JPH0599628A - Thickness measuring apparatus - Google Patents

Thickness measuring apparatus

Info

Publication number
JPH0599628A
JPH0599628A JP26417691A JP26417691A JPH0599628A JP H0599628 A JPH0599628 A JP H0599628A JP 26417691 A JP26417691 A JP 26417691A JP 26417691 A JP26417691 A JP 26417691A JP H0599628 A JPH0599628 A JP H0599628A
Authority
JP
Japan
Prior art keywords
signal
thickness
detection
detection signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26417691A
Other languages
Japanese (ja)
Inventor
Yasushi Nakamura
靖 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP26417691A priority Critical patent/JPH0599628A/en
Publication of JPH0599628A publication Critical patent/JPH0599628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To make it unnecessary to perform arithmetic each time thickness is detected so as to increase the speed of measuring action by storing data indicating calculated values of thicknesses as size data, and outputting a measurement raw signal corresponding to an input detection signal. CONSTITUTION:Plurality of unit storage areas 13a of a data storage portion 13 each have an address number A corresponding to each of digital values aligned in a predetermined B-way selected from 2<n> ways of sequences of (n)-bit detection signals 7a, and store one size data D each. When a signal 7a is input the storage portion 13 uses as a measurement raw signal 13b data D stored in an area 13. having a number A corresponding to the value S of the signal, and outputs the signal as a digital signal. Then the data D use the value S of the signal 7a corresponding to the value A to indicate the deviation g from predetermined thickness TS of the precalculated correct thickness T of a subject 5 to be measured. The deviation epsilon is input 13 from a personal computer 16. Therefore the signal 13b indicates the deviation epsilon corresponding to the value S of the signal 7a and is 14 converted into an analog measurement signal 14a so as to measure thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線または電離性放
射線としての検出放射線を用いて行う透過形の厚さ測定
装置、特に、厚さ測定動作の高速化と装置の小形化と故
障発生頻度の低下とを図ることができる測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission type thickness measuring device using detection radiation as infrared rays or ionizing radiation, and more particularly, to speeding up the thickness measuring operation, downsizing of the device and frequency of failure occurrence. The present invention relates to a measuring device capable of reducing

【0002】[0002]

【従来の技術】図3は放射線を用いて行う従来の透過形
厚さ測定装置1の構成図である。図3において、2は放
射線源3から出射されたビーム状の放射線、4は、被測
定物5を透過した放射線2が入射されかつ入射された放
射線2の強さIを表すアナログ信号としての放射線検出
信号6aを出力する放射線検出器6と、入力される信号
6aをnビットのディジタル信号としての検出信号7a
に変換するAD変換器7とからなる放射線検出部、8
は、検出信号7aが入力されかつこの信号7aを用いて
後述する(1) 式右辺の演算としての厚さ算出演算C1を
行って被測定物5における放射線2の透過経路に沿った
見掛けの厚さtを表すディジタル信号9aを出力する厚
さ演算器9と、信号9aが入力されかつこの信号9aが
表す見掛けの厚さtに対して予め求めておいた補正値を
加える補正演算C2を行って厚さtに対応した被測定物
5の正しい厚さTを表すディジタル信号10aを出力す
る補正演算器10と、信号10aが入力されかつ可変の
厚さ基準値Tsを内蔵しておりかつ信号10aが表す厚
さTの厚さ基準値Tsからの偏差εを表すディジタル信
号としての第1測定原信号11aを出力する減算器11
とからなる演算処理部で、12は信号11aをアナログ
信号としての測定信号12aに変換するDA変換器であ
る。そうして、前述した厚さ測定装置1は被測定物5を
除く図示の各部からなる装置である。測定装置1におい
ては、放射線検出信号6a、したがって信号7aが表す
放射線2の強さIが、線源3と検出器6との間から被測
定物5を取り除いた時のIの値をIo、被測定物5の放
射線2に対する吸収係数をμ、被測定物5における放射
線2の透過経路に沿った厚さをtとして(1) 式で表さ
れ、この結果、(1) 式から(2) 式が得られるので、厚さ
演算器9が上述の動作をするように構成されている。そ
うして、また、この測定装置1においては、被測定物5
において生じる放射線2の散乱現象等のため演算器出力
信号9aが表す厚さtが正しい厚さTとは異なった値に
なるので、上述の補正演算器10が設けられており、さ
らに、この装置1は被測定物5としての鉄板を上記の厚
さ基準値Tsになるように圧延する設備において圧延後
の厚さTを経時的に連続して監視する装置として構成さ
れたものであるので、上述した減算器11が設けられて
いる。測定装置1は上述のように構成されているので、
信号12aによって偏差εを測定し得ることが明らかで
あり、また演算器出力信号10aによって厚さTを測定
し得ることも明らかで ある。 I=Io・exp(−μt)………………………………………(1) t=(1/μ)・ln(Io/I)………………………………………(2)
2. Description of the Related Art FIG. 3 is a block diagram of a conventional transmission type thickness measuring device 1 which uses radiation. In FIG. 3, 2 is a beam-like radiation emitted from the radiation source 3, and 4 is a radiation as an analog signal representing the intensity I of the radiation 2 which has been incident upon the radiation 2 transmitted through the DUT 5. The radiation detector 6 which outputs the detection signal 6a, and the detection signal 7a which is the input signal 6a as an n-bit digital signal
A radiation detecting section including an AD converter 7 for converting into
Is the apparent thickness along the transmission path of the radiation 2 in the DUT 5 when the detection signal 7a is input and the signal 7a is used to perform the thickness calculation operation C1 as the operation of the right side of the equation (1) described later. A thickness calculator 9 that outputs a digital signal 9a that represents the thickness t, and a correction calculation C2 that receives the signal 9a and adds a previously calculated correction value to the apparent thickness t represented by the signal 9a are performed. The correction calculator 10 outputs a digital signal 10a representing the correct thickness T of the DUT 5 corresponding to the thickness t, and the signal 10a is inputted and the variable thickness reference value Ts is incorporated and A subtractor 11 for outputting a first original measurement signal 11a as a digital signal representing a deviation ε of the thickness T represented by 10a from a thickness reference value Ts.
And a DA converter 12 for converting the signal 11a into a measurement signal 12a as an analog signal. Then, the thickness measuring device 1 described above is a device including the respective parts shown in the figure except the measured object 5. In the measuring device 1, the intensity I of the radiation 2 represented by the radiation detection signal 6a, and thus the signal 7a, is Io when the DUT 5 is removed from between the radiation source 3 and the detector 6, Io, The absorption coefficient of the DUT 5 for the radiation 2 is represented by μ, and the thickness of the DUT 5 along the transmission path of the radiation 2 is represented by the equation (1). As a result, from the equation (1), Since the formula is obtained, the thickness calculator 9 is configured to perform the above-described operation. Then, again, in the measuring device 1, the DUT 5 is
Since the thickness t represented by the calculator output signal 9a becomes a value different from the correct thickness T due to the scattering phenomenon of the radiation 2 which occurs in the above, the above-mentioned correction calculator 10 is provided, and further, this device is provided. Since 1 is configured as an apparatus for continuously monitoring the thickness T after rolling in a facility for rolling an iron plate as the object to be measured 5 to the above-described thickness reference value Ts, The subtractor 11 described above is provided. Since the measuring device 1 is configured as described above,
It is clear that the deviation ε can be measured by the signal 12a, and that the thickness T can be measured by the calculator output signal 10a. I = Io · exp (-μt) …………………………………… (1) t = (1 / μ) ・ ln (Io / I) ………………………… ……………… (2)

