JPH0599969A - Three phase electronlike loading device - Google Patents

Three phase electronlike loading device

Info

Publication number
JPH0599969A
JPH0599969A JP3264341A JP26434191A JPH0599969A JP H0599969 A JPH0599969 A JP H0599969A JP 3264341 A JP3264341 A JP 3264341A JP 26434191 A JP26434191 A JP 26434191A JP H0599969 A JPH0599969 A JP H0599969A
Authority
JP
Japan
Prior art keywords
load
voltage
power
value
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3264341A
Other languages
Japanese (ja)
Other versions
JP2919657B2 (en
Inventor
Shigeru Warashina
茂 藁科
Yukio Kojima
雪夫 小島
Yousuke Nakanishi
要祐 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP3264341A priority Critical patent/JP2919657B2/en
Publication of JPH0599969A publication Critical patent/JPH0599969A/en
Application granted granted Critical
Publication of JP2919657B2 publication Critical patent/JP2919657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simulate comparatively faithfully the transient variation of electric power with the transient variation of voltage. CONSTITUTION:To a three phase power source device 2, three series (1A, 1B, 1C) of electron loading device each consisting of an A/D converter, a digital calculator (MP), a D/A converter and V/I converter are provided. By using a specific dynamic characteristics model having a result of applying to an actual electric system for the load characteristics setting value of each electronlike loading device, an actual load function can be simulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、交流電源に接続され
て各種の負荷(抵抗負荷,誘導性負荷,容量性負荷,電
力など)を模擬するための電子的負荷装置、特に電圧の
変動に対する電力変動量を模擬可能にした電子的負荷装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic load device connected to an AC power source for simulating various loads (resistive load, inductive load, capacitive load, electric power, etc.), and particularly to voltage fluctuation. The present invention relates to an electronic load device capable of simulating the amount of power fluctuation.

【0002】[0002]

【従来の技術】図4にこの種の従来例を示す。すなわ
ち、電子的負荷装置(以下、単に負荷装置ともいう)1
は交流電源装置2Aの両端に接続されたA/Dコンバー
タ11と、その出力側に接続されたマイクロコンピュー
タの如きディジタル演算装置(以下、マイコンともいい
MPとも略記する)12と、その出力側に接続されたD
/Aコンバータ13と、その出力側に接続されかつ交流
電源装置2Aの両端に接続された電流源14とから構成
される。ここで、例えば負荷特性として定電力の場合の
例につき説明する。いま、負荷特性設定値としての設定
消費電力値をM(ベクトル量)とすると、負荷装置1の
入力インピーダンスZ(ベクトル量)は、 Z=Vr2 /M …(a) となる。なお、Vrは入力電圧V(ベクトル量)の実効
値を示す。
2. Description of the Related Art FIG. 4 shows a conventional example of this kind. That is, an electronic load device (hereinafter, also simply referred to as a load device) 1
Is an A / D converter 11 connected to both ends of the AC power supply device 2A, a digital operation device (hereinafter also referred to as a microcomputer or MP) 12 such as a microcomputer connected to the output side thereof, and an output side thereof. Connected D
The / A converter 13 and a current source 14 connected to the output side of the A / A converter 13 and to both ends of the AC power supply device 2A. Here, an example of a case where the load characteristic is constant power will be described. Now, assuming that the set power consumption value as the load characteristic set value is M (vector amount), the input impedance Z (vector amount) of the load device 1 is Z = Vr 2 / M (a). Note that Vr represents the effective value of the input voltage V (vector amount).

