0610015A (en) 1992-06-26 1992-06-26 Production of superfine particles of gold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19324692A JPH0610015A (en) 1992-06-26 1992-06-26 Production of superfine particles of gold

Publications (1)

Publication Number Publication Date
JPH0610015A true JPH0610015A (en) 1994-01-18

Family

ID=16304767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19324692A Pending JPH0610015A (en) 1992-06-26 1992-06-26 Production of superfine particles of gold

Country Status (1)

Country Link
JP (1) JPH0610015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068674A1 (en) * 2002-02-15 2003-08-21 Japan Science And Technology Agency Noble-metal nanowire structure and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068674A1 (en) * 2002-02-15 2003-08-21 Japan Science And Technology Agency Noble-metal nanowire structure and process for producing the same

Similar Documents

Publication Publication Date Title
Erbs et al. Visible-light-induced oxygen generation from aqueous dispersions of tungsten (VI) oxide
Nahor et al. Changes in the redox state of iridium oxide clusters and their relation to catalytic water oxidation: radiolytic and electrochemical studies
Stroyuk et al. Photochemical synthesis and optical properties of binary and ternary metal–semiconductor composites based on zinc oxide nanoparticles
US7611562B2 (en) Triangular nanoframes and method of making same
US10214796B2 (en) Compounds and methods to isolate gold
Pacioni et al. Synthesis of copper nanoparticles mediated by photogenerated free radicals: catalytic role of chloride anions
Larsen Dissolution of uranium metal and its alloys
CN102699341B (en) A kind of wet chemical preparation method of silver-colored micro-/ nano line
Wu et al. Controlling the spontaneous precipitation of silver nanoparticles in sol-gel materials
Shawky et al. Promoted hexavalent chromium ion photoreduction over visible-light active RuO2/TiO2 heterojunctions prepared by solution process
Sun et al. Reversibly tuning the surface state of Ag via the assistance of photocatalysis in Ag/BiOCl
Khan et al. Designing novel nonsymmetric ag/AgI Nanoplates for superior photocatalytic activity
JPH05254832A (en) Extraction of cerium from aqueous solution of mixture of rare-earth element
JPH0610015A (en) Production of superfine particles of gold
Grätzel et al. Visible-light-induced photodissolution of α-Fe 2 O 3 powder in the presence of chloride anions
JPH08271684A (en) Electrochemical oxidation method from am (iii) useful for separating americium from reprocessed solution of used nuclear fuel into am(vi)
JP3395875B2 (en) Method and apparatus for dissolving a mixture of uranium oxide and plutonium oxide
He et al. Comparison between the effects of TiO2 synthesized by photoassisted and conventional sol–gel methods on the photochromism of WO3 colloids
Donnet et al. Development of the SESAME process
US6627048B1 (en) Reductive precipitation of metals photosensitized by tin and antimony porphyrins
US3979498A (en) Recovery of cesium and palladium from nuclear reactor fuel processing waste
Praharaj et al. Effect of bromide and chloride ions for the dissolution of colloidal gold
JP6919309B2 (en) How to make gold from copper electrolytic slime
JPH03253506A (en) Production of noble metal fine particles using emulsion type liquid film method
CN106222724B (en) A kind of controlling type Cu ions doping TiO in situ2The preparation method of nano-tube array