JPH0599611A - Laser length measuring apparatus - Google Patents

Laser length measuring apparatus

Info

Publication number
JPH0599611A
JPH0599611A JP3257403A JP25740391A JPH0599611A JP H0599611 A JPH0599611 A JP H0599611A JP 3257403 A JP3257403 A JP 3257403A JP 25740391 A JP25740391 A JP 25740391A JP H0599611 A JPH0599611 A JP H0599611A
Authority
JP
Japan
Prior art keywords
mirror
optical path
actuator
atmosphere
length measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3257403A
Other languages
Japanese (ja)
Inventor
Tatsuo Ito
達男 伊藤
Shinichi Mizuguchi
信一 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3257403A priority Critical patent/JPH0599611A/en
Publication of JPH0599611A publication Critical patent/JPH0599611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the influence of micro vibration of atmosphere so as to enable measurement with high accuracy by surrounding the optical path between groups of reflecting mirrors with a hollow body. CONSTITUTION:A phase discrimination integrator 15 compares signals of detectors 6, 13 to each other, thereby judging and integrating the code and magnitude of their phases. In this case, the wavelength of light serving as a reference unit for measurement should be stabilized. Because an optical path is common to all of light rays except between a semi-transparent mirror 17 and a total reflection mirror 18, the fluctuation of atmosphere acts equally on any of laser light reflected by the mirrors 17 and 18, so that its effects are canceled out. Also, an actuator 19 is isolated from atmosphere between the mirrors 17 and 18 so that its optical path is not affected by the fluctuation of atmosphere. When a multilayer piezoelectric element is used as the actuator 19 the stroke of movement is shortened; then either the mirror 17 or 18 is fixed and the amount of movement of the other is measured; this process is repeated whereby the actuator 19 can be moved as much as desired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ測長装置、特に大
気のゆらぎによる測長誤差を除くことのできるレーザ測
長装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser length measuring device, and more particularly to a laser length measuring device capable of eliminating a length measuring error due to atmospheric fluctuation.

【0002】[0002]

【従来の技術】近年、レーザ干渉による測長方法は、高
精度な測長手段として広く使用されており、市販されて
いる装置も数多く存在する。
2. Description of the Related Art In recent years, a laser interference length measuring method has been widely used as a highly accurate length measuring means, and there are many commercially available devices.

【0003】以下、図面を参照しながら、上述した従来
のレーザ測長装置の1例について説明する。図3は従来
のレーザ測長装置の構成を示すものである。同図に於て
1は2周波レーザ、2はビームスプリッター、3は偏光
ビームスプリッター、4は全反射ミラー、5,6は検出
器、7は減算器、8は増幅器、9は安定化回路、10は
偏光ビームスプリッター、11は固定コーナーキューブ
ミラー、12は移動コーナーキューブミラー、13は検
出器、14は増幅器、15は位相弁別増幅器である。
An example of the above-described conventional laser length measuring device will be described below with reference to the drawings. FIG. 3 shows the configuration of a conventional laser length measuring device. In the figure, 1 is a dual frequency laser, 2 is a beam splitter, 3 is a polarization beam splitter, 4 is a total reflection mirror, 5 and 6 are detectors, 7 is a subtractor, 8 is an amplifier, 9 is a stabilizing circuit, Reference numeral 10 is a polarization beam splitter, 11 is a fixed corner cube mirror, 12 is a moving corner cube mirror, 13 is a detector, 14 is an amplifier, and 15 is a phase discrimination amplifier.

