JPH0599163A - Oil pressure control device for variable capacity vane pump - Google Patents

Oil pressure control device for variable capacity vane pump

Info

Publication number
JPH0599163A
JPH0599163A JP25727091A JP25727091A JPH0599163A JP H0599163 A JPH0599163 A JP H0599163A JP 25727091 A JP25727091 A JP 25727091A JP 25727091 A JP25727091 A JP 25727091A JP H0599163 A JPH0599163 A JP H0599163A
Authority
JP
Japan
Prior art keywords
control
vane pump
oil pressure
hydraulic pressure
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25727091A
Other languages
Japanese (ja)
Inventor
Hiromasa Sakai
弘正 酒井
Naoshi Shibayama
尚士 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25727091A priority Critical patent/JPH0599163A/en
Publication of JPH0599163A publication Critical patent/JPH0599163A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an oil pressure control device for an electric control variable capacity vane pump which improves control stability at a high gain. CONSTITUTION:An oil pressure control device for a variable capacity vane pump comprises a variable capacity vane pump to generate a delivery flow rate responding to a control oil pressure and feed it to an oil pressure circuit, an oil pressure sensor to detect a delivery oil pressure, a computing means to compute a control amount through which a deviation between a target oil pressure and a delivery oil pressure is reduced to zero, and an electromagnetic control valve to control a control oil pressure according to the computed result of the computing means. A resistance varying means to vary circuit resistance of the oil pressure circuit is provided. When the variable capacity vane pump is operated at a given gain, the resistance varying means forms an object to be controlled instead of the electromagnetic valve. Preferably, the given gain is a gain equivalent to that when a ratio of a change in a delivery oil pressure to the change in a control amount of the variable capacity vane pump exceeds a given ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両の自動変速機に搭
載される可変容量ベーンポンプの油圧制御装置、特に、
電子的に制御される可変容量ベーンポンプの油圧制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic control device for a variable displacement vane pump mounted on an automatic transmission of a vehicle, and more particularly,
The present invention relates to a hydraulic control device for an electronically controlled variable displacement vane pump.

【0002】[0002]

【従来の技術】従来の可変容量ベーンポンプの油圧制御
装置としては、例えば実開平3−8687号公報に記載
されているように、ベーンポンプの吐出圧POを油圧セ
ンサで検出し、この検出値と目標値(目標油圧PM)と
の偏差が常にゼロとなるような制御量を演算して、制御
油圧PCを電気的にコントロールするようにした、いわ
ゆる電子制御(以下、略して電制)可変容量ベーンポン
プが知られている。
2. Description of the Related Art As a hydraulic control apparatus of a conventional variable capacity vane pump, for example as described in the real Hei 3-8687 discloses detects the discharge pressure P O of the vane pump in a hydraulic sensor, and the detected value A so-called electronic control (hereinafter abbreviated as electronic control) that electrically controls the control hydraulic pressure P C by calculating a control amount such that the deviation from the target value (target hydraulic pressure P M ) is always zero. Variable displacement vane pumps are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、「電
制」可変容量ベーンポンプは図7に示すような特性、す
なわち、高回転になるほど僅かな制御量変化でも吐出油
圧が大きく変化する特性(ゲイン特性)があり、また、
負荷消費流量が小さいほど同様に僅かな制御量変化でも
吐出油圧が大きく変化する特性があり、特に、高ゲイン
における制御安定性の点で解決すべき課題があった。
However, the "electrically controlled" variable displacement vane pump has the characteristic as shown in FIG. 7, that is, the characteristic that the discharge hydraulic pressure greatly changes with a slight change in the control amount as the rotation speed increases (gain characteristic). There is also
Similarly, the smaller the load consumption flow rate, the larger the discharge hydraulic pressure changes even with a slight change in the control amount, and there is a problem to be solved especially in terms of control stability at high gain.

【0004】したがって、ポンプ回転数を高い状態でポ
ンプ吐出制御を行った場合には、制御量変化に伴って吐
出油圧が大きく変化するため、吐出油圧を目標油圧に合
わせずらくなるという未解決の課題がある。そこで、本
発明は、高ゲインにおける制御安定性を向上した「電
制」可変容量ベーンポンプの油圧制御装置を提供するこ
とを目的とする。
Therefore, when the pump discharge control is performed in a state where the pump rotational speed is high, the discharge hydraulic pressure greatly changes in accordance with the change in the control amount, which makes it difficult to match the discharge hydraulic pressure with the target hydraulic pressure. There are challenges. Therefore, an object of the present invention is to provide a hydraulic control device for an "electrically controlled" variable displacement vane pump, which has improved control stability at high gain.

