JPH0598B2 - - Google Patents

Info

Publication number
JPH0598B2
JPH0598B2 JP63072716A JP7271688A JPH0598B2 JP H0598 B2 JPH0598 B2 JP H0598B2 JP 63072716 A JP63072716 A JP 63072716A JP 7271688 A JP7271688 A JP 7271688A JP H0598 B2 JPH0598 B2 JP H0598B2
Authority
JP
Japan
Prior art keywords
composite oxide
salt
catalyst
organic acid
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63072716A
Other languages
Japanese (ja)
Other versions
JPH01245858A (en
Inventor
Susumu Myama
Hiromichi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP63072716A priority Critical patent/JPH01245858A/en
Publication of JPH01245858A publication Critical patent/JPH01245858A/en
Publication of JPH0598B2 publication Critical patent/JPH0598B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 (技術分野) この発明は、複合酸化物触媒の製造方法に関す
るものである。さらに詳しくは、この発明は、組
成比制御が容易で、比表面積が大きく、かつ低温
焼成可能な高活性複合酸化物触媒を製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for producing a composite oxide catalyst. More specifically, the present invention relates to a method for producing a highly active composite oxide catalyst that is easy to control the composition ratio, has a large specific surface area, and can be fired at a low temperature.

(背景技術) 一般に固体触媒の場合にはそのバルク構造が触
媒作用に大きな影響を与えることが知られている
が、単体の金属酸化物は、構造が画一的であり、
触媒作用にあまり変化を与えることはできない。
このため、従来より他の元素との複合酸化物を作
成することにより種々の構造のものとし、触媒作
用を変化させることが行われてきている。
(Background Art) It is generally known that the bulk structure of solid catalysts has a large effect on the catalytic action, but single metal oxides have uniform structures;
It is not possible to significantly change the catalytic action.
For this reason, various structures have been conventionally created by creating composite oxides with other elements to change the catalytic action.

この他元素との複合化により、バルク構造の格
子安定化エネルギーを利用して遷移金属等の元素
の価数を変化させ、様々な反応に特異的活性を示
すようになる。
When compounded with other elements, the valence of elements such as transition metals is changed using the lattice stabilization energy of the bulk structure, and they exhibit specific activity in various reactions.

このように複合化触媒は、単体にはない優れた
利点があるが、一方でその製造には改善すべき問
題点が残されてもいた。すなわち、酸化物の複合
触媒の場合には、高温での反応に使用できるとい
う長所があるが、通常、この複合酸化物触媒を製
造するには化学反応の温度以上の高温、たとえば
800℃以上での処理が必要になるために、得られ
る触媒は粗粒になつてしまい反応に充分な比表面
積が得られないという欠点がある。
As described above, although composite catalysts have excellent advantages not found in single catalysts, there still remain problems in their production that need to be improved. In other words, oxide composite catalysts have the advantage of being able to be used for reactions at high temperatures; however, to produce these composite oxide catalysts, usually high temperatures higher than the chemical reaction temperature, e.g.
Since treatment at 800°C or higher is required, the catalyst obtained becomes coarse particles and has the disadvantage that a sufficient specific surface area for the reaction cannot be obtained.

従来より、比表面積の大きい触媒を得る方法と
して、比表面積の大きい担体物質に触媒活性成分
を担持する方法が知られており、このような方法
の具体的態様として (1) 水酸化物共沈法 (2) シユウ酸塩共沈法 (3) 金属アルコキシド加水分解法 があることも知られている。
Conventionally, as a method for obtaining a catalyst with a large specific surface area, a method of supporting a catalytically active component on a carrier material with a large specific surface area has been known, and specific embodiments of such a method include (1) hydroxide coprecipitation. Method (2) Oxalate coprecipitation method (3) Metal alkoxide hydrolysis method is also known.

