JPH0599605A - Non-contact type thickness detection unit - Google Patents

Non-contact type thickness detection unit

Info

Publication number
JPH0599605A
JPH0599605A JP29072991A JP29072991A JPH0599605A JP H0599605 A JPH0599605 A JP H0599605A JP 29072991 A JP29072991 A JP 29072991A JP 29072991 A JP29072991 A JP 29072991A JP H0599605 A JPH0599605 A JP H0599605A
Authority
JP
Japan
Prior art keywords
detection
detection electrode
electrostatic
electrostatic sensor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29072991A
Other languages
Japanese (ja)
Inventor
Noboru Masuda
昇 増田
Tetsuo Osawa
哲夫 大澤
Yasuo Fujii
康生 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29072991A priority Critical patent/JPH0599605A/en
Publication of JPH0599605A publication Critical patent/JPH0599605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To provide a non-contact type thickness detection unit of high accuracy which is not affected by fluctuations in the interval between a detection electrode connected to an electrostatic sensor and a subject for detection. CONSTITUTION:A first detection electrode 5 and a second detection electrode 6 are disposed opposite to each other via paper mediums 1 on a carrier passage for the paper mediums 1 serving as subjects for detection. The first detection electrode 5 is connected to a first electrostatic sensor 7 and the second detection electrode 6 is connected to a second electrostatic sensor 8. Each of the electrostatic sensors 7, 8 changes the resonance frequency of a resonance circuit according to changes in electrostatic capacity detected by each detection electrode 5, 6, and performs amplitude modulation of a signal corresponding to the change in the resonance frequency with the oscillation frequency signal of an oscillating circuit 14 used as a carrier wave, and then detects the signal and produces an output. An addition circuit 10 adds the detection signals of the first 7 and second 8 electrostatic sensors together, and applies to an external equipped signal processing circuit these outputs added together.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ATM(Automated Te
llerMachine)装置、紙幣識別装置、改札装置、製紙産
業、パルプ、製版、木工、食品等の分野で紙葉状媒体等
の厚みや性状を測定する非接触式厚み検出装置に関する
ものである。
The present invention relates to an ATM (Automated Telecommunications)
llerMachine) device, a bill validator, a ticket gate, a papermaking industry, pulp, platemaking, woodworking, food, and the like, and a non-contact thickness detecting device for measuring the thickness and properties of a paper-like medium.

【0002】[0002]

【従来の技術】フィルム、コピー用紙、紙幣等の紙葉状
媒体の厚みや2枚送り等を検出するために、ポテンショ
メータを用いた厚み測定装置が使用されている。この装
置は、ポテンショメータの回転軸にアームを取り付け、
このアームの先端にローラを回転自在に装着し、走査す
る紙葉状媒体上にローラをばね圧を利用して押し付け、
紙葉状媒体の厚み変化をポテンショメータの回転軸の回
転量の変化に変換して測定するものである。
2. Description of the Related Art A thickness measuring device using a potentiometer is used to detect the thickness of a sheet-shaped medium such as a film, a copy sheet, and a bill, and the feeding of two sheets. This device has an arm attached to the rotary shaft of the potentiometer,
A roller is rotatably attached to the tip of this arm, and the roller is pressed onto the sheet-shaped medium to be scanned using spring pressure,
The measurement is performed by converting a change in the thickness of the sheet-shaped medium into a change in the amount of rotation of the rotary shaft of the potentiometer.

【0003】しかしながら、このポテンショメータを用
いた接触式の厚み測定装置は、紙葉状媒体の走査速度が
速くなると、紙葉状媒体の厚み変化に対してローラの動
きが追従できず、厚み測定の信頼性が損なわれるという
欠点があった。
However, in the contact type thickness measuring device using this potentiometer, when the scanning speed of the sheet-shaped medium increases, the movement of the roller cannot follow the change in the thickness of the sheet-shaped medium, and the thickness measurement reliability is high. There was a drawback that was damaged.