【0005】[0005]

【課題を解決するための手段】本発明に係る可変容量ベ
ーンポンプの油圧制御装置はその原理図を図1に示すよ
うに、制御油圧に応じた吐出流量を発生して油圧回路に
供給する可変容量ベーンポンプと、前記吐出油圧を検出
する油圧センサと、目標油圧と吐出油圧の偏差をゼロに
する制御量を演算する演算手段と、該演算手段の演算結
果にしたがって前記制御油圧を操作する電磁制御弁と、
を備えた可変容量ベーンポンプの油圧制御装置におい
て、前記油圧回路の回路抵抗を可変とする抵抗可変手段
を設け、前記可変容量ベーンポンプが所定ゲインで動作
するときには、前記電磁制御弁に代えて抵抗可変手段を
制御対象とすることを特徴とし、好ましくは、前記所定
ゲインは、可変容量ベーンポンプの制御量の変化に対す
る吐出油圧の変化の割合が所定の割合以上に大きい場合
に相当するゲインであることを特徴とし、さらに好まし
くは、前記抵抗可変手段は、油圧回路の潤滑油系統の流
路抵抗を可変とすることを特徴とする。
The hydraulic control system for a variable displacement vane pump according to the present invention has a variable capacity for generating a discharge flow rate according to a control hydraulic pressure and supplying it to a hydraulic circuit as shown in the principle diagram of FIG. A vane pump, a hydraulic pressure sensor that detects the discharge hydraulic pressure, a calculation unit that calculates a control amount that makes the deviation between the target hydraulic pressure and the discharge hydraulic pressure zero, and an electromagnetic control valve that operates the control hydraulic pressure according to the calculation result of the calculation unit. When,
In a hydraulic control device for a variable displacement vane pump, the variable resistance vane pump is provided with variable resistance means for varying the circuit resistance of the hydraulic circuit, and when the variable displacement vane pump operates at a predetermined gain, the variable resistance vane pump replaces the electromagnetic control valve. Preferably, the predetermined gain is a gain corresponding to a case where the rate of change of the discharge hydraulic pressure with respect to the change of the control amount of the variable displacement vane pump is larger than a predetermined rate. More preferably, the resistance varying means varies the flow path resistance of the lubricating oil system of the hydraulic circuit.

【0006】[0006]

【作用】本発明では、ベーンポンプが所定ゲイン(好ま
しくは高ゲイン)で動作すると、油圧回路(好ましくは
潤滑油系統)の流路抵抗が可変制御される。例えば、ポ
ンプ回転数を高い状態でポンプ吐出圧制御を行った場合
には、制御量変化に伴って吐出油圧が大きく変化し(高
ゲイン)、吐出油圧を目標油圧制御操作量変化に対して
(この場合には変速操作に必要な適正油圧)合わせずら
くなる。すなわち、制御性が悪化するが、かかる場合に
は「流路抵抗制御」を用いることにより、そのメリット
(応答性)を活かして、速やかに目標油圧近傍に近づけ
ることができる。
In the present invention, when the vane pump operates with a predetermined gain (preferably high gain), the flow path resistance of the hydraulic circuit (preferably the lubricating oil system) is variably controlled. For example, when the pump discharge pressure control is performed in a state where the pump rotation speed is high, the discharge hydraulic pressure changes significantly (high gain) with a change in the control amount, and the discharge hydraulic pressure changes with respect to the target hydraulic control operation amount change ( In this case, it becomes difficult to adjust the proper hydraulic pressure required for the shift operation. That is, although the controllability deteriorates, in such a case, by using the "flow path resistance control", the merit (responsiveness) can be utilized to bring the pressure close to the target hydraulic pressure quickly.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2〜図6は本発明に係る「電制」可変容量ベー
ンポンプの油圧制御装置の一実施例を示す図である。図
2において、20は可変容量ベーンポンプであり、可変
容量ベーンポンプ20は、カムリングとロータとの偏心
量をコントロールピストン20aの動きによって調節す
るもので、偏心量、回転数および吐出流量に応じた大き
さの吐出油圧PO(ライン圧に相当する)を発生する。
コントロールピストン20aは制御油圧PCの大きさと
スプリング20bの付勢力が常にバランスするように動
き、制御油圧PCは、吐出油圧POを第1の電磁弁(電磁
制御弁)21で調圧して与えられる。第1の電磁弁21
は所定の制御信号SPに従って例えばそのオン/オフデ
ューティを変化させ(デューティ弁の場合)、あるいは
電流値を比例的に変化させて(圧力制御比例弁の場合、
以下、比例弁)、制御油圧PCを調圧する。
Embodiments of the present invention will be described below with reference to the drawings. 2 to 6 are views showing an embodiment of the hydraulic control device for the "electrically controlled" variable displacement vane pump according to the present invention. In FIG. 2, reference numeral 20 denotes a variable displacement vane pump. The variable displacement vane pump 20 adjusts the amount of eccentricity between the cam ring and the rotor by the movement of the control piston 20a, and has a size according to the amount of eccentricity, the number of revolutions and the discharge flow rate. Discharge hydraulic pressure P O (corresponding to the line pressure) is generated.
The control piston 20a moves so that the magnitude of the control hydraulic pressure P C and the urging force of the spring 20b are always balanced, and the control hydraulic pressure P C regulates the discharge hydraulic pressure P O by the first solenoid valve (electromagnetic control valve) 21. Given. First solenoid valve 21
Changes its on / off duty according to a predetermined control signal S P (in the case of a duty valve) or changes the current value proportionally (in the case of a pressure control proportional valve,
Hereinafter, the proportional valve) and the control oil pressure P C are regulated.