【0003】一方、負荷電流I(ベクトル量)は、 I=V/Z=(M/Vr2 )V …(b) となる。ここに、入力電圧Vおよび負荷電流Iを図5
(イ),(ロ)の如くサンプリングして得るものとする
と、負荷電流Iiは、 Ii=(M/Vr2 )Vi …(c) と表わされる。そこで、各サンプリング周期毎にマイコ
ン12にて実効値Vrを求めて上記(c)式の演算を行
ない、その結果得られるIiを負荷電流設定値として出
力すれば、負荷装置1は常に一定の電力Mを消費するこ
ととなる。なお、実効値Vは図5(イ)の如く入力電圧
Viの1周期内でn回サンプリングしたと仮定し、各サ
ンプリング時刻の電圧の瞬時値をV(1),V(2),
V(i)…V(n)とすると、次の数2により求めるこ
とができる。また、実効値Vrは各サンプリング周期が
経過する毎に、それ以前のn回のサンプリングデータを
用いて求められる。
On the other hand, the load current I (vector amount) is I = V / Z = (M / Vr 2 ) V (b). Here, the input voltage V and the load current I are shown in FIG.
If it is obtained by sampling as in (a) and (b), the load current Ii is expressed as Ii = (M / Vr 2 ) Vi (c). Therefore, if the effective value Vr is calculated by the microcomputer 12 for each sampling cycle and the above equation (c) is calculated and the resulting Ii is output as the load current setting value, the load device 1 will always have a constant power. M will be consumed. It is assumed that the effective value V is sampled n times within one cycle of the input voltage Vi as shown in FIG. 5A, and the instantaneous value of the voltage at each sampling time is V (1), V (2),
If V (i) ... V (n), then it can be calculated by the following equation 2. Further, the effective value Vr is obtained every time each sampling period elapses, using the sampling data n times before that.

【数2】 [Equation 2]

【0004】以上は定電力の場合であるが、一般的な電
力負荷を模擬する場合は、その負荷特性として、 P=P0 *(V/V0 a *{(1+sT1 )/(1+sT2 )}…(d) (Pは負荷のとる電力、P0 はその初期値、Vは系統負
荷端実効電圧、V0 はその初期値、aは例えば0〜2の
範囲の可変値、sはラプラス演算子、T1 ,T2 は時定
数をそれぞれ示す。)なる負荷モデルを用いる方法が知
られている。
The above is the case of constant power, but when simulating a general power load, the load characteristics are: P = P 0 * (V / V 0 ) a * {(1 + sT 1 ) / (1 + sT 2 )} ... (d) (P is the power taken by the load, P 0 is its initial value, V is the system load end effective voltage, V 0 is its initial value, a is, for example, a variable value in the range of 0 to 2, s Is a Laplace operator, and T 1 and T 2 are time constants.) Is known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記
(d)式を用いるものは電圧の過渡的な陥没変動(ステ
ップ変動)に対して、電力の陥没変動量が陽に表現され
ず全て時定数により陰に表現されるため、現実に則した
模擬が出来ないという問題がある。したがって、この発
明の課題はより現実に近い模擬が可能な3相電子的負荷
装置を提供することにある。
However, in the case of using the above equation (d), the amount of power depression change is not explicitly expressed with respect to the transient depression fluctuation (step fluctuation) of the voltage, and all of them depend on the time constant. Since it is expressed in the shadow, there is a problem that it is not possible to simulate in reality. Therefore, an object of the present invention is to provide a three-phase electronic load device capable of more realistic simulation.

【0006】[0006]

【課題を解決するための手段】かかる課題を解決するた
め、この発明では、電源装置からの入力電圧のサンプリ
ング値をディジタル信号に変換するA/Dコンバータ
と、このディジタル信号および負荷特性設定値に応じた
負荷電流設定値を演算するディジタル演算装置と、この
負荷電流設定値をアナログ信号に変換するD/Aコンバ
ータと、前記電源装置に接続され前記アナログ信号にも
とづいて負荷電流を発生する電流源とを、前記電源装置
を3相としてそれぞれ3系統有してなる3相電子的負荷
装置において、前記負荷特性設定値として上記数1で示
される如き電力系統において取得される負荷動特性モデ
ルを用い、電圧の変動に対する電力変動量を模擬可能に
したことを特徴としている。
In order to solve such a problem, according to the present invention, an A / D converter for converting a sampling value of an input voltage from a power supply device into a digital signal, and a digital signal and a load characteristic set value are provided. A digital arithmetic unit for calculating a load current setting value according to the digital signal, a D / A converter for converting the load current setting value into an analog signal, and a current source connected to the power supply unit for generating a load current based on the analog signal. And a load dynamic characteristic model acquired in a power system as shown in the above mathematical expression 1 as the load characteristic set value in a three-phase electronic load device having three systems each of which has the power supply device as three phases. The feature is that it is possible to simulate the amount of power fluctuation with respect to voltage fluctuation.