【0004】本出願人は、先に、1×10-5PFという高感
度のもとで微小静電容量の変化を検出することができる
静電センサ装置を特開平1-126234号において提案してい
る。この提案装置は、図5に示すように、セラミック共
振器19を備えた発振回路14と、この発振回路14のセラミ
ック共振器19とは別個独立のセラミック共振器15を有し
て構成される共振回路21と、検波回路16と、増幅回路17
と、AFC(Automatic Frequency Control )回路18と
からなる静電センサと、検出電極20とを有して構成され
ている。
The applicant of the present invention previously proposed in Japanese Patent Laid-Open No. 1-126234 an electrostatic sensor device capable of detecting a change in minute electrostatic capacitance with a high sensitivity of 1 × 10 −5 PF. ing. As shown in FIG. 5, this proposed device has a resonance circuit that includes an oscillation circuit 14 including a ceramic resonator 19 and a ceramic resonator 15 that is independent of the ceramic resonator 19 of the oscillation circuit 14. Circuit 21, detection circuit 16, and amplification circuit 17
And an electrostatic sensor including an AFC (Automatic Frequency Control) circuit 18 and a detection electrode 20.

【0005】前記発振回路14は0.5 GHz〜10GHzの固定
した高周波数の発振周波数信号を出力する。検出電極20
は被検出体に対向配置され、被検出体との微小静電容量
の変化を検出し、これを共振回路21に加える。共振回路
21は検出電極20から加えられる微小静電容量の変化に応
じて共振周波数を変化させ、発振回路14の発振周波数信
号を搬送波として共振周波数の変化に対応する振幅変調
信号を作り出し、これを検出信号として検波回路16に加
える。検波回路16はこの検出信号を包絡線検波し、これ
を増幅回路17に加える。増幅回路17は検波回路16から加
えられる包絡線検波信号を増幅して所望の信号処理回路
に加える。AFC回路18は環境変化等の影響によって偏
倚する共振回路21の共振周波数を補正し、共振周波数の
安定化を行うものである。
The oscillation circuit 14 outputs a fixed high frequency oscillation frequency signal of 0.5 GHz to 10 GHz. Detection electrode 20
Is arranged so as to face the object to be detected, detects a change in micro capacitance with the object to be detected, and adds this to the resonance circuit 21. Resonant circuit
Reference numeral 21 changes the resonance frequency according to the change in the minute electrostatic capacitance applied from the detection electrode 20, and uses the oscillation frequency signal of the oscillation circuit 14 as a carrier wave to generate an amplitude modulation signal corresponding to the change in the resonance frequency. Is added to the detection circuit 16. The detection circuit 16 envelope-detects this detection signal and applies it to the amplification circuit 17. The amplifier circuit 17 amplifies the envelope detection signal added from the detection circuit 16 and applies it to a desired signal processing circuit. The AFC circuit 18 corrects the resonance frequency of the resonance circuit 21 that is biased by the influence of environmental changes and stabilizes the resonance frequency.

【0006】この提案装置によれば、検出電極20で検出
される微小静電容量の変化を共振回路の共振周波数の変
化として検出するものであるため、1×10-5PFというそ
れまで不可能であった微小静電容量の変化を高感度のも
とで検出することが可能になった。
According to this proposed device, the change of the minute electrostatic capacitance detected by the detection electrode 20 is detected as the change of the resonance frequency of the resonance circuit, so that 1 × 10 −5 PF is impossible until then. It has become possible to detect changes in the small electrostatic capacitance with high sensitivity.

【0007】本発明者はこの提案装置の性能に着目し、
この提案装置を利用して紙葉状媒体等の厚み測定に適し
た装置の開発を進めている。
The present inventor paid attention to the performance of the proposed device,
Using this proposed device, we are developing a device suitable for measuring the thickness of paper-like media.