【0003】[0003]

【発明が解決しようとする課題】測定装置1は上述の構
成となっているので、この場合、第1測定原信号11a
が検出信号7aの変化に対して演算器9,10及び減算
器11の各々における演算時間の合計時間だけ遅れるこ
とが明らかで、したがって、この装置1には偏差εまた
は厚さTの測定動作の速度が遅いという問題点がある。
そうして、また、測定装置1では、演算処理部8が演算
器9,10と減算器11とで構成されていて構成が複雑
でありかつ5cm×5cm×2cm程度の大きさとなる
のが通例であるから、装置1の小形化や故障発生頻度の
低下を図ることが困難であるという問題点もある。本発
明の目的は、透過放射線2を検出した都度演算処理部8
における各演算C1〜C3を行わなくてもよいようにす
ることによって演算器9,10や減算器11を不要に
し、もって、測定動作の高速化、厚さ測定装置の小形
化、厚さ測定装置における故障発生頻度の低下を図るこ
とにある。
Since the measuring apparatus 1 has the above-mentioned configuration, in this case, the first measurement original signal 11a is obtained.
Is delayed with respect to the change of the detection signal 7a by the total time of the calculation time in each of the calculators 9 and 10 and the subtractor 11, and therefore, the device 1 has the operation of measuring the deviation ε or the thickness T. There is a problem that the speed is slow.
In addition, in the measuring apparatus 1, the arithmetic processing unit 8 is composed of the arithmetic units 9 and 10 and the subtractor 11, and the configuration is complicated, and is usually about 5 cm × 5 cm × 2 cm. Therefore, there is a problem in that it is difficult to reduce the size of the device 1 and reduce the frequency of failure occurrence. An object of the present invention is to provide an arithmetic processing unit 8 each time the transmitted radiation 2 is detected.
By eliminating the calculations C1 to C3 in step 1, the calculators 9 and 10 and the subtractor 11 are not required, thereby increasing the speed of the measurement operation, downsizing the thickness measuring device, and the thickness measuring device. It is intended to reduce the frequency of failure occurrence in.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明においては、 1)被測定物を透過した赤外線または電離性放射線とし
ての検出放射線が入射され、かつ前記検出放射線の強さ
を表すnビットのディジタル信号としての検出信号を出
力する検出放射線検出部と、それぞれアドレス番号がつ
けられた複数個の単位記憶領域が設けられ、かつ前記検
出信号の2n 通りのディジタル値のうちの所定通りのデ
ィジタル値の各々に対応した前記アドレス番号を有する
前記単位記憶領域にそれぞれ一個の寸法データが記憶さ
れており、かつ前記検出信号が入力されるとこの検出信
号の前記ディジタル値に対応した前記アドレス番号を有
する前記単位記憶領域に記憶された前記寸法データを表
す測定原信号を出力するデータ記憶部とを備え、前記測
定原信号にもとづき前記被測定物における前記検出放射
線の透過経路に沿った厚さまたはこの厚さの所定厚さ基
準値からの偏差を測定する厚さ測定装置であって、前記
寸法データはこの寸法データが記憶された前記単位記憶
領域の前記アドレス番号に対応した前記検出信号のディ
ジタル値を用いて予め算出した前記被測定物の前記厚さ
またはこの厚さの前記偏差を表すデータであるように厚
さ測定装置を構成し、また、 2)被測定物を透過した赤外線または電離性放射線とし
ての検出放射線が入射され、かつ前記検出放射線の強さ
を表すnビットのディジタル信号としての検出信号を出
力する検出放射線検出部と、前記検出信号が入力され、
かつこの検出信号のディジタル値を用いて厚さ算出演算
を行い続いてこの厚さ算出演算の結果を補正する補正演
算を行って前記被測定物における前記検出放射線の透過
経路に沿った厚さまたはこの厚さの所定厚さ基準値から
の偏差のいずれか一方を表す第1測定原信号を出力する
演算処理部と、前記検出信号が入力され、かつそれぞれ
アドレス番号がつけられた複数個の単位記憶領域が設け
られ、かつ前記検出信号の2n 通りのディジタル値のう
ちの所定通りのディジタル値の各々に対応した前記アド
レス番号を有する前記単位記憶領域にそれぞれ一個の寸
法データが記憶されており、かつ前記検出信号が入力さ
れるとこの検出信号の前記ディジタル値に対応した前記
アドレス番号を有する前記単位記憶領域に記憶された前
記寸法データを表す測定原信号を出力するデータ記憶部
と、前記第1測定原信号と前記測定原信号とを切り換え
て出力する信号切換部とを備え、前記信号切換部の出力
信号にもとづき前記被測定物の前記厚さまたはこの厚さ
の前記偏差を測定する厚さ測定装置であって、前記寸法
データはこの寸法データが記憶された前記単位記憶領域
の前記アドレス番号に対応した前記検出信号のディジタ
ル値を用いて予め算出した前記被測定物の前記厚さまた
はこの厚さの前記偏差を表すデータであるように厚さ測
定装置を構成する。
In order to achieve the above object, in the present invention, 1) detection radiation as infrared rays or ionizing radiation that has passed through an object to be measured is incident, and the intensity of the detection radiation is adjusted. A detection radiation detecting section for outputting a detection signal as an n-bit digital signal, and a plurality of unit storage areas each having an address number are provided, and of the 2 n digital values of the detection signal, One piece of dimension data is stored in each of the unit storage areas having the address number corresponding to each predetermined digital value, and when the detection signal is input, it corresponds to the digital value of the detection signal. A data storage unit that outputs a measurement original signal representing the dimension data stored in the unit storage area having the address number, A thickness measuring device for measuring the thickness along the transmission path of the detected radiation in the object to be measured based on a measurement original signal or a deviation from a predetermined thickness reference value of the thickness, wherein the dimensional data is It may be data representing the thickness of the object to be measured or the deviation of the thickness calculated in advance using the digital value of the detection signal corresponding to the address number of the unit storage area in which the dimension data is stored. And 2) a detection signal as an n-bit digital signal representing the intensity of the detected radiation upon which the detection radiation as infrared rays or ionizing radiation transmitted through the object to be measured is incident. And a detection radiation detection unit for outputting the detection signal,
Further, a thickness calculation operation is performed using the digital value of the detection signal, and then a correction operation for correcting the result of the thickness calculation operation is performed to determine the thickness along the transmission path of the detected radiation in the measured object or An arithmetic processing unit that outputs a first measurement original signal that represents one of the deviations of the thickness from a predetermined thickness reference value, and a plurality of units to which the detection signal is input and to which address numbers are attached respectively A storage area is provided, and one size data is stored in each of the unit storage areas having the address number corresponding to each predetermined digital value of the 2 n digital values of the detection signal. When the detection signal is input, the dimensional data stored in the unit storage area having the address number corresponding to the digital value of the detection signal is displayed. A data storage unit that outputs a measurement original signal, and a signal switching unit that switches and outputs the first measurement original signal and the measurement original signal, and the above-mentioned object to be measured based on the output signal of the signal switching unit. A thickness measuring device for measuring a thickness or the deviation of the thickness, wherein the dimension data uses a digital value of the detection signal corresponding to the address number of the unit storage area in which the dimension data is stored. The thickness measuring device is configured to be data representing the thickness of the object to be measured or the deviation of the thickness calculated in advance.

