JPH0599883A - Small-sized glass electrode - Google Patents

Small-sized glass electrode

Info

Publication number
JPH0599883A
JPH0599883A JP26174691A JP26174691A JPH0599883A JP H0599883 A JPH0599883 A JP H0599883A JP 26174691 A JP26174691 A JP 26174691A JP 26174691 A JP26174691 A JP 26174691A JP H0599883 A JPH0599883 A JP H0599883A
Authority
JP
Japan
Prior art keywords
glass
substrate
film
electrode
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26174691A
Other languages
Japanese (ja)
Inventor
Hiroaki Suzuki
博章 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26174691A priority Critical patent/JPH0599883A/en
Publication of JPH0599883A publication Critical patent/JPH0599883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PURPOSE:To improve measurement sensitivity with respect to a small-sized glass electrode formed by means of micromachining technology. CONSTITUTION:A small-sized glass electrode comprises a glass substrate 1 formed with a reference electrode 3 made of silver/silver chloride and a pad 5 made of gold and connected in a circuit with the reference electrode 3 buried and a silicon substrate 2 which is selectively etched by means of micromachining technology equipped with an injection groove 6 for electrolytic solution made of potassium chloride buffer solution, a holding hole 7 for the electrolytic solution and a hydrogen ion permeable film 8 at a corresponding portion of the reference electrode 3. The glass substrate 1 and the silicon substrate 2 are subjected to anodic joint to form the small glass electrode, while the electrolytic solution is injected from the injection groove 6 into the electrolytic solution holding hole 7. The hydrogen ion permeable film 8 is made of a glass film having a thin glass film which is sensitively responsive to a change in hydrogen ion concentration and is thermally adhered to a rear face of the electrolytic solution holding hole 7 provided on the silicon substrate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は小型ガラス電極に関す
る。ガラス電極は水溶液中の水素イオン(H+ ) 濃度を
定量するセンサであって、化学工業だけでなく、醗酵工
業や医療分野においても使用されている。
FIELD OF THE INVENTION This invention relates to small glass electrodes. The glass electrode is a sensor for quantifying the hydrogen ion (H + ) concentration in an aqueous solution, and is used not only in the chemical industry but also in the fermentation industry and the medical field.

【0002】また、ガラス電極は酵素と組合せて酵素電
極を形成し、糖やアルコールなどの濃度測定にも使用さ
れている。例えば、グルコースはグルコースオキシダー
ゼと云う酵素を触媒とし、溶存酸素と反応してグルコノ
ラクトンに酸化するが、この反応に際して生ずるH+
度の変化を測定し、この変化量からグルコース濃度を測
定することができる。
Further, the glass electrode is used in combination with an enzyme to form an enzyme electrode and is used for measuring the concentration of sugar, alcohol and the like. For example, glucose is catalyzed by an enzyme called glucose oxidase and reacts with dissolved oxygen to oxidize to gluconolactone. The change in H + concentration produced during this reaction should be measured, and the glucose concentration should be measured from this change. You can

【0003】また、同様な原理により尿素濃度を測定す
ることができる。本発明の小型ガラス電極は従来のガラ
ス電極と同様に各種の分野に使用できるが、小型である
ことから微小な箇所のH+ 濃度を測定することができ、
また、安価なことから使い捨ての用途に用いることがで
きる。
Further, the urea concentration can be measured by the same principle. The small glass electrode of the present invention can be used in various fields like the conventional glass electrode, but since it is small, it is possible to measure the H + concentration at a minute portion,
Moreover, since it is inexpensive, it can be used for disposable applications.

【0004】[0004]

【従来の技術】従来のガラス電極は厚さが約100 μm と
薄く、電気抵抗が数百MΩのガラス薄膜を感応部とする
もので、ガラス円筒の先端部に球状に構成されており、
内部に銀・塩化銀(Ag-AgCl)よりなる参照極を備え、一
定濃度の塩化カリ(KCl) 溶液を満たして構成されてい
る。
2. Description of the Related Art A conventional glass electrode has a thin film thickness of about 100 μm and a glass thin film having an electric resistance of several hundred MΩ as a sensitive part, which is formed in a spherical shape at the tip of a glass cylinder.
It is equipped with a reference electrode made of silver / silver chloride (Ag-AgCl) inside and filled with potassium chloride (KCl) solution of a certain concentration.