【0008】[0008]

【発明が解決しようとする課題】前記提案装置を紙葉状
媒体の厚み測定に適用するに際しては、図6に示すよう
に、紙葉状媒体1の通過間隙2を介して検出電極20とグ
ランド電極3とを対向配置し、検出電極20とグランド電
極3との間を紙葉状媒体1が通過するときの静電容量の
変化を検出電極20で検出し、これを前記図5に示す回路
のセラミック共振器15に加え、紙葉状媒体1の厚みや吸
湿状態や表面の凹凸や異物付着状態等の性状を検出する
装置構成とすることができる。
When the proposed apparatus is applied to the measurement of the thickness of a sheet-shaped medium, as shown in FIG. 6, the detection electrode 20 and the ground electrode 3 are passed through the passage gap 2 of the sheet-shaped medium 1. Are arranged so as to face each other, and the detection electrode 20 detects a change in capacitance when the sheet-shaped medium 1 passes between the detection electrode 20 and the ground electrode 3, and this is detected by the ceramic resonance of the circuit shown in FIG. In addition to the container 15, an apparatus configuration that detects properties such as the thickness of the sheet-shaped medium 1, the moisture absorption state, the unevenness of the surface, and the state of adhering foreign matter can be provided.

【0009】しかしながら、紙葉状媒体1を電極3,20
間に搬送通過させるとき、紙葉状媒体1と検出電極20と
の間隔δが変化すると、紙葉状媒体1と検出電極20間の
静電容量が変化し、紙葉状媒体1の正確な厚みを検出す
ることができなくなるという問題があった。
However, the paper-like medium 1 is connected to the electrodes 3 and 20.
When the sheet-shaped medium 1 and the detection electrode 20 change in distance when being conveyed between them, the capacitance between the sheet-shaped medium 1 and the detection electrode 20 changes, and the accurate thickness of the sheet-shaped medium 1 is detected. There was a problem that I could not do it.

【0010】本発明は上記課題を解決するためになされ
たものであり、その目的は、搬送される紙葉状媒体と検
出電極との間隔が変化しても紙葉状媒体の厚み検出を正
確に行うことができる非接触式厚み検出装置を提供する
ことにある。
The present invention has been made to solve the above problems, and an object of the present invention is to accurately detect the thickness of a sheet-shaped medium even if the distance between the conveyed sheet-shaped medium and the detection electrode changes. It is to provide a non-contact type thickness detection device that can perform the above.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明は、検出対象物を挟む位置に対向配置された少なく
とも一対の検出電極を備え、一方側の検出電極は第1の
静電センサに接続され、他方側の検出電極は第2の静電
センサに接続され、この第1の静電センサと第2の静電
センサから出力される検出信号は加算回路によって加算
処理されていることを特徴として構成されている。
In order to achieve the above object, the present invention is configured as follows. That is, the present invention includes at least a pair of detection electrodes that are arranged to face each other at a position sandwiching a detection target object, one detection electrode being connected to the first electrostatic sensor, and the other detection electrode being the second detection electrode. The detection signals connected to the electrostatic sensor and output from the first electrostatic sensor and the second electrostatic sensor are added by an adding circuit.

【0012】[0012]

【作用】上記構成の本発明において、検出対象物が一対
の検出電極間を通過するとき、一方の検出電極寄りに変
位すると、その一方側の検出電極と検出対象物との静電
容量は増加する方向に変化し、第1の静電センサの検出
信号出力は大きくなる。これに対し、他方側の検出電極
と検出対象物との間の静電容量は減少する方向に変化
し、第2の静電センサから出力される検出信号出力は小
さくなる方向に変化する。
In the present invention having the above-mentioned structure, when the detection object passes between the pair of detection electrodes and is displaced toward one of the detection electrodes, the capacitance between the detection electrode on one side and the detection object increases. And the detection signal output of the first electrostatic sensor increases. On the other hand, the capacitance between the detection electrode on the other side and the detection target changes in the decreasing direction, and the detection signal output from the second electrostatic sensor changes in the decreasing direction.