【0005】[0005]

【作用】上記のように構成すると、演算処理部を備えて
いない厚さ測定装置の場合、検出信号が上述した演算処
理部8に入力されることによって得られるディジタル信
号10aまたは11aの各値を表すデータを寸法データ
としてデータ記憶部に記憶させておくことによって、こ
のデータ記憶部に検出信号が入力されると直ちにこの検
出信号のディジタル値に対応した被測定物の厚さまたは
該厚さの所定厚さ基準値からの偏差を表す測定原信号が
データ記憶部から出力されるので、測定動作の速い厚さ
測定装置が得られることになり、また、この場合、上述
の演算器9,10及び減算器11からなる演算処理部8
が一個のデータ記憶部となってこの記憶部が処理部8よ
りも簡単な構成であることは明らかであり、かつこのデ
ータ記憶部は前述の大きさを有する演算処理部8に比べ
てかなり小形に形成することができるので、小形でかつ
故障発生頻度の低い厚さ測定装置が得られることにな
る。そうして、さらに、演算処理部を備えた厚さ測定装
置の場合、データ記憶部が、演算処理部を備えていない
上述の厚さ測定装置のデータ記憶部におけると同様に、
検出信号が入力された場合厚さ算出演算等の上述の演算
動作C1〜C3を行うことなく直ちに測定原信号を出力
するので、信号切換部によって測定原信号を該切換部の
出力信号とすることによって、この厚さ測定装置が測定
動作の速い装置となることは明らかである。
With the above arrangement, in the case of the thickness measuring device having no arithmetic processing unit, each value of the digital signal 10a or 11a obtained by inputting the detection signal to the arithmetic processing unit 8 is calculated. By storing the represented data as dimension data in the data storage unit, as soon as the detection signal is input to the data storage unit, the thickness of the measured object or the thickness of the measured object corresponding to the digital value of the detection signal is immediately input. Since the measurement original signal indicating the deviation from the predetermined thickness reference value is output from the data storage unit, a thickness measuring device having a fast measuring operation can be obtained. In this case, the arithmetic units 9 and 10 described above can be obtained. And processing unit 8 including subtractor 11
Is a single data storage unit, and it is clear that this storage unit has a simpler configuration than the processing unit 8, and this data storage unit is considerably smaller than the arithmetic processing unit 8 having the aforementioned size. Therefore, it is possible to obtain a small-sized thickness measuring device with a low failure frequency. Then, further, in the case of the thickness measuring device including the arithmetic processing unit, the data storage unit, as in the data storage unit of the above-described thickness measuring device not including the arithmetic processing unit,
When the detection signal is input, the measurement raw signal is immediately output without performing the above-described calculation operations C1 to C3 such as the thickness calculation calculation. Therefore, the measurement raw signal is used as the output signal of the switching unit by the signal switching unit. Therefore, it is obvious that this thickness measuring device becomes a device having a fast measuring operation.