【0005】そして、この感応部を備えたガラス電極を
+ を含む液に浸漬すると、ガラス電極にはH+ の濃度
に比例して電位が発生するので、これによりH+ 濃度を
測定することができる。
[0005] When dipping the glass electrode with the sensitive part in a liquid including H +, because the glass electrode potential is generated in proportion to the concentration of the H +, thereby measuring the H + concentration You can

【0006】然し、市販のガラス電極は大きさが万年筆
程度でガラス細工で作られており、価格は数万円と高
い。一方、小型のH+ 濃度センサとしてイオン感応性電
界効果トランジスタ( 略称ISFET)が開発されており、こ
れは半導体の写真蝕刻技術( フォトリソグラフィ)を用
いて形成するために小型化が可能である。
However, the commercially available glass electrode is made of glass with a size of a fountain pen, and the price is as high as tens of thousands of yen. On the other hand, an ion-sensitive field effect transistor (abbreviated as ISFET) has been developed as a small H + concentration sensor, which can be miniaturized because it is formed by using a semiconductor photoetching technique (photolithography).

【0007】然し、ISFETのように水溶液に浸漬して使
用するデバイスは基板の絶縁が重要である。そのため、
シリコン(Si)基板上に形成した多数の素子をダイシング
してチップとした後、このチップの周辺に窒化シリコン
( Si3N4 ) 膜を形成して絶縁するか、或いはSOS(Silico
n on Sapphire)基板を用いるか、またはガラス基板上に
TFT(Thin Film Transistor) の形で形成するなどの方
法がとられている。
However, the insulation of the substrate is important for a device such as ISFET that is used by being immersed in an aqueous solution. for that reason,
After dicing a large number of elements formed on a silicon (Si) substrate into a chip, silicon nitride is placed around the chip.
(Si 3 N 4 ) film is formed for insulation, or SOS (Silico
n on Sapphire) substrate or on a glass substrate
Methods such as forming in the form of TFT (Thin Film Transistor) are taken.

【0008】然し、そのために価格の上昇は避けられ
ず、数10〜数100 円の価格で製造することは困難であ
る。この問題を解決する方法として発明者はマイクロマ
シン技術を用いて小形のガラス電極を提案している。
(特願平02-400550,特願平03-164750)その内容はAg/AgC
l よりなる参照極を埋め込み形成したガラス基板と、マ
イクロマシン技術を用いて(100) 面を選択エッチングし
てKCl 緩衝液の保持穴を設けたSi基板とを貼り合わせた
ものであって、この保持穴の部分に水素イオン透過膜を
設けたものである。
However, because of this, an increase in price is unavoidable, and it is difficult to manufacture at a price of tens to hundreds of yen. As a method for solving this problem, the inventor has proposed a small-sized glass electrode by using micromachine technology.
(Japanese Patent Application 02-400550, Japanese Patent Application 03-164750) The content is Ag / AgC
A glass substrate with a reference electrode made of 1 embedded in it and a Si substrate with a KCl buffer holding hole formed by selective etching of the (100) surface using micromachining technology were bonded together. A hydrogen ion permeable film is provided in the hole portion.

【0009】図1はかゝるガラス電極の構成を示す平面
図であり、同図Aはガラス基板1を、また同図BはSi基
板2を、また同図Cはガラス基板1の上にSi基板2を裏
返しにして接合した状態を示している。
FIG. 1 is a plan view showing the structure of such a glass electrode. FIG. 1A shows a glass substrate 1, FIG. 1B shows a Si substrate 2, and FIG. The state where the Si substrate 2 is turned upside down and joined is shown.

【0010】こゝで、ガラス基板1の上にはAg/AgCl よ
りなる参照極3とAuからなる引出し導線4とAuよりなる
パッド5がそれぞれ埋め込み形成されている。一方、Si
基板2の基板面は(100)であり、これを異方性エッチン
グすることにより電解液の注入溝6と電解液の保持穴7
と、この一部に感応膜として働くH+ 透過膜8が形成さ
れている。
Here, a reference electrode 3 made of Ag / AgCl, a lead wire 4 made of Au, and a pad 5 made of Au are embedded and formed on the glass substrate 1, respectively. On the other hand, Si
The substrate surface of the substrate 2 is (100), and by anisotropically etching the substrate surface, the electrolyte injection groove 6 and the electrolyte holding hole 7 are formed.
An H + permeable film 8 that functions as a sensitive film is formed on a part of this.