【0004】以上のように構成されたレーザ測長装置に
ついて、以下その動作について説明する。まず2周波レ
ーザ1からはわずかに波長の異なる2波長のレーザが出
射する。次にこの2波長のレーザ光はビームスプリッタ
ー2により2方向に分配される。一方のレーザ光は偏光
ビームスプリッター3によりさらに2方向に分配されて
それぞれ検出器5,6に入射する。検出器5,6では2
周波のレーザ光が干渉し合って生じるビート信号が検出
される。この信号は互いに位相が180度異なっており
両者を減算器7により比較してその結果を安定化回路9
により、2周波レーザ1にフィードバックしている。さ
らに検出器6からの信号は増幅器8を通じて位相弁別積
算器15に取り入れられる。他方、ビームスプリッター
2により、分けられたもう一方のレーザ光は偏光ビーム
スプリッター10により単一波長のレーザ光に分離さ
れ、一方は固定コーナキューブミラー11、他方は移動
コーナーキュブミラー12によりそれぞれ反射された
後、再度偏光ビームスプリッター10により結合されて
検出器13に入射する。検出器13では固定コーナーキ
ューブミラー11と移動コーナーキューブミラー12の
光路長の差による位相分だけシフトしたビート信号が検
出され、この信号は増幅器14を通じて位相弁別積算器
15に取り入れられる。位相弁別積算器15では検出器
6からの信号と検出器13からの信号とを比較すること
により、位相の符号と大きさを判定し積算することによ
り移動コーナーキューブ12の移動量を計算する。以上
説明した方法に於いては測長の基準単位は光の波長であ
り、波長に変動があると測長精度の劣化を招くため波長
の安定化を図ることが肝要である。
The operation of the laser length measuring device constructed as above will be described below. First, the two-frequency laser 1 emits two-wavelength lasers having slightly different wavelengths. Next, the laser light of these two wavelengths is split into two directions by the beam splitter 2. One of the laser beams is further divided into two directions by the polarization beam splitter 3 and enters the detectors 5 and 6, respectively. 2 for detectors 5 and 6
The beat signal generated by the interference of the high frequency laser lights is detected. The phases of these signals are different from each other by 180 degrees, the two are compared by the subtractor 7, and the result is stabilized by the stabilizing circuit 9.
Is fed back to the dual frequency laser 1. Further, the signal from the detector 6 is introduced into the phase discrimination integrator 15 through the amplifier 8. On the other hand, the other laser light split by the beam splitter 2 is split into a single wavelength laser light by the polarization beam splitter 10, one of which is reflected by a fixed corner cube mirror 11 and the other of which is reflected by a moving corner cube mirror 12. After that, they are combined again by the polarization beam splitter 10 and enter the detector 13. The detector 13 detects a beat signal shifted by the phase due to the difference in optical path length between the fixed corner cube mirror 11 and the moving corner cube mirror 12, and this signal is taken into the phase discriminator 15 through the amplifier 14. The phase discrimination integrator 15 compares the signal from the detector 6 with the signal from the detector 13 to determine the sign and magnitude of the phase and integrate them to calculate the amount of movement of the moving corner cube 12. In the above-described method, the reference unit for length measurement is the wavelength of light, and if the wavelength varies, the accuracy of length measurement is degraded, so it is important to stabilize the wavelength.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では大気の揺らぎにより波長は変動し、その
ために測長誤差が発生する。巨視的な揺らぎに対して
は、気圧,気温,湿度等のモニターを行い測長誤差を補
償するような装置も存在するが、微視的な揺らぎに対し
ては大気状態を光路の各位置で実時間でモニターするこ
とが難しいため、十分な補正を行うことができないとい
う課題を有していた。
However, in the above-mentioned structure, the wavelength fluctuates due to fluctuations in the atmosphere, which causes a measurement error. For macroscopic fluctuations, there are devices that monitor atmospheric pressure, temperature, humidity, etc. to compensate for measurement errors. However, for microscopic fluctuations, the atmospheric condition is measured at each position in the optical path. Since it is difficult to monitor in real time, there is a problem that sufficient correction cannot be performed.

【0006】本発明は上記課題に鑑み、微視的な大気揺
らぎの影響を除き高精度な測長が可能なレーザ測長装置
を提供するものである。
In view of the above problems, the present invention provides a laser length measuring device capable of highly accurate length measurement excluding the effect of microscopic atmospheric fluctuations.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明のレーザ測長装置は、レーザ光の干渉を用いる
測長装置に於て反射鏡群の間の光路を中空物体により囲
繞し、好ましくは該中空物体がアクチュエーターの一部
であるかもしくは、該反射鏡が対向しており、かつ該反
射鏡群にそれぞれ独立なアクチュエーターを設けている
という構成を備えたものである。
In order to solve the above problems, a laser length measuring apparatus according to the present invention is a length measuring apparatus that uses interference of laser light, in which an optical path between reflecting mirror groups is surrounded by a hollow object. Preferably, the hollow body is a part of an actuator, or the reflecting mirrors face each other, and the reflecting mirror group is provided with independent actuators.