【0006】[0006]

【実施例】図1は本発明の一実施例の構成説明図で、本
図の図3と異なるところは、図3の演算処理部8にかえ
てデータ記憶部13が設けられていて、この記憶部13
と放射線源3と放射線検出部4と前述のDA変換器12
に対応したDA変換器14とで厚さ測定装置15が構成
されていることと、記憶部13に後述する寸法データD
を記憶させるためのパソコン16が描かれていること
で、ここに、記憶部13は、それぞれアドレス番号Aが
つけられた複数個の単位記憶領域13aが設けられ、か
つ前記寸法データDを表すデータ信号13Cが入力され
ることによってnビットの検出信号7aの2n 通りのデ
ィジタル値Sのうちの所定のB通りのディジタル値Sの
各々に対応したアドレス番号Aを有する記憶領域13a
にそれぞれ一個の前記寸法データDが記憶されており、
かつ検出信号7aが入力されるとこの信号7aのディジ
タル値Sに対応したアドレス番号Aを有する記憶領域1
3aに記憶された上記データDを表すディジタル信号と
しての測定原信号13bを出力するようにしたもので、
また、上記寸法データDはこのDが記憶された領域13
aのアドレス番号Aに対応した信号7aのディジタル値
Sを用いて後述する演算方法で予め算出した被測定物5
の正しい厚さTの所定厚さ基準値Tsからの偏差εを表
すデータである。そうして、ここに、上記ディジタル値
Sを用いてTの偏差εを算出する演算は測定装置1にお
ける演算器9,10のそれぞれにおいて行われる厚さ算
出演算C1及び補正演算C2にと装置1における減算器
11において行われる減算C3とからなる演算と全く同
様な演算で、図1に示したパソコン16は、入力部16
1に入力された後述するディジタル入力信号17と入力
部162に入力された可変の厚さ基準値Tsとを用いて
上記の演算C1,C2,C3を行って偏差εを求めてこ
のεを表すデータとしての上述の寸法データDを表す出
力信号16aを出力部163からデータ記憶部13に前
述のデータ信号13Cとして入力することによって記憶
部13にデータDを記憶させるようにしたものである。
そうして、上述したディジタル入力信号17は検出信号
7aかまたはこの信号7aの代替信号としての模擬検出
信号Eかのいずれかの信号である。図1におけるDA変
換器14は入力された測定原信号13bに対してDA変
換を行ってアナログ測定信号14aを出力するようにし
た変換器である。また、上述した検出信号7aのB通り
のディジタル値SのBは、厚さ基準値Tsに対応したデ
ィジタル値Sの値Ssを含むSの所定範囲内にあるSの
個数で、さらに、Bは2n に等しい値であっても差し支
えないものである。厚さ測定装置15は上述のように構
成されているので測定信号14aによって偏差εを測定
し得ることが明らかであり、また、この場合、検出信号
7aが記憶部13に入力されると、測定装置1において
行われる演算C1,C2,C3を行うことなく、直ちに
信号7aの値Sに対応した偏差εを表す信号13bが記
憶部13から出力されるので、この測定装置15によれ
ばεの測定を極めて速い速度で行うことができることに
なる。そうして、また、この装置15においては記憶部
13の構成が演算器9,10と減算器11とからなる図
3における演算処理部8の構成よりも簡単であることは
明らかであり、かつ上述した5cm×5cm×2cm程
度の大きさを有する処理部8に対して記憶部13をラン
ダムアクセスメモリ(RAM)を用いて2cm×3cm
×0.5cm程度の大きさにすることができるので、測定
装置15は小形化が可能でかつ故障発生頻度の低い厚さ
測定装置であるということになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the configuration of an embodiment of the present invention. The difference from FIG. 3 of this drawing is that a data storage unit 13 is provided instead of the arithmetic processing unit 8 of FIG. Storage unit 13
, The radiation source 3, the radiation detector 4, and the DA converter 12 described above.
That the thickness measuring device 15 is configured with the DA converter 14 corresponding to the above, and the dimension data D described later in the storage unit 13.
Since the personal computer 16 for storing the data is illustrated, the storage unit 13 is provided with a plurality of unit storage areas 13a to which the address numbers A are attached, and the data representing the dimension data D. When the signal 13C is input, the storage area 13a having the address number A corresponding to each of the predetermined B digital values S of the 2 n digital values S of the n-bit detection signal 7a.
One of the dimension data D is stored in each of
When the detection signal 7a is input, the storage area 1 having the address number A corresponding to the digital value S of the signal 7a is input.
An original measurement signal 13b as a digital signal representing the data D stored in 3a is output.
Further, the dimension data D is the area 13 in which this D is stored.
The DUT 5 calculated in advance by a calculation method described later using the digital value S of the signal 7a corresponding to the address number A of a.
Is data representing a deviation ε of the correct thickness T from a predetermined thickness reference value Ts. Then, the calculation for calculating the deviation ε of T using the digital value S is performed by the thickness calculation calculation C1 and the correction calculation C2 performed in each of the calculators 9 and 10 in the measuring apparatus 1. In the personal computer 16 shown in FIG. 1, the input unit 16
Using the digital input signal 17 to be described later input to 1 and the variable thickness reference value Ts input to the input section 162, the above operations C1, C2 and C3 are performed to obtain the deviation ε, which represents ε. The data D is stored in the storage unit 13 by inputting the output signal 16a representing the above-described dimension data D as data from the output unit 163 to the data storage unit 13 as the above-mentioned data signal 13C.
Then, the above-mentioned digital input signal 17 is either the detection signal 7a or the simulated detection signal E as a substitute signal of this signal 7a. The DA converter 14 in FIG. 1 is a converter that performs DA conversion on the input measurement original signal 13b and outputs an analog measurement signal 14a. Further, B of the B different digital values S of the detection signal 7a is the number of S within a predetermined range of S including the value Ss of the digital value S corresponding to the thickness reference value Ts, and B is A value equal to 2 n can be used. Since the thickness measuring device 15 is configured as described above, it is clear that the deviation ε can be measured by the measurement signal 14a, and in this case, when the detection signal 7a is input to the storage unit 13, the measurement is performed. Since the signal 13b representing the deviation ε corresponding to the value S of the signal 7a is immediately output from the storage unit 13 without performing the calculations C1, C2 and C3 performed in the device 1, according to the measuring device 15, This will allow measurements to be made at extremely high speeds. Then, it is clear that in this device 15, the configuration of the storage unit 13 is simpler than the configuration of the arithmetic processing unit 8 in FIG. 3 including the arithmetic units 9 and 10 and the subtractor 11, and For the processing unit 8 having a size of about 5 cm × 5 cm × 2 cm, the storage unit 13 is 2 cm × 3 cm using a random access memory (RAM).
Since the size can be about 0.5 cm, the measuring device 15 can be miniaturized and is a thickness measuring device with a low frequency of failure occurrence.