【0011】また、同図Cにおいて、破線は内部のガラ
ス電極形成領域を示しており、Si基板2の側にはパッド
5とH+ 透過膜8が現れている。また、図2は第1図C
のX−X´線における断面図を示すもので、H+ 透過膜
を保持穴7の底部にもつSi基板2と参照極3をもつガラ
ス基板1とが陽極接合法により貼り合わせて形成されて
いる状態を示している。
Further, in FIG. 1C, the broken line shows the internal glass electrode forming region, and the pad 5 and the H + permeable film 8 appear on the Si substrate 2 side. In addition, FIG. 2 shows FIG. 1C.
2 is a cross-sectional view taken along the line XX ′ of FIG. 1, in which a Si substrate 2 having an H + permeable film at the bottom of the holding hole 7 and a glass substrate 1 having a reference electrode 3 are bonded together by an anodic bonding method. It shows the state.

【0012】こゝで、H+ 透過膜8はSi基板を例えば10
50℃で200 分の条件でウエット酸化し、SiO2膜を約1μ
m の厚さに形成し、更にH+ に対し感度が高いガラス膜
をスパッタなどで形成するなどして使用している。
Here, the H + permeable film 8 is a Si substrate, for example, 10
Wet oxidize at 50 ℃ for 200 minutes to remove SiO 2 film by about 1μ.
It is used by forming it to a thickness of m and further forming a glass film having high sensitivity to H + by sputtering or the like.

【0013】このようにして形成したガラス電極は小型
であり、またSiウエハにマイクロマシン技術を用い、多
数個を一括して製造できることから、低コスト化を実現
することができた。
Since the glass electrode thus formed is small and a large number of glass electrodes can be manufactured at a time by using the micromachine technology for the Si wafer, the cost can be reduced.

【0014】然し、このようにして形成したH+ 透過膜
8は厚さが1μm 程度で極めて薄いことから破損し易
く、取扱に当たって細心の注意を必要とすることが問題
であった。
However, since the H + permeable membrane 8 thus formed has a thickness of about 1 μm and is extremely thin, it is easily damaged, and it has been a problem that careful handling is required.

【0015】そこで、H+ 透過膜8の強度を向上する方
法としてガラス基板をエッチングにより薄くし、これを
電解液の保持穴7も設けてあるSi基板2の裏面に当接し
て加熱接合した。
Therefore, as a method of improving the strength of the H + permeable film 8, the glass substrate was thinned by etching, and the glass substrate was brought into contact with the back surface of the Si substrate 2 in which the holding hole 7 for the electrolytic solution was also provided and heat-bonded.

【0016】具体的にはパイレックスガラスをHFとHNO3
との混合溶液を用いて約20μm の厚さまでエッチングし
て薄膜とした後、Si基板に異方性エッチングを行って貫
通した保持穴7をもつSi基板の裏面に当接し、800 ℃に
加熱して接着した。
Specifically, Pyrex glass is made of HF and HNO 3
After etching to a thickness of about 20 μm using a mixed solution of and to make a thin film, anisotropically etch the Si substrate and bring it into contact with the back surface of the Si substrate having the holding hole 7 penetrating it, and heat it to 800 ° C. Glued together.

【0017】このような方法をとることにより機械的な
強度を向上することができた。
By taking such a method, the mechanical strength could be improved.

【0018】[0018]

【発明が解決しようとする課題】発明者が提案している
ガラス電極は小型化であり、また使い捨て可能な程度に
低コスト化することができた。
The glass electrode proposed by the inventor has been downsized, and the cost can be reduced to a disposable level.

【0019】然し、H+ 濃度に対して感度は充分とは言
えず、この向上が必要であった。
However, the sensitivity to H + concentration was not sufficient and it was necessary to improve the sensitivity.

【0020】[0020]

【課題を解決するための手段】上記の課題は発明者が提
案している構造をとる小型ガラス電極において、水素イ
オン透過膜が水素イオン濃度の変化に対して敏感に感応
するガラス薄膜を備えたガラス膜よりなり、シリコン基
板に設けられている電解液保持穴の裏面に熱接着してな
ることを特徴として小型ガラス電極を構成することによ
り解決することができる。
SUMMARY OF THE INVENTION In the small glass electrode having the structure proposed by the inventor, the hydrogen ion permeable film has a glass thin film which is sensitive to changes in hydrogen ion concentration. This can be solved by configuring a small glass electrode, which is characterized by being made of a glass film and thermally bonded to the back surface of the electrolytic solution holding hole provided in the silicon substrate.