【0007】[0007]

【作用】負荷特性設定値として、実際の電力系統に適用
して実績のある動特性モデルを用いることにより、電圧
の過渡的変動に対応する電力の過渡的変動量をより忠実
に模擬し得るようにする。
[Function] As the load characteristic set value, by using a dynamic characteristic model that has been applied to an actual power system and has a proven track record, it is possible to more faithfully simulate the transient fluctuation amount of power corresponding to the transient fluctuation of voltage. To

【0008】[0008]

【実施例】図1はこの発明の実施例を示す構成図であ
る。同図において、1A,1B,1CはそれぞれA/D
コンバータ11A,11B,11C、マイコン12A,
12B,12C,D/Aコンバータ13A,13B,1
3Cおよび電圧/電流変換器14A,14B,14Cか
らなる電子的負荷装置、2は3相電源装置で、同図から
も明らかなように、この実施例は図4に示す従来例を3
相対応としたことにある。なお、図1の電圧/電流変換
器14A,14B,14Cは図4の電流源14に相当す
る。したがって、この例においても負荷特性として電力
系統用の動特性モデルを与えることにより、その模擬が
可能となる。そこで、この発明では実際の電力系統にお
いて取得された、数3の如き負荷動特性モデルを用い
る。なお、この動特性モデルは各種の電力負荷に適用し
て良好な結果を得ているもので、例えば昭和63年電気
学会全国大会にて発表の論文集第942(負荷動特性モ
デルのパラメータ合成方法),第943(系統負荷特性
の解析用ソフトウエアの開発)および第982(系統負
荷特性の実測)等により公知のものである。なお、数3
のΔtは演算周期を示す。また、Apは電圧過渡変動に
対する電力の過渡変動量相当の設定パラメータ、Tpは
時定数設定パラメータ、np は静的な電圧特性係数設定
パラメータを示し、これらのパラメータは負荷特性に応
じて適宜設定される定数とする。
1 is a block diagram showing an embodiment of the present invention. In the figure, 1A, 1B, and 1C are A / Ds, respectively.
Converter 11A, 11B, 11C, microcomputer 12A,
12B, 12C, D / A converters 13A, 13B, 1
3C and voltage / current converters 14A, 14B, 14C, an electronic load device, 2 is a three-phase power supply device, and as is clear from the figure, this embodiment is the conventional example shown in FIG.
There is a correspondence. The voltage / current converters 14A, 14B and 14C in FIG. 1 correspond to the current source 14 in FIG. Therefore, also in this example, by providing the dynamic characteristic model for the electric power system as the load characteristic, the simulation can be performed. Therefore, in the present invention, a load dynamic characteristic model such as Equation 3 acquired in an actual power system is used. It should be noted that this dynamic characteristic model has been applied to various electric loads and has obtained good results. ), 943 (development of software for analysis of system load characteristics) and 982 (measurement of system load characteristics) and the like. The number 3
Δt indicates the calculation cycle. Further, Ap is a setting parameter corresponding to the amount of transient fluctuation of electric power with respect to voltage transient fluctuation, Tp is a time constant setting parameter, np is a static voltage characteristic coefficient setting parameter, and these parameters are appropriately set according to load characteristics. Is a constant.

【数3】 [Equation 3]

【0009】しかし、上記数3は級数和の形式をとって
いるため、メモリ容量が多大となりオンライン処理に適
さないという難点がある。そこで、この発明ではオンラ
インで処理可能とするため、数3の右辺級数和の部分Δ
Piを次の数4にて示すような差分形式を用い、数5の
如く表現される式として取り扱うようにしている。
However, since the above equation 3 is in the form of series sum, it has a drawback that the memory capacity becomes large and it is not suitable for online processing. Therefore, in the present invention, since processing can be performed online, the part Δ of the right-side series sum of Equation 3 is
Pi is treated as an expression expressed by Expression 5 by using a differential format shown by Expression 4 below.