【0008】22は可変容量ポンプ20を回転駆動する
エンジンであり、エンジン22の回転数NP(すなわち
可変容量ベーンポンプ20の回転数)は回転数検出手段
23によって検出される。24は吐出油圧POを検出す
る油圧センサであり、油圧センサ24は吐出油圧PO
大きさを表示する油圧信号PLを出力する。25は第2
の電磁弁であり、第2の電磁弁25は、可変容量ベーン
ポンプ20の吐出ポート20cと図外の潤滑系統(例え
ば自動変速機の各部潤滑用)との間を結ぶ油路26に挿
入される。第2の電磁弁25は、所定の制御信号SF
従ってそのオン/オフデューティ(デューティ弁の場
合)を変化させ、あるいはその電流値を比例的に変化さ
せ(比例弁の場合)、油路26の圧力を変化させて、可
変容量ベーンポンプ20の吐出ポート20cから図外の
潤滑系統へと流れる潤滑油の流量をコントロールする。
すなわち、第2の電磁弁25は、制御信号SFにしたが
って潤滑系統の流路抵抗を可変とする抵抗可変手段とし
て機能する。
Reference numeral 22 is an engine for rotationally driving the variable displacement pump 20, and the rotational speed N P of the engine 22 (that is, the rotational speed of the variable displacement vane pump 20) is detected by the rotational speed detecting means 23. Reference numeral 24 denotes a hydraulic pressure sensor that detects the discharge hydraulic pressure P O , and the hydraulic pressure sensor 24 outputs a hydraulic pressure signal P L that indicates the magnitude of the discharge hydraulic pressure P O. 25 is the second
The second solenoid valve 25 is inserted into an oil passage 26 that connects the discharge port 20c of the variable displacement vane pump 20 and a lubricating system (not shown) (for lubricating each part of the automatic transmission). .. The second solenoid valve 25 changes its on / off duty (in the case of a duty valve) or changes its current value proportionally (in the case of a proportional valve) according to a predetermined control signal S F , and the oil passage 26 Is controlled to control the flow rate of the lubricating oil flowing from the discharge port 20c of the variable displacement vane pump 20 to the lubricating system (not shown).
That is, the second solenoid valve 25 functions as a resistance varying unit that varies the flow path resistance of the lubricating system according to the control signal S F.

【0009】27はオリフィス、28はコントローラで
あり、コントローラ(演算手段)28は、例えば自動変
速機(以下、A/T)に本発明を適用した場合には、走
行状態に応じた最適変速比を決定し、その変速比を達成
するための「変速制御」を実行すると共に、吐出油圧P
Oと目標油圧PMとの偏差やエンジン回転数NP等に基づ
いて、可変容量ベーンポンプ20の吐出油圧POを制御
するための「偏心量制御」及び「流路抵抗制御」を実行
する。
Reference numeral 27 is an orifice, 28 is a controller, and the controller (calculation means) 28 is an optimum gear ratio according to the traveling state when the present invention is applied to, for example, an automatic transmission (hereinafter referred to as A / T). Is determined, and "gear shift control" for achieving the gear ratio is executed, and the discharge hydraulic pressure P
“Eccentricity amount control” and “flow path resistance control” for controlling the discharge hydraulic pressure P O of the variable displacement vane pump 20 are executed based on the deviation between the O and the target hydraulic pressure P M , the engine speed N P, and the like.

【0010】ここで、「偏心量制御」と「流路抵抗制
御」は、何れも吐出油圧POと目標油圧PMとの偏差を無
くすための制御であるが、前者は制御油圧PCを操作す
るための制御信号SPを発生するのに対し、後者は油路
26を流れる潤滑油量(例えばA/Tに適用する場合)
を操作するための制御信号SFを発生する点が異なる。
すなわち、偏心量制御では可変容量ベーンポンプ20の
偏心量(正確にはコントロールピストン20aのストロ
ーク量)を制御対象とするが、流路抵抗制御では潤滑油
流量を制御対象とする点が相違する。
The "eccentricity amount control" and the "flow passage resistance control" are both controls for eliminating the deviation between the discharge hydraulic pressure P O and the target hydraulic pressure P M , but the former is the control hydraulic pressure P C. While the control signal S P for operating is generated, the latter is the amount of lubricating oil flowing through the oil passage 26 (for example, when applied to A / T).
The difference is that a control signal S F for operating is generated.
That is, in the eccentricity control, the eccentricity of the variable displacement vane pump 20 (more precisely, the stroke amount of the control piston 20a) is controlled, but in the flow path resistance control, the lubricating oil flow rate is controlled.