【0021】[0021]

【作用】ガラス電極に発生する電位は次のネルンストの
式で表される。 E=const −0.059 pH ・・・・・・(1) 然し、この式は理論式であって、この式に一致した電位
を示すように構成することは容易ではない。
The potential generated on the glass electrode is expressed by the following Nernst equation. E = const −0.059 pH (1) However, this formula is a theoretical formula, and it is not easy to construct it so as to show a potential that matches this formula.

【0022】先に発明者はH+ 透過膜を厚さが20〜50μ
m のパイレックスガラスを用いて形成したが、この材料
を用いる場合は、ネルンストの式で傾斜を表す係数−0.
059(−59 mV)が−0.03( −30 mV)程度にしかならな
い。
The inventor previously found that the H + permeable membrane has a thickness of 20 to 50 μm.
It was formed by using Pyrex glass of m, but when using this material, the coefficient representing the inclination in the Nernst equation −0.
059 (-59 mV) is only about -0.03 (-30 mV).

【0023】そこで、このガラス材料を改良する必要が
ある。こゝで、ガラス電極用のガラスとしてはリチウム
(Li)ガラスやナトリウム・カルシウム(Na-Ca) ガラスな
どが知られているが、このような材料は発明者が提案し
ている小型ガラス電極用のH+ 透過膜としては耐熱性と
強度の点から用いられない。すなわち、 Si基板との接着には800 ℃程度の熱処理が必要であ
り、耐熱性の点で適当でない。 熱接着した後にはガラスの中にかなりの歪みが残る
が、この歪みに対して耐えられない。などの理由によ
る。
Therefore, it is necessary to improve this glass material. Here, lithium is used as the glass for the glass electrode.
Although (Li) glass and sodium-calcium (Na-Ca) glass are known, such a material has high heat resistance and strength as an H + permeable film for a small glass electrode proposed by the inventor. Not used from the point. That is, heat treatment at about 800 ° C. is required for adhesion to the Si substrate, which is not suitable in terms of heat resistance. After heat-bonding, considerable distortion remains in the glass, but this distortion cannot be endured. Etc.

【0024】そこで、本発明はH+ 透過膜としては特性
が不足するパイレックスガラスのようなガラス膜にLiガ
ラスのように特性の優れたガラスをスパッタ法や真空蒸
着法を用いて膜形成したものを使用することにより上記
ネルンストの理論式をほゞ満足するガラス電極を得るも
のである。
Therefore, according to the present invention, a glass film such as Pyrex glass, which has insufficient properties as an H + permeable film, is formed by using a glass having excellent properties such as Li glass by a sputtering method or a vacuum deposition method. Is used to obtain a glass electrode that substantially satisfies the Nernst theoretical formula.

【0025】[0025]

【実施例】図3は発明者が提案しているガラス電極の製
造工程を説明する断面図であり、これを用いて本発明を
説明する。 ガラス基板の作成:直径2インチのパイレックスガラス
基板(岩城7740)1の表面にネガ型のフォトレジストを
スピンコートし、150 ℃で30分に亙って加熱乾燥した
後、写真蝕刻技術( フォトリソグラフィ)を用いて数多
くの参照極,引出し導線およびパッドの形成領域を窓開
けして露出させた後、裏面にも同じレジストを同様に塗
布し被覆して乾燥した。
EXAMPLE FIG. 3 is a cross-sectional view for explaining a manufacturing process of a glass electrode proposed by the inventor, and the present invention will be described by using this. Fabrication of glass substrate: Pyrex glass substrate (Iwaki 7740) with a diameter of 2 inches is spin-coated with a negative photoresist, heated and dried at 150 ° C for 30 minutes, and then photo-etching technology (photolithography ) Was used to expose a large number of reference electrodes, lead-out conductors, and pads forming regions by opening windows, and the same resist was similarly coated and coated on the back surface and dried.