【数4】 [Equation 4]

【数5】 [Equation 5]

【0010】電圧の変動をステップ状の変化と仮定すれ
ば、 ΔP(i)≒P0 *Δy(i)*V0 *{V(i)/V0 np+1 の如く、級数和が差分式で表現できることについて以下
に説明する。図2は数4に対応する差分方程式を導出す
るためのブロック図、図3は数5を実現するブロック図
である。すなわち、図2のブロック図で示される伝達関
数をZ変換すると数6となり、この数6から数7が得ら
れる。
Assuming that the voltage change is a step change, the sum of series is expressed as ΔP (i) ≈P 0 * Δy (i) * V 0 * {V (i) / V 0 } np + 1. What can be expressed by a difference formula will be described below. 2 is a block diagram for deriving a difference equation corresponding to equation 4, and FIG. 3 is a block diagram for realizing equation 5. That is, when the transfer function shown in the block diagram of FIG. 2 is Z-transformed, Equation 6 is obtained, and Equation 6 to Equation 7 are obtained.

【数6】 [Equation 6]

【数7】 [Equation 7]

【0011】ここで、x(i)=1/V(i)とおき、
y(0)からの和として数7を表現すれば、数8とな
る。また、Δy(0)でステップ状の電圧変化を仮定
し、 V(0)≠V(1)=V(2)…=V(i) ならば、数9のようにΔP(i)が求まり、そのブロッ
ク図は図3のように表わされる。
Where x (i) = 1 / V (i),
If Equation 7 is expressed as the sum from y (0), Equation 8 is obtained. Further, assuming a stepwise voltage change with Δy (0), and if V (0) ≠ V (1) = V (2) ... = V (i), then ΔP (i) can be obtained as in Equation 9. The block diagram is shown in FIG.

【数8】 [Equation 8]

【数9】 このようにして、上記数3は数4の如き差分方程式で表
わされるので、図1のMP12A,12B,12Cでは
これを用いて、以下のように電流指令等を演算する。ま
ず、サンプリングされA/Dコンバータ11A,11
B,11Cによりディジタル量に変換された瞬時電圧か
ら、先の数2を用いて各相の電圧実効値Va,Vb,V
cを求める。次に、上記数5より各相の電圧瞬時値Va
(i),Vb(i),Vc(i)を用いて、電力指令値
を各相毎に演算する。次いで、下記(e)式より、V
(i)を電圧実効値としてアドミッタンスG(i)を求
める。 G(i)=P(i)/V(i)2 …(e) アドミッタンスG(i)が求まれば電流指令値i(i)
は、次の(f)式で与えられる。 i(i)=G(i)*v(i) …(f) (ただし、i(i)は演算周期毎の指示電流、v(i)
は演算周期毎の瞬時負荷電圧をそれぞれ示す。)
[Equation 9] In this way, the above equation 3 is expressed by the difference equation such as the equation 4, so that the MP12A, 12B, and 12C of FIG. 1 use this to calculate the current command and the like as follows. First, sampled A / D converters 11A, 11
From the instantaneous voltage converted into a digital value by B and 11C, the voltage effective values Va, Vb and V of each phase are calculated by using the above equation 2.
Find c. Next, from the above equation 5, the instantaneous voltage value Va of each phase is calculated.
A power command value is calculated for each phase using (i), Vb (i), and Vc (i). Then, from the following equation (e), V
The admittance G (i) is obtained with (i) as the effective voltage value. G (i) = P (i) / V (i) 2 (e) If the admittance G (i) is obtained, the current command value i (i)
Is given by the following equation (f). i (i) = G (i) * v (i) (f) (where i (i) is the instruction current for each calculation cycle, v (i)
Indicates the instantaneous load voltage for each calculation cycle. )