【0007】図2は図1に実施例を示した本発明とは別
の本発明の一実施例の構成説明図で、本図の図1及び図
3と異なる所は検出信号7aが演算処理部8とデータ記
憶部13との双方に入力されていることと、処理部8が
出力する第1測定原信号11aを記憶部13にデータ信
号13cとして入力し得るようになっていることと、信
号11aと13bとを切り換えて出力する信号切換部1
8が設けられていてこの切換部18の出力信号をDA変
換機14によってアナログ測定信号14aに変換するよ
うになっていることである。19は被測定物5を除く図
示の各部からなる厚さ測定装置である。測定装置19は
上述のように構成されているので、信号切換部18によ
り信号11aを変換機14に入力した場合の測定信号1
4aによって前述の偏差εを測定し得ることが明らかで
あるが、また、この場合、演算処理部8に検出信号7a
のかわりに前述の模擬検出信号Eを入力することによっ
て得られる該信号Eの値に対応した偏差εを表す信号1
1aをデータ信号13cとして記憶部13に入力するこ
とによって、このεを表す寸法データDが、信号Eのデ
ィジタル値に対応した記憶部13におけるアドレス番号
Aの単位記憶領域13aに記憶されているので、図2に
おいて切換部18により記憶部13が出力する測定原信
号13bを変換機14に入力した場合にも測定信号14
aにより偏差εを測定することが出来て、この後者の場
合、測定装置15におけると同様に速い速度でεを測定
し得ることが明らかである。そうして、測定装置19に
おいては同じ検出信号7aが処理部8と記憶部13とに
入力されかつこれらの両方からいずれも偏差εを表す信
号11a,13bが出力されるので、この装置19は処
理部8と記憶部13の各信号出力機能の相互監視を行う
のに好都合な装置であるということができる。
FIG. 2 is an explanatory view of the structure of an embodiment of the present invention different from the embodiment shown in FIG. 1. The difference from FIGS. 1 and 3 in this drawing is that the detection signal 7a is processed. Input to both the unit 8 and the data storage unit 13, and the first measurement original signal 11a output from the processing unit 8 can be input to the storage unit 13 as a data signal 13c; A signal switching unit 1 for switching and outputting the signals 11a and 13b
8 is provided so that the output signal of the switching unit 18 is converted by the DA converter 14 into the analog measurement signal 14a. Reference numeral 19 denotes a thickness measuring device including the respective parts shown in the figure except the object to be measured 5. Since the measurement device 19 is configured as described above, the measurement signal 1 when the signal 11a is input to the converter 14 by the signal switching unit 18
It is clear that the deviation ε can be measured by means of 4a, but in this case, the detection signal 7a
Signal 1 representing the deviation ε corresponding to the value of the signal E obtained by inputting the above-mentioned simulated detection signal E instead of
By inputting 1a as the data signal 13c into the storage unit 13, the dimension data D representing this ε is stored in the unit storage area 13a of the address number A in the storage unit 13 corresponding to the digital value of the signal E. In FIG. 2, even when the original measurement signal 13b output from the storage unit 13 is input to the converter 14 by the switching unit 18, the measurement signal 14
Obviously, the deviation ε can be measured by a, and in this latter case, ε can be measured at a high speed as in the measuring device 15. Then, in the measuring device 19, the same detection signal 7a is input to the processing unit 8 and the storage unit 13, and both of them output the signals 11a and 13b representing the deviation ε, so that this device 19 It can be said that the device is convenient for performing mutual monitoring of the signal output functions of the processing unit 8 and the storage unit 13.

【0008】上述の各実施例においては演算処理部8及
び記憶部13が共に偏差εを表す信号を出力するように
したが、本発明においては、処理部8における減算機1
1を省略しまた記憶部13に記憶された寸法データDが
被測定物5の厚さTを表すようにすることによって、測
定装置15,19を測定信号14aが厚さTを表す本発
明実施例としての厚さ測定装置としても差し支えない。
また、上述の各実施例は放射線2を用いて厚さ測定を行
うものであったが、本発明は赤外線を用いて行う透過形
の厚さ測定にも適用できるものである。
In each of the above-described embodiments, the arithmetic processing unit 8 and the storage unit 13 both output the signal representing the deviation ε, but in the present invention, the subtracter 1 in the processing unit 8 is used.
By omitting 1 and allowing the dimension data D stored in the storage unit 13 to represent the thickness T of the DUT 5, the measuring devices 15 and 19 can be implemented by the measurement signal 14a representing the thickness T. The thickness measuring device may be used as an example.
Further, in the above-mentioned respective embodiments, the thickness measurement is performed by using the radiation 2, but the present invention can be applied to the transmission type thickness measurement performed by using the infrared ray.