【0026】次に、このガラス基板1を50%弗酸(HF):
濃硝酸(HNO3):弗化アンモニウム(NH4)F=1:1:8の
混合溶液中に80分浸漬して3μm の厚さにエッチングし
た。次に、レジストを硫酸(H2SO4): 過酸化水素(H2O2)
=2:1の混合溶液を用いて剥離した。( 以上図3A) 次に、ガラス基板1をH2O2とアンモニア(NH4OH)の混合
溶液と純水を用いて充分に洗浄した後に乾燥させ、次
に、このガラス基板1の上に真空蒸着法によりAu薄膜を
形成した。
Next, the glass substrate 1 was treated with 50% hydrofluoric acid (HF):
It was immersed in a mixed solution of concentrated nitric acid (HNO 3 ): ammonium fluoride (NH 4 ) F = 1: 1: 8 for 80 minutes and etched to a thickness of 3 μm. Next, the resist is treated with sulfuric acid (H 2 SO 4 ): hydrogen peroxide (H 2 O 2 ).
Peeling was performed using a mixed solution of 2: 1. (Above FIG. 3A) Next, the glass substrate 1 is thoroughly washed with a mixed solution of H 2 O 2 and ammonia (NH 4 OH) and pure water, and then dried, and then the glass substrate 1 is placed on the glass substrate 1. An Au thin film was formed by the vacuum evaporation method.

【0027】なお,Auとガラスは密着性が非常に悪いの
で、予め基板上に薄くクロム(Cr)膜を蒸着して密着性を
向上した。こゝで、膜厚はCrが400 Å,Au が4000Åであ
る。
Since the adhesion between Au and glass is very poor, a thin chromium (Cr) film was previously vapor-deposited on the substrate to improve the adhesion. Here, the film thickness of Cr is 400Å and Au is 4000Å.

【0028】このガラス基板1の上にポジ型レジスト膜
(OFPR-5000,東京応化製)をスピンコートし、写真蝕刻
技術を用い、図1Aに示す参照極3,引出し導線4およ
びパッド5形成領域にレジストを被覆し、Au膜とCr膜を
選択エッチングして参照極3,引出し導線4およびパッ
ド5よりなる参照極パターンを形成した。
A positive type resist film (OFPR-5000, made by Tokyo Ohka) is spin-coated on this glass substrate 1 and a photoetching technique is used to form the reference electrode 3, lead wire 4 and pad 5 forming region shown in FIG. 1A. Then, the resist film was covered with a resist, and the Au film and the Cr film were selectively etched to form a reference electrode pattern composed of the reference electrode 3, the lead wire 4 and the pad 5.

【0029】こゝで、AuとCrのエッチング液は次のよう
である。 Auのエッチング液: 4 g のKIと 1 gの I2 を40 ml の
水に溶かしたもの、 Crのエッチング液:0.5 g のNaOHと 1 gのK3Fe(CN)6を4
mlの水に溶かしたものである。
The etching solution for Au and Cr is as follows. Au etchant: 4 g KI and 1 g I 2 dissolved in 40 ml water, Cr etchant: 0.5 g NaOH and 1 g K 3 Fe (CN) 6 4
It is dissolved in ml of water.

【0030】次に、参照極3の形成部に銀(Ag)を蒸着
し、先と同様にポジ型レジストを塗布, 加熱乾燥, 露
光, 現像を行い、参照極形成部のみにレジストを被覆し
た。そして、Agのエッチングを行い、次に、レジストを
溶解除去することにより参照極形成部に銀膜を形成し
た。
Next, silver (Ag) was vapor-deposited on the portion where the reference electrode 3 was formed, and a positive resist was applied, heated and dried, exposed and developed in the same manner as above, and the resist was coated only on the portion where the reference electrode was formed. .. Then, Ag was etched, and then the resist was dissolved and removed to form a silver film on the reference electrode forming portion.

【0031】なお、Agのエッチング液の組成は29% NH4O
H: 31%H2O2:純水=1:1:20である。次に、基板全体
を純水で十分洗浄後, 0.1 M FeCl3 溶液中に10分間浸漬
し,Agの表面に薄い AgCl 層を形成した。
The composition of the Ag etching solution is 29% NH 4 O.
H: 31% H 2 O 2 : pure water = 1: 1: 20. Next, the entire substrate was thoroughly washed with pure water and then immersed in a 0.1 M FeCl 3 solution for 10 minutes to form a thin AgCl layer on the Ag surface.