【0013】この第1の静電センサの検出信号と第2の
静電センサの検出信号は加算回路によって加算される結
果、検出対象物と一方側の検出電極との隙間減少による
検出信号の増加分と、他方側の電極の隙間増加分による
検出信号の減少分とが打ち消し合い、各検出電極と検出
対象物との隙間変化の影響をほとんど受けることなく検
出対象物の厚みを正確に求めることが可能になる。
The detection signal of the first electrostatic sensor and the detection signal of the second electrostatic sensor are added by the adder circuit, and as a result, the detection signal increases due to the decrease in the gap between the detection object and the detection electrode on one side. And the decrease in the detection signal due to the increase in the gap between the electrodes on the other side cancel each other out, and the thickness of the detection target can be accurately determined without being affected by the change in the gap between each detection electrode and the detection target. Will be possible.

【0014】[0014]

【実施例】図1には本発明に係る非接触式厚み検出装置
の一実施例の模式構成が示されている。同図において、
紙葉状媒体1の搬送通路には通過間隙2を介して紙葉状
媒体1を挟む位置に第1の検出電極5と第2の検出電極
6とが対向配置されている。そして、第1の検出電極5
には前記図5に示す回路を備えた第1の静電センサ7の
セラミック共振器15に接続されており、第2の検出電極
6も前記図5に示す回路を備えた第2の静電センサ8の
セラミック共振器15に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration of an embodiment of a non-contact type thickness detecting device according to the present invention. In the figure,
A first detection electrode 5 and a second detection electrode 6 are arranged opposite to each other in a position where the sheet-shaped medium 1 is sandwiched via a passage gap 2 in a conveyance path of the sheet-shaped medium 1. Then, the first detection electrode 5
Is connected to the ceramic resonator 15 of the first electrostatic sensor 7 having the circuit shown in FIG. 5, and the second detection electrode 6 is also the second electrostatic electrode having the circuit shown in FIG. It is connected to the ceramic resonator 15 of the sensor 8.

【0015】本実施例では、第1の静電センサ7と第2
の静電センサ8の発振回路14を共通にし、1個の発振回
路14から各静電センサ7,8の図5に示す共振回路21に
発振周波数信号を加えるようにしている。そして、第1
の静電センサ7の検出信号の出力と第2の静電センサ8
の検出信号の出力は加算回路10に加えられ、この加算回
路10から第1の静電センサ7と第2の静電センサ8の検
出信号の加算出力が取り出されるようになっている。
In this embodiment, the first electrostatic sensor 7 and the second electrostatic sensor 7
The oscillating circuit 14 of the electrostatic sensor 8 is made common, and an oscillating frequency signal is applied from one oscillating circuit 14 to the resonance circuit 21 of each electrostatic sensor 7, 8 shown in FIG. And the first
Of the detection signal of the electrostatic sensor 7 and the second electrostatic sensor 8
The output of the detection signal of 1 is added to the addition circuit 10, and the addition output of the detection signals of the first electrostatic sensor 7 and the second electrostatic sensor 8 is extracted from the addition circuit 10.

【0016】本実施例は上記のように構成されており、
次に、作用を説明する。図1の如く、第1の検出電極5
と第2の検出電極6間に紙葉状媒体1が通過するとき
に、第1の検出電極5の電界が通る紙葉状媒体1の厚み
と隙間δ1 の誘電率に対応する静電容量が検出され、こ
の静電容量の検出信号は第1の静電センサ7に加えら
れ、前記図5の提案装置に示した場合と同様に、第1の
検出電極5によって検出された静電容量に対応した検出
信号が出力される。同様に、第2の検出電極6によって
紙葉状媒体1の厚みと隙間δ2 との誘電率に対応する静
電容量が検出され、この静電容量に対応する検出信号が
第2の静電センサ8から出力される。そして、第1の静
電センサ7の検出信号と第2の静電センサ8の検出信号
は加算回路10によって加算され、その加算出力が加算回
路10から取り出される。
This embodiment is constructed as described above,
Next, the operation will be described. As shown in FIG. 1, the first detection electrode 5
When the sheet-shaped medium 1 passes between the second detection electrode 6 and the second detection electrode 6, the capacitance corresponding to the thickness of the sheet-shaped medium 1 through which the electric field of the first detection electrode 5 passes and the dielectric constant of the gap δ 1 is detected. This electrostatic capacitance detection signal is applied to the first electrostatic sensor 7 and corresponds to the electrostatic capacitance detected by the first detection electrode 5 as in the case of the proposed device of FIG. The detected signal is output. Similarly, the second detection electrode 6 detects the electrostatic capacitance corresponding to the dielectric constant between the thickness of the sheet-shaped medium 1 and the gap δ 2, and the detection signal corresponding to this electrostatic capacitance is the second electrostatic sensor. It is output from 8. Then, the detection signal of the first electrostatic sensor 7 and the detection signal of the second electrostatic sensor 8 are added by the adding circuit 10, and the addition output is taken out from the adding circuit 10.