【0011】図3はコントローラ28で実行される処理
プログラムの要部フローチャートであり、「偏心量制
御」及び「流路抵抗制御」を含むプログラムである。こ
のプログラムは、判定ブロックB1と制御ブロックB2
らなり、判定ブロックB1は、エンジンの回転数NPや吐
出油圧POと目標油圧PMとの偏差εに基づいて、「偏心
量制御」および「流路抵抗制御」の単独実行、あるいは
同時実行の何れを行うかを判定し、制御ブロックB2
その判定結果に従って3つの制御(制御A、制御B、制
御C)の1つを実行する。
FIG. 3 is a main part flowchart of a processing program executed by the controller 28, which is a program including "eccentricity amount control" and "flow path resistance control". This program consists of a decision block B 1 and a control block B 2 , and the decision block B 1 performs "eccentricity control based on the engine speed N P and the deviation ε between the discharge hydraulic pressure P O and the target hydraulic pressure P M. "And" flow path resistance control "are individually executed or simultaneously executed, and the control block B 2 executes one of the three controls (control A, control B, control C) according to the judgment result. Run.

【0012】ここで、実施例の判定条件は、エンジンの
回転数NPが低基準回転数NLOWよりも大きいか否か(第
1の判定条件:ステップ30)、エンジンの回転数NP
が高基準回転数NHiよりも小さいか否か(第2の判定条
件:ステップ31)、偏差εの絶対値(|ε|)が低回
転用の偏差基準値ε1よりも大きいか否か(第3の判定
条件:ステップ32)、偏差εの絶対値(|ε|)が高
回転用の偏差基準値ε 2よりも小さいか否か(第4の判
定条件:ステップ33)の4つである。
Here, the determination condition of the embodiment is that the engine
Number of rotations NPIs a low standard speed NLOWGreater than or equal to (No.
Judgment condition of 1: step 30), engine speed NP
Is a high standard speed NHiIs less than (the second judgment article
Case: Step 31), the absolute value of the deviation ε (| ε |) is low
Deviation reference value ε1Is larger than (the third judgment
Condition: Step 32), the absolute value of deviation ε (| ε |) is high.
Deviation reference value for rotation ε 2Is smaller than (the fourth judgment
There are four fixed conditions: step 33).

【0013】第1の判定条件30がNOで第3の判定
条件32がYESの場合には制御Aを実行し、 第1の判定条件30がYESで第2の判定条件31が
NOかつ第4の判定条件33がYESの場合には制御C
を実行し、 また、第1の判定条件30と第2の判定条件31が共
にYESの場合、または、第1の判定条件30と第3の
判定条件32が共にNOの場合、あるいは、第1の判定
条件30がYESで第2の判定条件31と第4の判定条
件33が共にNOの場合には制御Bを実行する。
When the first determination condition 30 is NO and the third determination condition 32 is YES, the control A is executed, the first determination condition 30 is YES, the second determination condition 31 is NO, and the fourth determination condition is NO. If the determination condition 33 of is YES, the control C
If both the first determination condition 30 and the second determination condition 31 are YES, or if the first determination condition 30 and the third determination condition 32 are both NO, or When the determination condition 30 is YES and the second determination condition 31 and the fourth determination condition 33 are both NO, the control B is executed.

【0014】すなわち、は、ベーンポンプの回転数N
PがNLOW以下の所定の低回転域にあるときで、ベーンポ
ンプが“低ゲイン”で動作している場合であり、この場
合、目標油圧PMと吐出油圧POとの偏差(正確には偏差
εの絶対値|ε|)が所定値(ε1)以上の場合には
「偏心量制御」と「流路抵抗制御」とを併用する。
は、ベーンポンプの回転数(NP)がNHi以上の所定の
高回転域にあるときで、ベーンポンプが“高ゲイン”で
動作している場合であり、この場合、目標油圧PMと吐
出油圧POとの偏差(正確には偏差εの絶対値|ε|)
が所定値(ε2)以下の場合には「流路抵抗制御」を単
独実行する(換言すれば「偏心量制御」を停止する)。
は、ベーンポンプの回転数(NP)がNLOW以上で、か
つNHi以下の中回転域にあるときで、ベーンポンプが
“中ゲイン”で動作している場合であり、この場合に
は、「偏心量制御」を単独実行する。また、NLOW以下
でベーンポンプが“低ゲイン”で動作していても偏差の
絶対値|ε|がε1以下の場合や、あるいは、NHi以上
でベーンポンプが“高ゲイン”で動作していても偏差の
絶対値|ε|がε2以上の場合には「偏心量制御」を単
独実行する。
That is, is the rotation speed N of the vane pump.
This is a case where P is in a predetermined low rotation range equal to or lower than N LOW and the vane pump is operating at “low gain”. In this case, the deviation between the target hydraulic pressure P M and the discharge hydraulic pressure P O (more accurately, When the absolute value | ε |) of the deviation ε is equal to or larger than the predetermined value (ε 1 ), the “eccentricity amount control” and the “flow path resistance control” are used together.
Is when the rotation speed (N P ) of the vane pump is in a predetermined high rotation range of N Hi or more and the vane pump is operating at “high gain”. In this case, the target hydraulic pressure P M and the discharge hydraulic pressure are Deviation from P O (more precisely, absolute value of deviation ε | ε |)
When is less than or equal to the predetermined value (ε 2 ), the “flow path resistance control” is independently executed (in other words, the “eccentricity amount control” is stopped).
Is when the rotation speed (N P ) of the vane pump is in the middle rotation range of N LOW or more and N Hi or less, and the vane pump is operating at “medium gain”. In this case, “ "Eccentricity control" is executed independently. If the absolute value of deviation | ε | is less than or equal to ε 1 even if the vane pump is operating at “low gain” below N LOW , or if the vane pump is operating at “high gain” above N Hi. If the absolute value of the deviation | ε | is not less than ε 2 , the "eccentricity amount control" is independently executed.