【0032】そして、基板全体を純水で十分洗浄し、こ
れにより参照極3,引出し導線4およびパッド5が完成
した。( 以上図3B) Si基板の形成:厚さが350 μm で(100) 面を基板面とす
る径2インチのSi基板2を用意し,これをH2O2とNH4OH
の混合溶液と純水を用いて充分に洗浄した後に乾燥させ
た。
Then, the entire substrate was thoroughly washed with pure water, whereby the reference electrode 3, the lead wire 4 and the pad 5 were completed. (Fig. 3B above) Formation of Si substrate: Prepare a Si substrate 2 having a thickness of 350 μm and a (100) surface as the substrate surface and a diameter of 2 inches, and use this for H 2 O 2 and NH 4 OH.
It was thoroughly washed with the mixed solution of 1 and pure water and then dried.

【0033】次に、このSi基板2を1050℃,200分の条件
でウエット酸化し,全面に膜厚1μm のSiO2膜10を形成
した。次に、Si基板面に粘度が60 cPのネガ型レジスト
(OMR-83, 東京応化製)を塗布した後,露光・現像とリ
ンスを行い,基板上にレジストパターンを形成した。
Next, the Si substrate 2 was wet-oxidized at 1050 ° C. for 200 minutes to form a SiO 2 film 10 having a film thickness of 1 μm on the entire surface. Next, a negative type resist (OMR-83, made by Tokyo Ohka Co., Ltd.) having a viscosity of 60 cP was applied to the Si substrate surface, followed by exposure / development and rinsing to form a resist pattern on the substrate.

【0034】そして、Si基板2を50% HF: 40% NH4F=
1:6混合溶液中に浸漬してSiO2の露出部分をエッチン
グして除去した。( 以上図3C) 次に、レジスト膜をH2SO4 :H2O2=2:1混合溶液中で
剥離した。
The Si substrate 2 is 50% HF: 40% NH 4 F =
The exposed part of SiO 2 was removed by being immersed in a 1: 6 mixed solution. (FIG. 3C above) Next, the resist film was stripped in a mixed solution of H 2 SO 4 : H 2 O 2 = 2: 1.

【0035】次に、Si基板2を80℃の35% KOH 中に浸漬
し,シリコンの異方性エッチングを行い、参照極部分に
電解液を蓄える保持穴7を形成した。次に、Si基板の表
面にマスクとして使用したSiO2が残っていると、陽極接
合の際により高い温度を必要とするため、Si基板2を50
% HF: 40% NH4F=1:6混合溶液中に浸漬してSiO2を完
全に除去しておく。 薄いガラス板のSi基板への接着:パイレックスガラス(
岩城7740ガラス) を50%HF:濃HNO3=2:1の混合溶液
中でエッチングして150 μm の厚さにした後、充分に洗
浄した。
Next, the Si substrate 2 was dipped in 35% KOH at 80 ° C. to anisotropically etch silicon to form a holding hole 7 for storing the electrolytic solution in the reference electrode portion. Next, if the SiO 2 used as a mask is left on the surface of the Si substrate, a higher temperature is required for anodic bonding, so that the Si substrate 2 is 50
% HF: 40% NH 4 F = 1: 6 Immerse in a mixed solution to completely remove SiO 2 . Adhesion of thin glass plate to Si substrate: Pyrex glass (
Iwashiro 7740 glass) was etched in a mixed solution of 50% HF: concentrated HNO 3 = 2: 1 to a thickness of 150 μm, and then thoroughly washed.