【0012】なお、以上では主として有効電力の場合に
ついて説明したが、無効電力の場合は位相を考慮して電
圧瞬時値の取り方を工夫することにより、上記と同様に
して模擬することができ、その式は先の数3のPをQに
置き換えて次の数10のようになる。ここに、Q(i)
は負荷のとる無効電力、Q0 はそれぞれの初期値、V
(i)は時刻iでの系統電圧実効値、V0 はその初期
値、Vk ,Vk-1 はそれぞれ時刻k,k−1での系統電
圧実効値、nq は静的な電圧特性係数設定パラメータ、
Aqは電圧過渡変動に対する電力の過渡変動相当量の設
定パラメータ、Tqは時定数設定パラメータ、K0 は定
数、eは指数関数、Δtは演算周期をそれぞれ示してい
る。
In the above, the case of active power was mainly explained, but in the case of reactive power, it can be simulated in the same manner as above by devising the method of taking the instantaneous voltage value in consideration of the phase, The formula becomes as shown in the following formula 10 by replacing P in the above formula 3 with Q. Where Q (i)
Is the reactive power taken by the load, Q 0 is the initial value of each, V
(I) is the effective value of the system voltage at time i, V 0 is its initial value, V k and V k-1 are the effective values of the system voltage at times k and k-1, respectively, and n q is the static voltage characteristic. Coefficient setting parameter,
Aq is a setting parameter of the amount of transient fluctuation of power with respect to voltage transient fluctuation, Tq is a time constant setting parameter, K 0 is a constant, e is an exponential function, and Δt is a calculation cycle.

【数10】 [Equation 10]

【0013】[0013]

【発明の効果】この発明によれば、電子的負荷装置の負
荷特性設定値として、実際の電力系統にて取得される負
荷動特性モデルを用いるようにしたので、電圧の変動に
対する電力変動量を忠実に模擬することができる利点が
得られる。
According to the present invention, since the load dynamic characteristic model acquired in the actual power system is used as the load characteristic set value of the electronic load device, the power variation amount with respect to the voltage variation can be calculated. The advantage is that it can be faithfully simulated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】数4に対応する差分方程式を導出するためのブ
ロック図である。
FIG. 2 is a block diagram for deriving a difference equation corresponding to Expression 4.

【図3】数5を実現するブロック図である。FIG. 3 is a block diagram for realizing Expression 5.

【図4】電子的負荷装置の従来例を示す構成図である。FIG. 4 is a configuration diagram showing a conventional example of an electronic load device.

【図5】入力電圧,負荷電流の各サンプリング例を説明
するための説明図である。
FIG. 5 is an explanatory diagram for explaining each sampling example of an input voltage and a load current.

【符号の説明】[Explanation of symbols]

1 電子的負荷装置 2 3相電源装置 2A 電源 11,11A,11B,11C A/Dコンバータ 12,12A,12B,12C ディジタル演算装置
(MP) 13,13A,13B,13C D/Aコンバータ 14 電流源 14A,14B,14C 電圧/電流(V/I)変換器
1 Electronic load device 2 3 phase power supply device 2A power supply 11, 11A, 11B, 11C A / D converter 12, 12A, 12B, 12C Digital arithmetic unit (MP) 13, 13A, 13B, 13C D / A converter 14 Current source 14A, 14B, 14C voltage / current (V / I) converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 要祐 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaname Nakanishi 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電源装置からの入力電圧のサンプリング
値をディジタル信号に変換するA/Dコンバータと、こ
のディジタル信号および負荷特性設定値に応じた負荷電
流設定値を演算するディジタル演算装置と、この負荷電
流設定値をアナログ信号に変換するD/Aコンバータ
と、前記電源装置に接続され前記アナログ信号にもとづ
いて負荷電流を発生する電流源とを、前記電源装置を3
相としてそれぞれ3系統有してなる3相電子的負荷装置
において、 前記負荷特性設定値として下記数1で示される如き電力
系統において取得される負荷動特性モデルを用い、電圧
の変動に対する電力変動量を模擬可能にしてなることを
特徴とする3相電子的負荷装置。 【数1】 (なお、P(i),Q(i)はそれぞれ負荷のとる有効
電力,無効電力、P0 ,Q0 はそれぞれの初期値、V
(i)は時刻iでの系統電圧実効値、V0 はその初期
値、Vk ,Vk-1 はそれぞれ時刻k,k−1での系統電
圧実効値、np ,nq は静的な電圧特性係数設定パラメ
ータ、Ap,Aqは電圧過渡変動に対する電力の過渡変
動相当量の設定パラメータ、Tp,Tqは時定数設定パ
ラメータ、K0 は定数、eは指数関数、Δtは演算周期
をそれぞれ示している。)
1. An A / D converter for converting a sampling value of an input voltage from a power supply device into a digital signal, a digital operation device for calculating a load current set value according to the digital signal and a load characteristic set value, and The D / A converter for converting the load current set value into an analog signal and the current source connected to the power supply device for generating a load current based on the analog signal are connected to the power supply device 3
In a three-phase electronic load device having three systems each as a phase, a load dynamic characteristic model acquired in the power system as shown in the following mathematical expression 1 is used as the load characteristic set value, and a power variation amount with respect to a voltage variation is used. A three-phase electronic load device characterized by being capable of simulating. [Equation 1] (Note that P (i) and Q (i) are active power and reactive power respectively taken by the load, P 0 and Q 0 are respective initial values, V
(I) is the effective value of the system voltage at time i, V 0 is its initial value, V k and V k-1 are the effective values of the system voltage at times k and k-1, respectively, and n p and n q are static. Voltage characteristic coefficient setting parameters, Ap, Aq are setting parameters of the amount of transient fluctuation of electric power with respect to voltage transient fluctuations, Tp, Tq are time constant setting parameters, K 0 is a constant, e is an exponential function, and Δt is a calculation cycle. Shows. )
JP3264341A 1991-10-14 1991-10-14 Three-phase electronic load Expired - Lifetime JP2919657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3264341A JP2919657B2 (en) 1991-10-14 1991-10-14 Three-phase electronic load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3264341A JP2919657B2 (en) 1991-10-14 1991-10-14 Three-phase electronic load