【0015】今、ポンプ回転数を高い状態でポンプ吐出
圧制御を行った場合を考えると、この場合、特に、目標
油圧PMと吐出油圧POとの偏差が小さい場合は、電制ベ
ーンポンプでは、制御量変化に伴って吐出油圧が大きく
変化するため、吐出油圧を目標油圧に合わせずらくな
り、制御精度が悪化する。そこで、本実施例では、ベー
ンポンプのゲインが高い場合には、偏心量制御に代えて
流路抵抗制御を行うことにより、上記不都合を解決して
制御精度を向上する。
Considering the case where the pump discharge pressure control is performed at a high pump rotation speed, in this case, in particular, when the deviation between the target oil pressure P M and the discharge oil pressure P O is small, the electric vane pump is used. However, since the discharge hydraulic pressure changes greatly with the change in the control amount, it becomes difficult to match the discharge hydraulic pressure with the target hydraulic pressure, and the control accuracy deteriorates. In view of this, in the present embodiment, when the gain of the vane pump is high, the flow path resistance control is performed instead of the eccentricity control to solve the above-mentioned inconvenience and improve the control accuracy.

【0016】すなわち、低回転域で偏差が大きい場合
()には、低ゲインであるから応答性を重視して「偏
心量制御」と「流路抵抗制御」を併用し、一方、高回転
域で偏差小さい場合()には、高ゲインであるから安
定性を重視して「流路抵抗制御」を単独実行する。但
し、低回転域で低ゲインであっても偏差が小さい場合に
は、応答性はそれほど悪化しないので「偏心量制御」を
単独実行し、また、高回転域で高ゲインであっても偏差
が大きい場合には、「偏心量制御」を実行して偏差をε
2以下に抑えた後、「流路抵抗制御」の単独実行に移行
する。あるいは、中回転域で中ゲインにあるときは、偏
差の大きさに拘らず「偏心量制御」を単独実行する。
That is, when the deviation is large in the low speed range (), since the gain is low, the response is emphasized and the "eccentricity amount control" and the "flow path resistance control" are used together, while the high speed range is high. When the deviation is small in (), since the gain is high, the "flow path resistance control" is executed solely with an emphasis on stability. However, if the deviation is small even at low gain in the low speed range, the responsiveness does not deteriorate so much, so "eccentricity control" is executed independently. If it is larger, execute "Eccentricity control" to reduce the deviation by ε.
After suppressing to 2 or less, shift to independent execution of "flow path resistance control". Alternatively, when the medium gain is in the medium speed range, the "eccentricity amount control" is independently executed regardless of the magnitude of the deviation.

【0017】「流路抵抗制御」の原理は、例えば水道の
蛇口に繋ぐホースの太さによって説明できる。すなわ
ち、水道の蛇口はベーンポンプ20の吐出ポートに相当
し、ホースの太さは第2の電磁弁25の開弁程度に相当
する。細いホースを繋ぐと蛇口の水圧(吐出油圧に相
当)が高くなり、太いホースを繋ぐと低くなる。このよ
うな水圧の変化(吐出油圧の変化)は、水道の送水圧
(ベーンポンプ20の内圧、回転数と偏心量に相関す
る)を一定とすれば、ホースの内径変化に依存し、しか
もホースの内径変化と水圧変化との間に時間的な遅れは
みられない。したがって、「流路抵抗制御」と「偏心量
制御」とを併用することにより、低回転域におけるベー
ンポンプの応答性向上を図ることができる。
The principle of "flow path resistance control" can be explained, for example, by the thickness of the hose connected to the tap of the water supply. That is, the tap of the water supply corresponds to the discharge port of the vane pump 20, and the thickness of the hose corresponds to the opening degree of the second solenoid valve 25. Connecting a thin hose increases the water pressure at the faucet (equivalent to the discharge hydraulic pressure), and connecting a thick hose decreases it. Such a change in water pressure (change in discharge hydraulic pressure) depends on a change in the inner diameter of the hose if the water supply pressure (correlation with the internal pressure of the vane pump 20, the number of revolutions and the eccentricity) of the water supply is constant, There is no time lag between the change in inner diameter and the change in water pressure. Therefore, by using the "flow path resistance control" and the "eccentricity amount control" together, it is possible to improve the responsiveness of the vane pump in the low rotation range.