【0008】[0008]

【作用】本発明は上記した構成により、反射鏡群の間の
光路を中空物体によって囲繞することにより、レーザ測
長装置の周囲の大気から光路中の大気を分離して周囲の
大気の微視的変動が光路中の大気に影響を及ぼさないよ
うにして波長変動による測長誤差の発生を防止するもの
である。
According to the present invention, the optical path between the reflecting mirrors is surrounded by a hollow object, so that the atmospheric air in the optical path is separated from the atmospheric air in the vicinity of the laser length-measuring device and a microscopic view of the surrounding atmosphere is made. It prevents the measurement error from occurring due to the wavelength variation by preventing the dynamic variation from affecting the atmosphere in the optical path.

【0009】[0009]

【実施例】以下本発明の一実施例のレーザ測長装置につ
いて、図面を参照しながら説明する。図1は本発明の第
1の実施例に於けるレーザ測長装置の構成を示すもので
ある。同図に於いて図3と同一物については同一番号を
賦して説明を省略する。同図に於いて16はビームスプ
リッターであり、17は半透鏡、18は全反射ミラー、
19はアクチュエーターであり、例えば、中空状の積層
圧電素子等が適する。以上のように構成されたレーザ測
長装置について、以下図1を用いてその動作を説明す
る。図1に於いて図3と同一物については同一の作用を
示すので、説明を省略し図3と異なる部分のみ説明を行
う。初めに、図1に示したレーザ光の光路はいわゆるコ
モンパス(共通光路)の一変形であり、半透鏡17と全
反射ミラー18の間を除いては光路は共通になってお
り、大気の揺らぎは半透鏡17からの反射レーザ光に対
しても、全反射ミラー18からの反射光に対しても同様
に作用するため、大気揺らぎの影響を相殺される。次に
半透鏡17と全反射ミラー18の間は本実施例の場合ア
クチュエーター19により大気と隔離されており、大気
がゆらいでもその影響はアクチュエータ19内部の光路
には影響を及ぼさない。アクチュエーター19として積
層圧電素子を用いた場合、移動ストロークが短いという
欠点があるが、この場合、半透鏡17をまず固定ミラー
として全反射ミラー18の移動量を測定し、次に移動後
の全反射ミラー18を固定ミラーとして半透鏡17を移
動させてその移動量を測定する。この一連の動きを次々
に繰り返すことにより、それぞれのミラーの位置を測定
しながら幾らでもアクチュエーター19を移動させるこ
とができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A laser length measuring apparatus according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a laser length measuring apparatus according to the first embodiment of the present invention. In the figure, the same parts as those in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted. In the figure, 16 is a beam splitter, 17 is a semi-transparent mirror, 18 is a total reflection mirror,
Reference numeral 19 is an actuator, and for example, a hollow laminated piezoelectric element or the like is suitable. The operation of the laser length measuring device configured as described above will be described below with reference to FIG. In FIG. 1, the same parts as those in FIG. 3 have the same operation, and therefore the description thereof will be omitted and only parts different from those of FIG. 3 will be described. First, the optical path of the laser light shown in FIG. 1 is a modification of what is called a common path (common optical path), and the optical path is common except between the semi-transparent mirror 17 and the total reflection mirror 18, and fluctuations of the atmosphere. Acts similarly on the reflected laser light from the semi-transparent mirror 17 and the reflected light from the total reflection mirror 18, so that the influence of atmospheric fluctuation is offset. Next, between the semi-transparent mirror 17 and the total reflection mirror 18 is isolated from the atmosphere by the actuator 19 in this embodiment, and even if the atmosphere fluctuates, the influence thereof does not affect the optical path inside the actuator 19. When the laminated piezoelectric element is used as the actuator 19, the movement stroke is short, but in this case, the semi-transparent mirror 17 is first used as a fixed mirror to measure the movement amount of the total reflection mirror 18, and then the total reflection after the movement. The semi-transparent mirror 17 is moved by using the mirror 18 as a fixed mirror, and the amount of movement is measured. By repeating this series of movements one after another, it is possible to move the actuator 19 as much as possible while measuring the position of each mirror.