【0036】このガラス膜13をSi基板を異方性エッチン
グして貫通させたSi基板2の裏面(断面が台形状をした
保持穴7の上底側面)にのせ、750 ℃に加熱して接着さ
せた。(なお、ガラス膜の厚さが厚い場合は濃度50%の
HFにガラス融着後の基板を浸漬し、必要な薄さになるま
でガラスをエッチングする。例えば20μm 程度まで薄く
してもよい。)その後、スパッタ装置にセットし、ガラ
ス膜13の上にNa-Caガラスを500nm の厚さにスパッタし
てガラス薄膜14を作り、これによりH+ 透過膜8を形成
した。(以上図3D) ガラス基板とSi基板の接着 このようにして形成したガラス基板1とSi基板2とを純
水に浸漬して充分に超音波洗浄して乾燥した後、両者を
接合し、Si基板2を正極側とし、ガラス基板1を負極側
とし、 250℃の温度で基板間に1200 Vを印加することに
より, ガラス基板とシリコン基板を陽極接合した。(以
上図3E) 基板の切出しと電解液の注入:基板上にこのようにして
多数形成されたガラス電極素子をダイシングソーを用い
てチップ状に切りだした後、燐酸緩衝液に0.1 モルの塩
化カリ (KCl)を添加した電解液が入っているビーカの中
に多数の素子を丸ごと浸漬し,ビーカーを含む全体を密
封容器の中に入れ,真空ポンプで脱気した。
This glass film 13 is placed on the back surface (the upper bottom side surface of the holding hole 7 having a trapezoidal cross section) of the Si substrate 2 which is penetrated by anisotropic etching of the Si substrate, and heated to 750 ° C. to be bonded. Let (If the glass film is thick, the concentration of 50%
The glass-fused substrate is immersed in HF, and the glass is etched to the required thickness. For example, the thickness may be reduced to about 20 μm. Then, the glass thin film 14 was set on the glass film 13 by sputtering Na-Ca glass to a thickness of 500 nm on the glass film 13, and the H + permeable film 8 was formed. (Adhesion of FIG. 3D) Adhesion of Glass Substrate and Si Substrate The glass substrate 1 and the Si substrate 2 thus formed are immersed in pure water, sufficiently ultrasonically cleaned and dried, and then the two are bonded to each other. The glass substrate and the silicon substrate were anodically bonded by applying the substrate 2 on the positive electrode side and the glass substrate 1 on the negative electrode side at a temperature of 250 ° C. and applying 1200 V between the substrates. (Fig. 3E above) Cutting out the substrate and injecting the electrolyte solution: After cutting out a large number of glass electrode elements thus formed on the substrate into chips with a dicing saw, 0.1 mol chloride in a phosphate buffer solution was used. A large number of devices were completely immersed in a beaker containing an electrolyte solution containing potassium (KCl), and the entire device including the beaker was placed in a sealed container and degassed with a vacuum pump.

【0037】次に、電解液の注入孔6(溝)から気泡が
出なくなってから、密封容器内に空気を導入する。この
操作により電解液11が電極内部の空間に入り、次に電解
液の注入孔を接着剤で封止することにより小型ガラス電
極が得られた。(図3F)
Next, after no air bubbles come out from the electrolyte injection hole 6 (groove), air is introduced into the sealed container. By this operation, the electrolytic solution 11 entered the space inside the electrode, and then the injection hole of the electrolytic solution was sealed with an adhesive to obtain a small glass electrode. (Fig. 3F)

【0038】[0038]

【発明の効果】本発明を使用して形成したガラス電極の
ガラス膜はpH感応性が向上し、ネルンストの理論式にほ
ぼ合う特性を示すことができた。
EFFECTS OF THE INVENTION The glass film of the glass electrode formed by using the present invention has improved pH sensitivity and can exhibit the characteristics which substantially match the Nernst theoretical formula.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明者が提案しているガラス電極の構成を示す
平面図である。
FIG. 1 is a plan view showing a configuration of a glass electrode proposed by the inventor.

【図2】図1(C)のX−X´線位置の断面図である。FIG. 2 is a cross-sectional view taken along line XX ′ in FIG.