【0018】また、水道の送水圧がかなり高いとき、す
なわちポンプ回転数が相当に高いときにはわずかな蛇口
の開閉でも水圧が大きく変化する(ポンプゲインが高
い)ので、意図した水圧に正確に一致させるのがきわめ
て困難になる。かかる場合には、蛇口の開きを一定にし
たまま、ホースの太さを変化させるのが効果的である。
したがって、本実施例によれば、かかる水道とホースと
の関係で説明したように、ベーンポンプ20の動きその
ものを操作する偏心量制御(送水圧の操作に相当)と、
ベーンポンプ20の動きに関与せずその吐出流量を操作
する流路抵抗制御(ホースの内径操作に相当)とを、ポ
ンプの回転数NP等から判別されるゲインに応じて適宜
選択するようにしたので、低回転域における応答性の向
上および高回転域における安定性の向上を図ることがで
きるという優れた効果を奏することができる。
Further, when the water supply pressure of the water supply is considerably high, that is, when the pump rotation speed is considerably high, the water pressure changes greatly even if the faucet is slightly opened and closed (the pump gain is high). Becomes extremely difficult. In such a case, it is effective to change the thickness of the hose while keeping the opening of the faucet constant.
Therefore, according to the present embodiment, as described in relation to the water supply and the hose, the eccentricity amount control (corresponding to the operation of the water supply pressure) for operating the movement itself of the vane pump 20,
The flow path resistance control (corresponding to the inner diameter operation of the hose) that controls the discharge flow rate without being involved in the movement of the vane pump 20 is appropriately selected according to the gain determined from the rotational speed N P of the pump and the like. Therefore, it is possible to achieve an excellent effect that it is possible to improve the response in the low rotation speed range and the stability in the high rotation speed range.

【0019】なお、実施例では、低回転域での応答性と
高回転域での安定性を共に向上しているが、これに限る
ものではなく、例えば常用回転域の高いスポーツ専用車
にあっては安定性向上を主眼とした制御態様(偏心量制
御と流路抵抗制御の単独実行)としてもよい。また、実
施例では、ポンプ回転数NPに基づいてゲイン判定を行
っているが、これに限るものではなく、例えば、吐出油
圧Pと吐出流量Qを読み込み、これらのP、Qに基づい
て流路抵抗Rを演算(R=P/Q)し、さらに、第1の
判定条件30と第2の判定条件31をそれぞれ次のよう
にしてもよい。
In the embodiment, the responsiveness in the low speed range and the stability in the high speed range are both improved, but the present invention is not limited to this. For example, in a sports car with a high normal speed range. Alternatively, a control mode (mainly executing eccentricity amount control and flow path resistance control) may be performed with a focus on improving stability. Further, in the embodiment, the gain determination is performed based on the pump rotation speed N P , but the present invention is not limited to this. For example, the discharge hydraulic pressure P and the discharge flow rate Q are read, and the flow rate is determined based on these P and Q. The road resistance R may be calculated (R = P / Q), and the first determination condition 30 and the second determination condition 31 may be set as follows.

【0020】第1の判定条件30→ 流路抵抗Rの値が
基準流路抵抗値R1以上であるか否かを判別する。 第2の判定条件31→ 流路抵抗Rの値が基準流路抵抗
値R2以上であるか否かを判別する。 かかる条件設定によると、R≧R1かつR≦R2でない場
合に高ゲインが判定され、また、R≧R1でない場合に
低ゲインが判定され、さらに、R≧R1かつR≦R2の場
合に中ゲインが判定される。
First determination condition 30 → It is determined whether or not the value of the flow path resistance R is greater than or equal to the reference flow path resistance value R 1 . Second determination condition 31 → It is determined whether or not the value of the flow path resistance R is greater than or equal to the reference flow path resistance value R 2 . According to this condition setting, a high gain is determined when R ≧ R 1 and R ≦ R 2 are not satisfied, a low gain is determined when R ≧ R 1 is not satisfied, and further, R ≧ R 1 and R ≦ R 2 are determined. In the case of, the medium gain is determined.

【0021】ここで、偏心量制御では、次式(1)に示
す関数式に従って制御油圧PCの圧力操作量ΔQPを演算
し、その演算結果に応じた大きさの制御信号SPを生成
する。 ΔQP=f(ε) ……(1) また、流路抵抗制御では、次式(2)に示す関数式に従
って作動油の流量操作量ΔQFを演算し、その演算結果
に応じた大きさの制御信号SFを生成する。
Here, in the eccentricity control, the pressure operation amount ΔQ P of the control oil pressure P C is calculated according to the functional expression shown in the following expression (1), and the control signal S P having a magnitude corresponding to the calculation result is generated. To do. ΔQ P = f (ε) (1) Further, in the flow path resistance control, the flow rate operation amount ΔQ F of the hydraulic oil is calculated according to the functional expression shown in the following expression (2), and the magnitude according to the calculation result is calculated. Control signal S F is generated.