【0010】以上のように本実施例によれば、反射鏡の
間の光路を中空のアクチュエーターで囲繞することによ
り、大気揺らぎの影響を防止することができる。
As described above, according to the present embodiment, the influence of atmospheric fluctuation can be prevented by surrounding the optical path between the reflecting mirrors with the hollow actuator.

【0011】以下本発明の第2の実施例について、図面
を参照しながら説明する。図1は本発明の第2の実施例
を示すレーザ測長装置の構成図である。同図に於いて図
1と同一物については同一番号を賦し、説明を省略す
る。図1の構成と異なるのは半透鏡17と全反射ミラー
18とにそれぞれアクチュエーター20,21を設け、
半透鏡17と全反射ミラー18との間をフィルム22で
囲繞した点である。フィルム22は伸縮自在で空気を通
さない材質で出来ており、半透鏡17と全反射ミラー1
8の間の光路を気密に保っている。上記のように構成さ
れたレーザ測長装置について、以下その動作を説明す
る。
A second embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a laser length measuring apparatus showing a second embodiment of the present invention. In the figure, the same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The difference from the configuration of FIG. 1 is that the semi-transparent mirror 17 and the total reflection mirror 18 are provided with actuators 20 and 21, respectively.
The point is that a film 22 is surrounded between the semi-transparent mirror 17 and the total reflection mirror 18. The film 22 is made of a stretchable and air-impermeable material, and has a semi-transparent mirror 17 and a total reflection mirror 1.
The optical path between 8 is kept airtight. The operation of the laser length measuring device configured as described above will be described below.

【0012】図3と同一物については同一作用を示すの
で、説明を省略する。図2に於いてフィルム22は伸縮
自在であるので、半透鏡17と全反射ミラー18の動き
にしたがって伸縮し、かつ内部の圧力と大気圧とが釣り
合うように形状が変わる。従って内部の気体の屈折率は
変化せず、また外気の空気の流れによる影響はフィルム
22で囲繞された内部には及ばないので、レーザ光の波
長の変化による測長誤差を生じない。また半透鏡17と
全反射ミラー18には、それぞれアクチュエーター2
0,21がついているので、第1の実施例に比べてスト
ロークが大きく取れる。以上のように、フィルム22を
半透鏡17と全反射ミラー18を囲繞するように設け
て、半透鏡17と全反射ミラー18とにアクチュエータ
ーを設けことにより、長ストロークの大気揺らぎ防止レ
ーザ測長装置を得ることが出来る。尚フィルム21の内
部の気体は空気でも良いしHe等のガスでもよい。ま
た、第1の実施例に於いてアクチュエーターを積層圧電
素子としたが、同様な効果の得られるリニアアクチュエ
ーター等でも構わない。
Since the same parts as those in FIG. 3 have the same functions, description thereof will be omitted. In FIG. 2, since the film 22 is stretchable, it expands and contracts in accordance with the movements of the semi-transparent mirror 17 and the total reflection mirror 18, and its shape changes so that the internal pressure and the atmospheric pressure are balanced. Therefore, the refractive index of the gas inside does not change, and since the influence of the air flow of the outside air does not reach the inside surrounded by the film 22, the measurement error due to the change in the wavelength of the laser light does not occur. Further, the semi-transparent mirror 17 and the total reflection mirror 18 are provided with the actuator 2 respectively.
Since 0 and 21 are attached, the stroke can be made larger than that of the first embodiment. As described above, the film 22 is provided so as to surround the semi-transparent mirror 17 and the total reflection mirror 18, and the semi-transparent mirror 17 and the total reflection mirror 18 are provided with actuators. Can be obtained. The gas inside the film 21 may be air or a gas such as He. Further, in the first embodiment, the actuator is the laminated piezoelectric element, but a linear actuator or the like which can obtain the same effect may be used.