【図3】本発明を適用したガラス電極の製造工程を示す
断面図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of a glass electrode to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 Si基板 3 参照極 4 引出し導線 5 パッド 6 注入溝 7 保持穴 8 H+ 透過膜 10 SiO2膜 11 電解液 13 ガラス膜 14 ガラス薄膜1 Glass Substrate 2 Si Substrate 3 Reference Electrode 4 Lead Wire 5 Pad 6 Injection Groove 7 Holding Hole 8 H + Transmission Film 10 SiO 2 Film 11 Electrolyte Solution 13 Glass Film 14 Glass Thin Film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銀/塩化銀よりなる参照極と、金よりな
り該参照極と回路接続したパッドとが埋め込み形成して
なるガラス基板と、マイクロマシン技術を用いて(100)
面を選択エッチングし、塩化カリ緩衝液よりなる電解液
の注入溝と、該電解液の保持穴と、前記参照極の対応部
に水素イオン透過膜とを設けたシリコン基板とを陽極接
合して構成し、前記注入溝より電解液保持穴に電解液を
注入してなる小型ガラス電極において、前記水素イオン
透過膜が水素イオン濃度の変化に対して敏感に感応する
ガラス薄膜を備えたガラス膜よりなり、シリコン基板に
設けられている電解液保持穴の裏面に熱接着してなるこ
とを特徴とする小型ガラス電極。
1. A glass substrate in which a reference electrode made of silver / silver chloride and a pad made of gold which is circuit-connected to the reference electrode are embedded and formed, and a micromachine technique is used (100).
The surface is selectively etched, and an electrolytic solution injection groove made of a potassium chloride buffer solution, a holding hole for the electrolytic solution, and a silicon substrate provided with a hydrogen ion permeable film at a corresponding portion of the reference electrode are anodically bonded. In a small glass electrode configured by injecting an electrolytic solution into the electrolytic solution holding hole from the injection groove, the hydrogen ion permeable film is a glass film provided with a glass thin film that is sensitive to changes in hydrogen ion concentration. The small glass electrode is characterized by being heat-bonded to the back surface of the electrolytic solution holding hole provided in the silicon substrate.
【請求項2】 上記ガラス膜が硼珪酸ガラス膜と該硼珪
酸ガラス膜上に気相堆積法により形成したナトリウム・
カルシウムガラスであることを特徴とする請求項1記載
の小型ガラス電極。
2. The borosilicate glass film and the sodium formed on the borosilicate glass film by a vapor deposition method.
The small glass electrode according to claim 1, wherein the small glass electrode is calcium glass.
JP26174691A 1991-10-09 1991-10-09 Small-sized glass electrode Pending JPH0599883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26174691A JPH0599883A (en) 1991-10-09 1991-10-09 Small-sized glass electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26174691A JPH0599883A (en) 1991-10-09 1991-10-09 Small-sized glass electrode

Publications (1)

Publication Number Publication Date
JPH0599883A true JPH0599883A (en) 1993-04-23

Family

ID=17366137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26174691A Pending JPH0599883A (en) 1991-10-09 1991-10-09 Small-sized glass electrode

Country Status (1)

Country Link
JP (1) JPH0599883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226797A (en) * 2005-02-17 2006-08-31 Japan Health Science Foundation Thin-film electrode substrate and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213048A (en) * 1990-12-06 1992-08-04 Fujitsu Ltd Compact glass electrode and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213048A (en) * 1990-12-06 1992-08-04 Fujitsu Ltd Compact glass electrode and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226797A (en) * 2005-02-17 2006-08-31 Japan Health Science Foundation Thin-film electrode substrate and its manufacturing method
JP4590527B2 (en) * 2005-02-17 2010-12-01 財団法人ヒューマンサイエンス振興財団 Thin film electrode substrate manufacturing method

Similar Documents

Publication Publication Date Title
US4218298A (en) Selective chemical sensitive FET transducer
KR960012335B1 (en) Oxygen electrode
US5417837A (en) Small glass electrode
US5837113A (en) Small glass electrode
JPH0599883A (en) Small-sized glass electrode
JPH0510916A (en) Compact glass electrode
JP2844381B2 (en) Oxygen electrode and method for producing the same
JPH04213048A (en) Compact glass electrode and manufacture thereof
JP2838901B2 (en) Small oxygen electrode and method for manufacturing the same
JP2743535B2 (en) Integrated sensor and manufacturing method thereof
JPH061254B2 (en) Oxygen electrode
JP2767868B2 (en) Small oxygen electrode
JPH02236154A (en) Preparation of small-sized oxygen electrode
JPH06281617A (en) Small-sized glass electrode and its manufacture
JPH04125462A (en) Oxygen electrode
JP2943281B2 (en) Small oxygen electrode and its manufacturing method
JP2530689B2 (en) Small oxygen electrode
JPS63238549A (en) Microbiosensor
JP2530690B2 (en) Small oxygen electrode
JPH09182738A (en) Oxygen electrode and manufacture thereof
JP2767614B2 (en) Manufacturing method of small oxygen electrode
JPH04208846A (en) Method for mounting microchemical sensor
JPH0643131A (en) Biosensor, biosensor aggregate and production thereof
JPS62118250A (en) Small-sized oxygen electrode
JPH05312764A (en) Method for introducing electrolytic solution to small chemical sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961119