【0009】[0009]

【発明の効果】上述したように、本発明においては、 1)被測定物を透過した赤外線または電離性放射線とし
ての検出放射線が入射され、かつ前記検出放射線の強さ
を表すnビットのディジタル信号としての検出信号を出
力する検出放射線検出部と、それぞれアドレス番号がつ
けられた複数個の単位記憶領域が設けられ、かつ前記検
出信号の2n 通りのディジタル値のうちの所定通りのデ
ィジタル値の各々に対応したアドレス番号を有する単位
記憶領域にそれぞれ一個の寸法データが記憶されてお
り、かつ検出信号が入力されるとこの検出信号のディジ
タル値に対応したアドレス番号を有する単位記憶領域に
記憶された寸法データを表す測定原信号を出力するデー
タ記憶部とを備え、前記測定原信号にもとづき被測定物
における検出放射線の透過経路に沿った厚さまたはこの
厚さの所定厚さ基準値からの偏差を測定する厚さ測定装
置であって、前記寸法データはこの寸法データが記憶さ
れた単位記憶領域のアドレス番号に対応した検出信号の
ディジタル値を用いて予め算出した被測定物の前記厚さ
またはこの厚さの前記偏差を表すデータであるように厚
さ測定装置を構成し、また、 2)被測定物を透過した赤外線または電離性放射線とし
ての検出放射線が入射され、かつ前記検出放射線の強さ
を表すnビットのディジタル信号としての検出信号を出
力する検出放射線検出部と、前記検出信号が入力され、
かつこの検出信号のディジタル値を用いて厚さ算出演算
を行い続いてこの厚さ算出演算の結果を補正する補正演
算を行って被測定物における検出放射線の透過経路に沿
った厚さまたはこの厚さの所定厚さ基準値からの偏差の
いずれか一方を表す第1測定原信号を出力する演算処理
部と、前記検出信号が入力され、かつそれぞれアドレス
番号がつけられた複数個の単位記憶領域が設けられ、か
つ検出信号の2n 通りのディジタル値のうちの所定通り
のディジタル値の各々に対応したアドレス番号を有する
単位記憶領域にそれぞれ一個の寸法データが記憶されて
おり、かつ検出信号が入力されるとこの検出信号のディ
ジタル値に対応したアドレス番号を有する単位記憶領域
に記憶された寸法データを表す測定原信号を出力するデ
ータ記憶部と、第1測定原信号と測定原信号とを切り換
えて出力する信号切換部とを備え、前記信号切換部の出
力信号にもとづき被測定物の前記厚さまたはこの厚さの
前記偏差を測定する厚さ測定装置であって、前記寸法デ
ータはこの寸法データが記憶された単位記憶領域のアド
レス番号に対応した検出信号のディジタル値を用いて予
め算出した被測定物の前記厚さまたはこの厚さの前記偏
差を表すデータであるように厚さ測定装置を構成した。
As described above, according to the present invention, 1) an n-bit digital signal representing the intensity of the detected radiation as infrared rays or ionizing radiation transmitted through the object to be measured is incident. A detection radiation detecting section for outputting a detection signal and a plurality of unit storage areas each having an address number, and a predetermined digital value of 2 n digital values of the detection signal is provided. One piece of dimension data is stored in each unit storage area having an address number corresponding to each, and when a detection signal is input, it is stored in the unit storage area having an address number corresponding to the digital value of this detection signal. And a data storage unit that outputs a measurement original signal representing the dimension data, and detects the radiation detected in the DUT based on the measurement original signal. A thickness measuring device for measuring a thickness along an overpath or a deviation of the thickness from a predetermined thickness reference value, wherein the dimension data corresponds to an address number of a unit storage area in which the dimension data is stored. The thickness measuring device is configured to be data representing the thickness of the measured object or the deviation of the thickness calculated in advance using the digital value of the detected signal, and 2) the measured object is transmitted. A detection radiation detecting unit that receives detection radiation as infrared rays or ionizing radiation and outputs a detection signal as an n-bit digital signal representing the intensity of the detection radiation; and the detection signal is input,
In addition, a thickness calculation operation is performed using the digital value of this detection signal, and then a correction operation for correcting the result of this thickness calculation operation is performed to determine the thickness along the transmission path of the detected radiation in the DUT or this thickness. Processing unit that outputs a first measurement original signal that represents one of the deviations from the predetermined thickness reference value, and a plurality of unit storage areas to which the detection signal is input and to which address numbers are assigned respectively Is provided, and one size data is stored in each unit storage area having an address number corresponding to each predetermined digital value of the 2 n digital values of the detection signal, and the detection signal is A data storage section for outputting a measurement original signal representing the dimension data stored in the unit storage area having an address number corresponding to the digital value of the detection signal when input; A thickness measuring device having a measurement original signal and a signal switching unit for switching and outputting the measurement original signal, and measuring the thickness of the object to be measured or the deviation of the thickness based on the output signal of the signal switching unit. The dimension data is the thickness of the object to be measured or the deviation of the thickness calculated in advance using the digital value of the detection signal corresponding to the address number of the unit storage area in which the dimension data is stored. The thickness measuring device was configured to be the data presented.