【0017】図2は紙葉状媒体1を第1の検出電極5側
から第2の検出電極6側へ移動して行ったときの第1の
静電センサ7の検出信号の出力Aと、第2の静電センサ
8の検出信号の出力Bと、加算回路10の加算出力Cとの
関係を示したものである。これによれば、紙葉状媒体1
が第1の検出電極5側にあるときには、隙間δ1 が小さ
いので、第1の検出電極5が検出する静電容量は大きく
なり、第1の静電センサ7の検出信号は大きな値を示
す。これに対し、第2の検出電極6が検出する静電容量
はδ2 が大きいので、小さい静電容量となり、第2の静
電センサ8から出力される検出信号も小さくなる。紙葉
状媒体1が第1の検出電極5側から第2の検出電極6側
へ移動して行くと、δ1 は徐々に大きく、δ2 は徐々に
小さくなるので、第1の検出電極5で検出する静電容量
は徐々に小さくなり、第2の静電センサ8で検出する静
電容量は徐々に大きくなる結果、第1の静電センサ7の
検出信号の出力Aは右下がりの曲線となり、第2の静電
センサ8の検出信号の出力Bは右上がりの曲線となる。
そして、第1の静電センサ7の検出信号と第2の静電セ
ンサ8の検出信号との加算出力Cはほぼ第1の検出電極
5と第2の検出電極6間の中央部分を平坦な底とする下
に凸の曲線となる。
FIG. 2 shows the output A of the detection signal of the first electrostatic sensor 7 when the sheet medium 1 is moved from the first detection electrode 5 side to the second detection electrode 6 side, and 2 shows the relationship between the output B of the detection signal of the second electrostatic sensor 8 and the addition output C of the addition circuit 10. According to this, the sheet-shaped medium 1
Is on the first detection electrode 5 side, since the gap δ 1 is small, the capacitance detected by the first detection electrode 5 becomes large, and the detection signal of the first electrostatic sensor 7 shows a large value. .. On the other hand, the electrostatic capacitance detected by the second detection electrode 6 has a large δ 2 , and therefore has a small electrostatic capacitance, and the detection signal output from the second electrostatic sensor 8 also becomes small. As the sheet-shaped medium 1 moves from the first detection electrode 5 side to the second detection electrode 6 side, δ 1 gradually increases and δ 2 gradually decreases. The detected electrostatic capacitance gradually decreases, and the electrostatic capacitance detected by the second electrostatic sensor 8 gradually increases. As a result, the output A of the detection signal of the first electrostatic sensor 7 becomes a downward-sloping curve. The output B of the detection signal of the second electrostatic sensor 8 is a curve that rises to the right.
Then, the summed output C of the detection signal of the first electrostatic sensor 7 and the detection signal of the second electrostatic sensor 8 is approximately flat in the central portion between the first detection electrode 5 and the second detection electrode 6. It becomes a curve that is convex downward at the bottom.