【0022】ΔQF=f(ε) ……(2) 何れも、そのときの吐出油圧POを目標油圧PMに指向さ
せ得る操作量ΔQP又はΔQFを求めることができる。図
4はΔQP、ΔQFをマップから求めるようにした例であ
る。すなわち、ステップ40でポンプ回転数NPを読み
込むと共に、吐出油圧POと目標油圧PMとの偏差εを求
め、ステップ41でNPとεによって所定のマップを検
索する。
ΔQ F = f (ε) (2) In any case, the manipulated variable ΔQ P or ΔQ F that can direct the discharge hydraulic pressure P O at that time to the target hydraulic pressure P M can be obtained. FIG. 4 shows an example in which ΔQ P and ΔQ F are obtained from a map. That is, in step 40, the pump rotation speed N P is read, the deviation ε between the discharge oil pressure P O and the target oil pressure P M is obtained, and in step 41 a predetermined map is searched by N P and ε.

【0023】図5はマップの一例であり、縦軸がε、横
軸がNPの2次元マップに3つのゾーンA1、A2及び
A3を設定している。NPとεがゾーンA1に存在する
場合は、ステップ42でΔQPにεをk倍した値を代入
すると共に、ステップ43でΔQFにεをm倍した値を
代入する。すなわち、この場合は偏心量制御と流路抵抗
制御の双方を実行することになる。また、NPとεがゾ
ーンA2に存在する場合は、ステップ44でΔQPにε
をk倍した値を代入すると共に、ステップ45でΔQF
に0を代入する。すなわち、この場合は偏心量制御だけ
を実行することになる。さらにまた、NPとεがゾーン
A3に存在する場合は、ステップ46でΔQPに0を代
入すると共に、ステップ47でΔQFにεをn倍した値
を代入する。すなわち、この場合は流路抵抗制御だけを
実行することになる。
FIG. 5 is an example of a map, in which three zones A1, A2 and A3 are set in a two-dimensional map in which the vertical axis is ε and the horizontal axis is N P. When N P and ε exist in the zone A1, a value obtained by multiplying ε by k is substituted for ΔQ P in step 42, and a value obtained by multiplying ε by m is substituted for ΔQ F at step 43. That is, in this case, both the eccentricity amount control and the flow path resistance control are executed. If N P and ε exist in zone A2, ΔQ P is set to ε in step 44.
The value multiplied by k is substituted, and ΔQ F
Substitute 0 for. That is, in this case, only the eccentricity amount control is executed. Furthermore, when N P and ε exist in the zone A3, 0 is substituted for ΔQ P in step 46, and a value obtained by multiplying ε by n is substituted for ΔQ F in step 47. That is, in this case, only the flow path resistance control is executed.

【0024】マップの形や係数k、m、nの大きさを変
えるだけで制御特性を自在に変更することができる。因
みに、図6は他のマップ例を示す図であり、図6(a)
はN Pでゾーンを分けた例、図6(b)は偏差εでゾー
ンを分けた例である。
The shape of the map and the sizes of the coefficients k, m and n can be changed.
The control characteristics can be freely changed by simply changing the setting. Cause
FIG. 6 is a diagram showing another example of the map, and FIG.
Is N P6 (b) shows an example in which the zone is divided by
This is an example of separate parts.

【0025】[0025]

【発明の効果】本発明によれば、油圧回路の流路抵抗を
可変とする抵抗可変手段を設け、可変容量ベーンポンプ
が所定ゲインで動作するときには、この抵抗可変手段を
制御対象としたので、高ゲインにおける制御安定性を向
上した「電制」可変容量ベーンポンプの油圧制御装置を
提供することができる。
According to the present invention, the resistance varying means for varying the flow path resistance of the hydraulic circuit is provided, and when the variable displacement vane pump operates at a predetermined gain, the resistance varying means is the control target. It is possible to provide a hydraulic control device for an "electrically controlled" variable displacement vane pump with improved control stability in gain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】一実施例の構成図である。FIG. 2 is a configuration diagram of an embodiment.

【図3】一実施例の制御フロー図である。FIG. 3 is a control flow diagram of an embodiment.

【図4】一実施例の圧力操作量ΔQP及び流量操作量Δ
Fをマップから求める演算フロー図である。
FIG. 4 is a pressure operation amount ΔQ P and a flow rate operation amount Δ of one embodiment.
It is a calculation flow diagram for obtaining the Q F from the map.

【図5】一実施例のマップ図である。FIG. 5 is a map diagram of an example.

【図6】一実施例の他のマップ図である。FIG. 6 is another map diagram of an example.

【図7】電制可変容量ベーンポンプの吐出流量−吐出圧
特性図である。
FIG. 7 is a discharge flow rate-discharge pressure characteristic diagram of an electrically controlled variable displacement vane pump.