【0010】このため、上記のように構成すると、演算
処理部を備えていない厚さ測定装置の場合、検出信号が
上述した演算処理部8に入力されることによって得られ
るディジタル信号10aまたは11aの各値を表すデー
タを寸法データとしてデータ記憶部に記憶させておくこ
とによって、このデータ記憶部に検出信号が入力される
と直ちにこの検出信号のディジタル値に対応した被測定
物の厚さまたは該厚さの所定厚さ基準値からの偏差を表
す測定原信号がデータ記憶部から出力されるので、測定
動作の速い厚さ測定装置が得られることになり、また、
この場合、上述の演算器9,10及び減算器11からな
る演算処理部8が一個のデータ記憶部となってこの記憶
部が処理部8よりも簡単な構成であることは明らかであ
り、かつこのデータ記憶部は前述の大きさを有する演算
処理部8に比べてかなり小形に形成することができるの
で、小形でかつ故障発生頻度の低い厚さ測定装置が得ら
れることになる。そうして、さらに、演算処理部を備え
た厚さ測定装置の場合、データ記憶部が、演算処理部を
備えていない上述の厚さ測定装置のデータ記憶部におけ
ると同様に、検出信号が入力された場合厚さ算出演算等
の上述の演算動作C1〜C3を行うことなく直ちに測定
原信号を出力するので、信号切換部によって測定原信号
を該切換部の出力信号とすることによって、この厚さ測
定装置が測定動作の速い装置となることは明らかであっ
て、したがって、本発明には、測定動作が速いので圧延
される鉄板のような移動する物体の厚さを高精度に測定
し得る効果があり、厚さ測定装置が小形化されかつ該装
置の故障発生頻度が低くなるので取り扱いが容易でかつ
信頼度の高い厚さ測定装置が得られる効果がある。
Therefore, with the above configuration, in the case of the thickness measuring device having no arithmetic processing section, the digital signal 10a or 11a obtained by inputting the detection signal to the above arithmetic processing section 8 is used. By storing the data representing each value in the data storage unit as dimension data, as soon as the detection signal is input to the data storage unit, the thickness of the object to be measured or the thickness corresponding to the digital value of the detection signal Since the measurement original signal representing the deviation of the thickness from the predetermined thickness reference value is output from the data storage unit, a thickness measuring device with a quick measurement operation can be obtained, and
In this case, it is clear that the arithmetic processing unit 8 including the arithmetic units 9 and 10 and the subtractor 11 described above becomes one data storage unit, and this storage unit has a simpler configuration than the processing unit 8. Since this data storage unit can be formed in a considerably small size as compared with the arithmetic processing unit 8 having the above-mentioned size, it is possible to obtain a small-sized thickness measuring device with a low frequency of failure occurrence. Then, in the case of the thickness measuring device further including the arithmetic processing unit, the data storage unit inputs the detection signal in the same manner as in the data storing unit of the thickness measuring device described above which does not include the arithmetic processing unit. In this case, since the measurement original signal is immediately output without performing the above-described calculation operations C1 to C3 such as the thickness calculation calculation, the measurement original signal is set as the output signal of the switching unit by the signal switching unit. It is obvious that the height measuring device is a device having a fast measuring operation. Therefore, the present invention can measure the thickness of a moving object such as a rolled iron plate with high accuracy because the measuring operation is fast. This is effective, and since the thickness measuring device is miniaturized and the frequency of failure of the device is reduced, it is possible to obtain the thickness measuring device which is easy to handle and has high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成説明図FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention.

【図2】本発明の他の実施例の構成説明図FIG. 2 is a structural explanatory view of another embodiment of the present invention.

【図3】従来の厚さ測定装置の構成説明図FIG. 3 is a structural explanatory view of a conventional thickness measuring device.

【符号の説明】[Explanation of symbols]

2 放射線(検出放射線) 4 放射線検出部(検出放射線検出部) 5 被測定物 7a 検出信号 8 演算処理部 11a 第1測定原信号 13 データ記憶部 13a 単位記憶領域 13b 測定原信号 15 厚さ測定装置 18 信号切換部 19 厚さ測定装置 A アドレス番号 D 寸法データ 2 radiation (detection radiation) 4 radiation detection unit (detection radiation detection unit) 5 object to be measured 7a detection signal 8 arithmetic processing unit 11a first measurement original signal 13 data storage unit 13a unit storage area 13b measurement original signal 15 thickness measuring device 18 Signal switching unit 19 Thickness measuring device A Address number D Dimension data