【0018】この加算出力の結果から明らかなように、
第1の検出電極5と第2の検出電極6のギャップの中間
領域では紙葉状媒体1と各検出電極5,6との隙間
δ1 ,δ2 が変化しても、加算出力はほぼ一定の出力と
なる。つまり、検出電極5,6間のギャップの中央領域
では隙間δ1 ,δ2 が変化したとき、この隙間変化によ
る第1の検出電極5の検出静電容量の減少割合(又は増
加割合)と第2の検出電極6の検出静電容量の増加割合
(又は減少割合)とがほぼ等しくなり、これにより、加
算回路10で、両静電センサ7,8の検出信号を加算する
ことにより、一方側の静電容量の増加分と他方側の静電
容量の減少分とが打ち消されてほぼ一定の信号出力が得
られることになる。
As is clear from the result of this addition output,
In the intermediate region of the gap between the first detection electrode 5 and the second detection electrode 6, even if the gaps δ 1 and δ 2 between the sheet-shaped medium 1 and the detection electrodes 5 and 6 change, the added output is almost constant. It becomes an output. That is, when the gaps δ 1 and δ 2 change in the central area of the gap between the detection electrodes 5 and 6, the decrease rate (or increase rate) and the increase rate of the detection capacitance of the first detection electrode 5 due to the change in the gap The increase rate (or the decrease rate) of the detection capacitance of the second detection electrode 6 becomes substantially equal, so that the addition circuit 10 adds the detection signals of both the electrostatic sensors 7 and 8 to one side. That is, the increase in the electrostatic capacitance of and the decrease in the electrostatic capacitance on the other side are canceled out, and a substantially constant signal output is obtained.

【0019】したがって、この実施例によれば、紙葉状
媒体1をほぼ中央に挟んで検出電極5,6を配置するこ
とにより、紙葉状媒体1の変位によって隙間δ1 ,δ2
が変動してもこの隙間変動に影響を受けずに紙葉状媒体
1の厚みが正確に検出されることになる。
Therefore, according to this embodiment, by arranging the detection electrodes 5 and 6 with the sheet-shaped medium 1 sandwiched substantially at the center, the gaps δ 1 and δ 2 are caused by the displacement of the sheet-shaped medium 1.
Even if fluctuates, the thickness of the sheet-shaped medium 1 can be accurately detected without being affected by this fluctuating gap.

【0020】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例では紙葉状媒体1を挟んで一対の検出電極5,6
を対向配置したが、これらの検出電極は紙葉状媒体1の
幅方向に複数対向配置し、それぞれの検出電極を対応す
る静電センサに接続するようにしてもよい。また、特性
関数を求め、その係数を相互で演算処理すればさらに精
度が向上する。
The present invention is not limited to the above-mentioned embodiment, and various embodiments can be adopted. For example, in the above embodiment, the pair of detection electrodes 5 and 6 with the sheet-shaped medium 1 sandwiched therebetween.
However, a plurality of these detection electrodes may be arranged to face each other in the width direction of the sheet-shaped medium 1 and each detection electrode may be connected to the corresponding electrostatic sensor. Further, the accuracy is further improved by obtaining the characteristic function and mutually calculating the coefficient.

【0021】また、紙葉状媒体1を挟んで一対の検出電
極を配置する場合においても、検出電極5,6は図3に
示すように、紙葉状媒体1の幅とほぼ長さの等しい板状
の電極形状にしてもよいが、図4に示すように、検出電
極5,6を複数に分割し、各分割した検出電極をインダ
クタンスあるいはコンデンサ等のインピーダンスで接続
するようにしてもよい。このように、検出電極を複数に
分割すれば、本実施例の如く、GHz帯の高周波数で回路
駆動を行う場合には特に、検出電極5,6の固定容量を
小さくする効果が有効となり、紙葉状媒体1の厚み検出
をより高精度に検出できることになる。
Also, when a pair of detection electrodes are arranged with the sheet-shaped medium 1 sandwiched therebetween, the detection electrodes 5 and 6 are, as shown in FIG. 3, plate-shaped and have a length substantially equal to the width of the sheet-shaped medium 1. 4 may be used, but as shown in FIG. 4, the detection electrodes 5 and 6 may be divided into a plurality of pieces, and the divided detection electrodes may be connected by an impedance such as an inductance or a capacitor. Thus, by dividing the detection electrodes into a plurality, the effect of reducing the fixed capacitance of the detection electrodes 5 and 6 becomes effective especially when the circuit is driven at a high frequency in the GHz band as in this embodiment. The thickness of the sheet medium 1 can be detected with higher accuracy.