Publications (2)

Publication Number Publication Date
JPH0599969A true JPH0599969A (en) 1993-04-23
JP2919657B2 JP2919657B2 (en) 1999-07-12

Family

ID=17401825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3264341A Expired - Lifetime JP2919657B2 (en) 1991-10-14 1991-10-14 Three-phase electronic load

Country Status (1)

Country Link
JP (1) JP2919657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252796A (en) * 1998-03-02 1999-09-17 Kansai Electric Power Co Inc:The Power system higher harmonic real-time simulator
US6153657A (en) * 1997-06-02 2000-11-28 Hodogaya Chemical Co., Ltd. Process for producing a solvent-less O/W type emulsion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153657A (en) * 1997-06-02 2000-11-28 Hodogaya Chemical Co., Ltd. Process for producing a solvent-less O/W type emulsion
JPH11252796A (en) * 1998-03-02 1999-09-17 Kansai Electric Power Co Inc:The Power system higher harmonic real-time simulator

Also Published As

Publication number Publication date
JP2919657B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
EP0445713B1 (en) Electric power system simulator
JP3392506B2 (en) Solar power generation simulator
JPH0599969A (en) Three phase electronlike loading device
Marín et al. Modelling of stick–slip behaviour in a Girling brake using network simulation method
JP2006234457A (en) Three-phase four-wire system load simulator
JP3343709B2 (en) Power system analyzer
Huang et al. Discrete modeling and period-adding bifurcation of DC–DC converter feeding constant power load
Brambilla et al. The simulation errors introduced by the spice transient analysis
US3772505A (en) System and method for on-line simulation of bulk power system transients at very high speeds
US7283943B1 (en) Method of modeling circuit cells for powergrid analysis
JP2703091B2 (en) Power system simulator
US4878009A (en) Voltage source having preset values for source voltage and internal resistance
Karplus The use of electronic analogue computers with resistance network analogues
Ajjarapu Application of bifurcation and continuation methods for the analysis of power system dynamics
CN113343453B (en) Modeling method of power electronic cascade converter based on small-step discretization
Ibrahim et al. Frequency dependent network equivalent algorithm for AC power systems
D'amore et al. Steady state analysis of nonlinear circuits using SPICE
Negi et al. Design and Performance Analysis of FPGA based Fractional-PID Controller
JP3142072B2 (en) Digital defuzzifier circuit
US2983448A (en) Trigonometric function generator
JP2691070B2 (en) Electronic reactor
JP3095798B2 (en) Analog back-propagation learning circuit and its driving method
Alboaouh et al. Time domain modeling of constant power loads for electromagnetic transient simulations
JP2003022295A (en) Method and device for simulating effective value impedance and program for simulating effective value impedance
Kalra et al. Reduced modelling of transmission line circuits using a novel nonlinearity aware tpwl with adaptive sampling

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13