【0013】[0013]

【発明の効果】以上のように本発明はレーザ測長装置に
於いて反射鏡群の間の光路を中空物体で囲繞することに
より、大気の揺らぎに不感なレーザ測長装置を得ること
が出来る。
As described above, according to the present invention, in the laser length measuring device, by enclosing the optical path between the reflecting mirror groups with a hollow object, it is possible to obtain a laser length measuring device which is insensitive to atmospheric fluctuations. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に於けるレーザ測長装置
の構成を示す図
FIG. 1 is a diagram showing a configuration of a laser length measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に於けるレーザ測長装置
の構成を示す図
FIG. 2 is a diagram showing a configuration of a laser length measuring device according to a second embodiment of the present invention.

【図3】従来のレーザ測長装置の構成を示す図FIG. 3 is a diagram showing a configuration of a conventional laser length measuring device.

【符号の説明】[Explanation of symbols]

1 2周波レーザ 2,16 ビームスプリッター 3 偏光ビームスプリッター 5,6,13 検出器 17 半透鏡 18 全反射ミラー 19,20,21 アクチュエーター 22 フィルム 1 2 frequency laser 2, 16 beam splitter 3 polarizing beam splitter 5, 6, 13 detector 17 semi-transparent mirror 18 total reflection mirror 19, 20, 21 actuator 22 film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光の干渉を用いる測長装置に於て
反射鏡群の間の光路を中空物体により囲繞したことを特
徴とするレーザ測長装置。
1. A laser length measuring device using a laser light interference, wherein an optical path between reflecting mirror groups is surrounded by a hollow object.
【請求項2】 該中空物体がアクチュエーターの一部で
あることを特徴とする請求項1記載のレーザ測長装置。
2. The laser measuring device according to claim 1, wherein the hollow body is a part of an actuator.
【請求項3】 該反射鏡が対向しており、かつ該反射鏡
群にそれぞれ独立なアクチュエーターを付けたことを特
徴とする請求項1記載のレーザ測長装置。
3. The laser length measuring apparatus according to claim 1, wherein the reflecting mirrors are opposed to each other, and independent actuators are attached to the reflecting mirror groups.
JP3257403A 1991-10-04 1991-10-04 Laser length measuring apparatus Pending JPH0599611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257403A JPH0599611A (en) 1991-10-04 1991-10-04 Laser length measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257403A JPH0599611A (en) 1991-10-04 1991-10-04 Laser length measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0599611A true JPH0599611A (en) 1993-04-23

Family

ID=17305895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257403A Pending JPH0599611A (en) 1991-10-04 1991-10-04 Laser length measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0599611A (en)

Similar Documents

Publication Publication Date Title
EP0646767B1 (en) Interferometric distance measuring apparatus
US7450246B2 (en) Measuring device and method for determining relative positions of a positioning stage configured to be moveable in at least one direction
KR100554886B1 (en) Inter- ferometer system with two wavelengths, and lithographic apparatus provided with such a system
US4444501A (en) Stabilization mechanism for optical interferometer
US3809481A (en) Single reflector interference spectrometer and drive system therefor
JPH07117371B2 (en) measuring device
US7414730B2 (en) High precision interferometer apparatus employing a grating beamsplitter
US3535024A (en) Interferometer servo system
JP3242139B2 (en) Gas refractometer
US5793487A (en) Optical interference system for performing interference measurement using wavelength
US4345838A (en) Apparatus for spectrometer alignment
JPH0599611A (en) Laser length measuring apparatus
JPH0460538B2 (en)
JP4081317B2 (en) Wavelength calibration interferometer
Tamiya et al. Detection principle and verification of non-contact displacement meter with pico-meter resolution
JPH0222502A (en) Optical interference measuring instrument
JP3633828B2 (en) Structure control method
US11378386B2 (en) Laser interference device
JP2712509B2 (en) Reflection film characteristic measuring device
JPH06123607A (en) Length measuring device
JPH04168330A (en) Light wavelength meter
Bergmans et al. Calibration of nanosensors with direct traceability to the meter
JPH07174510A (en) Device and method for measuring length
JPH0648364Y2 (en) Laser frequency meter
JPH07167607A (en) Movable decompression chamber