【符号の説明】[Explanation of symbols]

C:制御油圧 PO:吐出油圧 20:可変容量ベーンポンプ 28:コントローラ(演算手段) 21:第1の電磁弁(電磁制御弁) 24:油圧センサ 25:第2の電磁弁(抵抗可変手段)P C : Control oil pressure P O : Discharge oil pressure 20: Variable capacity vane pump 28: Controller (calculation means) 21: First solenoid valve (solenoid control valve) 24: Oil pressure sensor 25: Second solenoid valve (resistance variable means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】制御油圧に応じた吐出流量を発生して油圧
回路に供給する可変容量ベーンポンプと、前記吐出油圧
を検出する油圧センサと、目標油圧と吐出油圧の偏差を
ゼロにする制御量を演算する演算手段と、該演算手段の
演算結果にしたがって前記制御油圧を操作する電磁制御
弁と、を備えた可変容量ベーンポンプの油圧制御装置に
おいて、前記油圧回路の流路抵抗を可変とする抵抗可変
手段を設け、前記可変容量ベーンポンプが所定ゲインで
動作するときには、前記電磁制御弁に代えて抵抗可変手
段を制御対象とすることを特徴とする可変容量ベーンポ
ンプの油圧制御装置。
1. A variable displacement vane pump that generates a discharge flow rate according to a control hydraulic pressure and supplies it to a hydraulic circuit, a hydraulic pressure sensor that detects the discharge hydraulic pressure, and a control amount that makes a deviation between a target hydraulic pressure and the discharge hydraulic pressure zero. In a hydraulic control device for a variable displacement vane pump, comprising: an arithmetic means for performing an arithmetic operation; and an electromagnetic control valve for operating the control hydraulic pressure according to the arithmetic result of the arithmetic means, a variable resistance for varying a flow path resistance of the hydraulic circuit. Means for controlling the variable displacement vane pump in place of the electromagnetic control valve when the variable displacement vane pump operates at a predetermined gain.
【請求項2】前記所定ゲインは、可変容量ベーンポンプ
の制御量の変化に対する吐出油圧の変化の割合が所定の
割合以上に大きい場合に相当するゲインであることを特
徴とする請求項1記載の可変容量ベーンポンプの油圧制
御装置。
2. The variable gain according to claim 1, wherein the predetermined gain is a gain corresponding to a case where the ratio of change in the discharge hydraulic pressure to the change in the control amount of the variable displacement vane pump is larger than a predetermined ratio. Hydraulic controller for capacity vane pump.
【請求項3】前記抵抗可変手段は、油圧回路の潤滑油系
統の流路抵抗を可変とすることを特徴とする請求項1記
載の可変容量ベーンポンプの油圧制御装置。
3. The hydraulic control device for a variable displacement vane pump according to claim 1, wherein the resistance varying means varies the flow path resistance of the lubricating oil system of the hydraulic circuit.
JP25727091A 1991-10-04 1991-10-04 Oil pressure control device for variable capacity vane pump Pending JPH0599163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25727091A JPH0599163A (en) 1991-10-04 1991-10-04 Oil pressure control device for variable capacity vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25727091A JPH0599163A (en) 1991-10-04 1991-10-04 Oil pressure control device for variable capacity vane pump

Publications (1)

Publication Number Publication Date
JPH0599163A true JPH0599163A (en) 1993-04-20

Family

ID=17304052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25727091A Pending JPH0599163A (en) 1991-10-04 1991-10-04 Oil pressure control device for variable capacity vane pump

Country Status (1)

Country Link
JP (1) JPH0599163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133716A (en) * 2003-10-10 2005-05-26 Borgwarner Inc Variable displacement vane pump with variable target regulator
JP2014058892A (en) * 2012-09-18 2014-04-03 Hitachi Automotive Systems Steering Ltd Variable displacement type vane pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133716A (en) * 2003-10-10 2005-05-26 Borgwarner Inc Variable displacement vane pump with variable target regulator
JP2014058892A (en) * 2012-09-18 2014-04-03 Hitachi Automotive Systems Steering Ltd Variable displacement type vane pump

Similar Documents

Publication Publication Date Title
KR100330605B1 (en) Control device of hydraulic pump
JP2000193074A (en) Control device for belt type continuously variable transmission
JPS6353129A (en) Control device for speed change ratio of continuously variable transmission
EP1614607A1 (en) Power steering system
WO2019065925A1 (en) Working machine
JPH03107586A (en) Capacity controller of variable capacity pump
JP2000154803A (en) Engine lag-down prevention device for hydraulic construction machine
JPH0599163A (en) Oil pressure control device for variable capacity vane pump
JPH01131382A (en) Deciding method for duty ratio for actuation of solenoid
JP2002081408A (en) Fluid pressure circuit
JPH0776863A (en) Hydraulic pressure drive device of construction machinery
JPH0641764B2 (en) Drive control device for hydraulic circuit
JP3081988B2 (en) Control device for hydraulic drive machine
JPH03253787A (en) Output electronic control device for hydraulic pump
JPH11117894A (en) Gas compression facility and its operating method
JPH0681802A (en) Load sensing oil pressure circuit
JP3192054B2 (en) Tilt angle control device for hydraulic pump
JPH04131510A (en) Controller for hydraulic drive machine
JP2004278746A (en) Hydraulic operating device of construction machinery
JP2561209Y2 (en) Load sensing hydraulic circuit
JPH051604A (en) Control device of internal combustion engine
JP2003239767A (en) Control device for motor for controlling internal combustion engine
JPH05215234A (en) Engine vehicle equipped with variable displacement hydraulic pump for variable speed
KR100482584B1 (en) Intake air duct open and shut control device of engine and method thereof
JPH0193662A (en) Speed change control method for continuously variable transmission for vehicle