【0022】[0022]

【発明の効果】本発明は、検出対象物を挟む位置に少な
くとも一対の検出電極を対向配置し、各検出電極をそれ
ぞれ対応する静電センサに接続し、各検出電極で検出さ
れる静電容量の静電センサ出力を加算回路によって加算
処理するように構成したものであるから、検出電極間を
通る検出対象物が検出電極側に多少変位して検出対象物
と各検出電極とのギャップが変動しても、このギャップ
変動に影響を受けずに検出対象物の厚み等の検出を正確
に行うことが可能となり、検出の信頼性を飛躍的に高め
ることが可能となる。
According to the present invention, at least a pair of detection electrodes are arranged so as to face each other at a position sandwiching an object to be detected, each detection electrode is connected to a corresponding electrostatic sensor, and an electrostatic capacitance detected by each detection electrode is detected. Since the output of the electrostatic sensor is added by an adder circuit, the detection object passing between the detection electrodes is slightly displaced toward the detection electrode side and the gap between the detection object and each detection electrode fluctuates. However, the thickness of the object to be detected can be accurately detected without being affected by the gap variation, and the reliability of the detection can be dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非接触式厚み検出装置の一実施例
を示す模式構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a non-contact type thickness detection device according to the present invention.

【図2】同実施例装置における検出対象物と検出電極と
のギャップ変化を生じさせたときの各静電センサの検出
出力と加算回路の加算出力との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the detection output of each electrostatic sensor and the addition output of the addition circuit when a gap change between the detection target and the detection electrode in the apparatus of the embodiment is generated.

【図3】同実施例における検出電極の一形態例を示す説
明図である。
FIG. 3 is an explanatory view showing one form example of a detection electrode in the same Example.

【図4】同実施例における検出電極の他の形態例を示す
説明図である。
FIG. 4 is an explanatory diagram showing another example of the form of the detection electrode in the example.

【図5】発明者が先に提案した静電センサの回路図であ
る。
FIG. 5 is a circuit diagram of an electrostatic sensor previously proposed by the inventor.

【図6】発明者が先に提案した静電センサを厚み検出装
置として適用するときに考えられる検出電極の配置例を
示す説明図である。
FIG. 6 is an explanatory diagram showing an arrangement example of detection electrodes that can be considered when the electrostatic sensor previously proposed by the inventor is applied as a thickness detection device.

【符号の説明】[Explanation of symbols]

1 紙葉状媒体 5 第1の検出電極 6 第2の検出電極 7 第1の静電センサ 8 第2の静電センサ 10 加算回路 1 Paper Medium 5 First Detection Electrode 6 Second Detection Electrode 7 First Electrostatic Sensor 8 Second Electrostatic Sensor 10 Adder Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検出対象物を挟む位置に対向配置された
少なくとも一対の検出電極を備え、一方側の検出電極は
第1の静電センサに接続され、他方側の検出電極は第2
の静電センサに接続され、この第1の静電センサと第2
の静電センサから出力される検出信号は加算回路によっ
て加算処理されている非接触式厚み検出装置。
1. At least a pair of detection electrodes are arranged opposite to each other at a position sandwiching a detection target, one detection electrode being connected to a first electrostatic sensor, and the other detection electrode being a second detection electrode.
The first electrostatic sensor and the second electrostatic sensor.
The non-contact type thickness detection device in which the detection signal output from the electrostatic sensor is subjected to addition processing by an addition circuit.
JP29072991A 1991-10-09 1991-10-09 Non-contact type thickness detection unit Pending JPH0599605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29072991A JPH0599605A (en) 1991-10-09 1991-10-09 Non-contact type thickness detection unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29072991A JPH0599605A (en) 1991-10-09 1991-10-09 Non-contact type thickness detection unit

Publications (1)

Publication Number Publication Date
JPH0599605A true JPH0599605A (en) 1993-04-23

Family

ID=17759772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29072991A Pending JPH0599605A (en) 1991-10-09 1991-10-09 Non-contact type thickness detection unit

Country Status (1)