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被測定物を透過した赤外線または電離性放
射線としての検出放射線が入射され、かつ前記検出放射
線の強さを表すnビットのディジタル信号としての検出
信号を出力する検出放射線検出部と、 それぞれアドレス番号がつけられた複数個の単位記憶領
域が設けられ、かつ前記検出信号の2n 通りのディジタ
ル値のうちの所定通りのディジタル値の各々に対応した
前記アドレス番号を有する前記単位記憶領域にそれぞれ
一個の寸法データが記憶されており、かつ前記検出信号
が入力されるとこの検出信号の前記ディジタル値に対応
した前記アドレス番号を有する前記単位記憶領域に記憶
された前記寸法データを表す測定原信号を出力するデー
タ記憶部とを備え、前記測定原信号にもとづき前記被測
定物における前記検出放射線の透過経路に沿った厚さま
たはこの厚さの所定厚さ基準値からの偏差を測定する厚
さ測定装置であって、前記寸法データはこの寸法データ
が記憶された前記単位記憶領域の前記アドレス番号に対
応した前記検出信号のディジタル値を用いて予め算出し
た前記被測定物の前記厚さまたはこの厚さの前記偏差を
表すデータであることを特徴とする厚さ測定装置。
1. A detection radiation detection unit which receives detection radiation as infrared rays or ionizing radiation that has passed through an object to be measured and which outputs a detection signal as an n-bit digital signal indicating the intensity of the detection radiation. A plurality of unit storage areas each provided with an address number, and the unit storage having the address number corresponding to each predetermined digital value of 2 n digital values of the detection signal One piece of dimension data is stored in each area, and when the detection signal is input, it represents the dimension data stored in the unit storage area having the address number corresponding to the digital value of the detection signal. And a data storage unit that outputs a measurement original signal, and transmits the detected radiation in the DUT based on the measurement original signal. A thickness measuring device for measuring a thickness along a path or a deviation of the thickness from a predetermined thickness reference value, wherein the dimension data is the address number of the unit storage area in which the dimension data is stored. A thickness measuring device, which is data representing the thickness of the object to be measured or the deviation of the thickness calculated in advance using the corresponding digital value of the detection signal.
【請求項2】被測定物を透過した赤外線または電離性放
射線としての検出放射線が入射され、かつ前記検出放射
線の強さを表すnビットのディジタル信号としての検出
信号を出力する検出放射線検出部と、 前記検出信号が入力され、かつこの検出信号のディジタ
ル値を用いて厚さ算出演算を行い続いてこの厚さ算出演
算の結果を補正する補正演算を行って前記被測定物にお
ける前記検出放射線の透過経路に沿った厚さまたはこの
厚さの所定厚さ基準値からの偏差のいずれか一方を表す
第1測定原信号を出力する演算処理部と、 前記検出信号が入力され、かつそれぞれアドレス番号が
つけられた複数個の単位記憶領域が設けられ、かつ前記
検出信号の2n 通りのディジタル値のうちの所定通りの
ディジタル値の各々に対応した前記アドレス番号を有す
る前記単位記憶領域にそれぞれ一個の寸法データが記憶
されており、かつ前記検出信号が入力されるとこの検出
信号の前記ディジタル値に対応した前記アドレス番号を
有する前記単位記憶領域に記憶された前記寸法データを
表す測定原信号を出力するデータ記憶部と、 前記第1測定信号と前記測定原信号とを切り換えて出力
する信号切換部とを備え、前記信号切換部の出力信号に
もとづき前記被測定物の前記厚さまたはこの厚さの前記
偏差を測定する厚さ測定装置であって、前記寸法データ
はこの寸法データが記憶された前記単位記憶領域の前記
アドレス番号に対応した前記検出信号のディジタル値を
用いて予め算出した前記被測定物の前記厚さまたはこの
厚さの前記偏差を表すデータであることを特徴とする厚
さ測定装置。
2. A detection radiation detection unit which receives detection radiation as infrared rays or ionizing radiation which has passed through an object to be measured and which outputs a detection signal as an n-bit digital signal representing the intensity of the detection radiation. , The detection signal is input, and a thickness calculation calculation is performed using the digital value of the detection signal, and then a correction calculation for correcting the result of the thickness calculation calculation is performed to detect the detected radiation in the measured object. An arithmetic processing unit that outputs a first measurement original signal that indicates either the thickness along the transmission path or the deviation of this thickness from a predetermined thickness reference value, and the detection signal is input and each has an address number. A plurality of unit storage areas marked with are provided, and the address number corresponding to each predetermined digital value of the 2 n digital values of the detection signal. One piece of dimension data is stored in each of the unit storage areas having, and when the detection signal is input, it is stored in the unit storage area having the address number corresponding to the digital value of the detection signal. A data storage unit that outputs a measurement original signal representing the dimension data, and a signal switching unit that switches and outputs the first measurement signal and the measurement original signal are provided, and the target signal is output based on the output signal of the signal switching unit. A thickness measuring device for measuring the thickness of the measurement object or the deviation of the thickness, wherein the dimension data is the detection signal corresponding to the address number of the unit storage area in which the dimension data is stored. A thickness measuring device, which is data representing the thickness of the object to be measured or the deviation of the thickness calculated in advance using a digital value.
JP26417691A 1991-10-14 1991-10-14 Thickness measuring apparatus Pending JPH0599628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26417691A JPH0599628A (en) 1991-10-14 1991-10-14 Thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26417691A JPH0599628A (en) 1991-10-14 1991-10-14 Thickness measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0599628A true JPH0599628A (en) 1993-04-23

Family

ID=17399522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26417691A Pending JPH0599628A (en) 1991-10-14 1991-10-14 Thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0599628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521229A (en) * 2020-09-16 2022-05-20 株式会社东芝 Thickness measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521229A (en) * 2020-09-16 2022-05-20 株式会社东芝 Thickness measuring device

Similar Documents

Publication Publication Date Title
US4212074A (en) Weight measuring method and apparatus thereof
JPH04313949A (en) High dynamic range image pickup device
JPH0599628A (en) Thickness measuring apparatus
JPH0361125B2 (en)
JPS6244601B2 (en)
JP2536824B2 (en) Measuring device and calibration method
JPH04273010A (en) Measurement of plate thickness of thick plate
JPS55114903A (en) Radiation thickness gauge
JP2001056380A (en) Radiation monitor for measurement of counting rate
JPS5850434A (en) Vibration monitor
JPH07218345A (en) Temperature-measuring device of high-temperature object
JPH05141944A (en) Radiation thickness gauge
JPH02196371A (en) Differential correlator
RU1314800C (en) Method and apparatus to calibrate matrix photodetector
JPS6156929B2 (en)
JPH036430A (en) Thermography apparatus
JPS5647836A (en) Coordinate input method of weighing detective coordinate input unit
JPH0573161B2 (en)
JPH03144327A (en) Infrared radiation thermometer
JPS6071919A (en) Apparatus for detecting two-dimensional infrared ray
JP3162831B2 (en) Temperature compensation method for pyroelectric sensor
JPH02115707A (en) Radiation thickness gauge
SU1420364A1 (en) Digital device for measuring order of interference
JPS6379008A (en) Profile measuring apparatus
SU1462126A1 (en) Method of measuring torque