Country Link
JP (1) JPH0599605A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183131A (en) * 1999-12-27 2001-07-06 Yamabun Denki:Kk Sheet thickness measuring method
JP2006091015A (en) * 2004-09-20 2006-04-06 Muller Martini Holding Ag Method for measuring thickness of printed matter passing through measuring apparatus at predetermined intervals inside flow of conveyance line
JP4755283B2 (en) * 2007-07-26 2011-08-24 富士通株式会社 Paper thickness detector
CN103925867A (en) * 2014-04-29 2014-07-16 威海华菱光电股份有限公司 Thickness sensor and thickness measuring method
JP2018090344A (en) * 2016-11-30 2018-06-14 コニカミノルタ株式会社 Paper conveying device, image forming device, method for estimating basis weight of paper, and program for estimating basis weight of paper
JP2019095198A (en) * 2017-11-17 2019-06-20 エイブリック株式会社 Sensor device
JP2019095224A (en) * 2017-11-20 2019-06-20 エイブリック株式会社 Sensor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932461A (en) * 1982-08-18 1984-02-21 渋谷工業株式会社 Forcibly hermetically sealing and filling method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932461A (en) * 1982-08-18 1984-02-21 渋谷工業株式会社 Forcibly hermetically sealing and filling method and apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183131A (en) * 1999-12-27 2001-07-06 Yamabun Denki:Kk Sheet thickness measuring method
JP2006091015A (en) * 2004-09-20 2006-04-06 Muller Martini Holding Ag Method for measuring thickness of printed matter passing through measuring apparatus at predetermined intervals inside flow of conveyance line
JP4755283B2 (en) * 2007-07-26 2011-08-24 富士通株式会社 Paper thickness detector
CN103925867A (en) * 2014-04-29 2014-07-16 威海华菱光电股份有限公司 Thickness sensor and thickness measuring method
JP2018090344A (en) * 2016-11-30 2018-06-14 コニカミノルタ株式会社 Paper conveying device, image forming device, method for estimating basis weight of paper, and program for estimating basis weight of paper
US10407263B2 (en) 2016-11-30 2019-09-10 Konica Minolta, Inc. Sheet conveying apparatus, image forming apparatus, method for estimating basis weight of sheet, and program for estimating basis weight of sheet
JP2019095198A (en) * 2017-11-17 2019-06-20 エイブリック株式会社 Sensor device
JP2019095224A (en) * 2017-11-20 2019-06-20 エイブリック株式会社 Sensor device

Similar Documents

Publication Publication Date Title
EP0442727B1 (en) Paper thickness detecting apparatus
JP3648170B2 (en) A device that detects the thickness of media by measuring volume
JP4755283B2 (en) Paper thickness detector
US20010042956A1 (en) Double feed detection method and device
US6000693A (en) Article detection via pinch-roll motion
US4791353A (en) Scanning combination thickness and moisture gauge for moving sheet material
CA1103327A (en) Film thickness detection system
JPH0599605A (en) Non-contact type thickness detection unit
US5035415A (en) System for detecting the accurate positioning of sheets along a feed path by using capacitors as sensors
WO2001036904A1 (en) Pachymeter
US5678447A (en) On-line web planarity measurement apparatus and method
JP6272624B2 (en) Paper sheet thickness detection sensor and bill discrimination unit
US4235102A (en) Method and apparatus for measuring the ratio between web tension and substance
JPH04279801A (en) Sheetlike medium static electricity detection electrode
US4473822A (en) Method of and a device for sensing objects
JPH0552504A (en) Sensor device for measuring thickness of sheetlike medium
US6467977B2 (en) Media weight sensor using a resonant piezoelectric element
JPH07113525B2 (en) Electrostatic detection device for paper sheets
US4968386A (en) Apparatus for determining amplitude and frequency of web flutter
JPS5824721B2 (en) Itaatsutounokeisokuuchi
JP2002090103A (en) Detection device for thickness of paper sheet
JP2501772Y2 (en) Electrostatic detection device for paper sheets
JPH0843006A (en) Device for detecting thickness of paper
JP2002243526A (en) Medium weight detecting device using acoustic transmission
JPH0816942B2 (en) Paper sheet inspection device with built-in thread