しかしながら、この(1)水酸化物共沈法の場合に
は、アルカリ金属、アルカリ土類金属元素は水酸
化物が溶解性であるために沈殿が生成せず、複合
酸化物を製造することはできない。また、(2)シユ
ウ酸塩共沈法の場合には、元素によつて溶解度が
異なり均一な組成の複合酸化物触媒を製造するこ
とは難しい。さらにまた、(3)金属アルコキシド加
水分解法においては、金属アルコキシドは金属元
素によつて有機溶媒に対して溶解度が小さいため
に、担体に対してごくわずかの量しか担持でき
ず、実用的なものとはならないという欠点があ
る。
However, in the case of this (1) hydroxide co-precipitation method, since the hydroxides of alkali metals and alkaline earth metal elements are soluble, no precipitates are formed, making it impossible to produce composite oxides. Can not. Furthermore, in the case of (2) the oxalate coprecipitation method, it is difficult to produce a composite oxide catalyst with a uniform composition, which has different solubility depending on the element. Furthermore, in (3) metal alkoxide hydrolysis method, metal alkoxide has low solubility in organic solvents due to the metal element, so only a small amount can be supported on the carrier, making it impractical. The disadvantage is that it does not.

このように(1)(3)の方法では限られた元素の組合
わせからなる複合酸化物触媒の製造にしか適して
おらず、また(2)の方法においては均一な組成のも
のを得るためには高温での焼成が必要であるため
に、担体と活性成分である酸化物とが反応しやす
く、目的の組成、構造の触媒を得ることができな
い。また担体の焼結も起こり、高表面積のものが
得られないという問題がある。
In this way, methods (1) and (3) are only suitable for producing composite oxide catalysts consisting of a limited combination of elements, and methods (2) are suitable for producing composite oxide catalysts with a uniform composition. Since calcination is required at high temperatures, the carrier and the active component oxide tend to react, making it impossible to obtain a catalyst with the desired composition and structure. There is also the problem that sintering of the carrier occurs, making it impossible to obtain a carrier with a high surface area.

(発明の目的) この発明は、以上の通りの事情に鑑みてなされ
たものであり、従来の複合酸化物触媒の製造法の
欠点を解消し、触媒組成の均一制御が容易で、比
表面積が大きく、かつ低温焼成の可能な、改善さ
れた高活性複合酸化物触媒の製造方法を提供する
ことを目的としている。
(Objective of the Invention) The present invention was made in view of the above circumstances, and it solves the drawbacks of the conventional manufacturing method of a composite oxide catalyst, makes it easy to uniformly control the catalyst composition, and reduces the specific surface area. The object of the present invention is to provide an improved method for producing a highly active composite oxide catalyst that is large in size and can be fired at low temperatures.

(発明の開示) この発明の複合酸化物触媒の製造方法は、上記
の目的を実現するために、有機酸アルカリ金属塩
水溶液と触媒組成元素の混合塩水溶液を混合して
得られる混合有機酸塩を有機溶媒で抽出し、有機
溶媒溶液中に担体を分散させ、担体に塩を吸着後
に焼成することを特徴としている。
(Disclosure of the Invention) In order to achieve the above object, the method for producing a composite oxide catalyst of the present invention is a mixed organic acid salt obtained by mixing an aqueous solution of an alkali metal salt of an organic acid and an aqueous solution of a mixed salt of catalyst composition elements. It is characterized by extracting the salt with an organic solvent, dispersing the carrier in the organic solvent solution, adsorbing the salt onto the carrier, and then calcining it.

この方法は、アルカリ金属を除くすべての金属
に対して有効な複合酸化物の製造方法であり、焼
成温度も比較的低く、担体と触媒成分との反応も
抑制することができ、目的とする組成の複合酸化
物担持触媒を容易に得ることができる。
This method is effective for producing composite oxides for all metals except alkali metals, the firing temperature is relatively low, the reaction between the support and the catalyst component can be suppressed, and the desired composition can be achieved. A supported composite oxide catalyst can be easily obtained.

この方法においては、まず有機酸の混合塩を作
成する。この場合、有機酸のアルカリ金属塩の水
溶液と、所要の元素からなる塩の水溶液を所定の
割合で混合する。有機酸アルカリ金属塩として
は、たとえばナフテン酸、オクチル酸、ステアリ
ン酸等の適宜な有機酸のアルカリ金属との塩を用
いることができる。触媒成分の元素の塩として
は、硝酸塩、酢酸塩、その他の適宜な水溶性塩と
して用いることができる。
In this method, a mixed salt of an organic acid is first prepared. In this case, an aqueous solution of an alkali metal salt of an organic acid and an aqueous solution of a salt consisting of a desired element are mixed at a predetermined ratio. As the organic acid alkali metal salt, for example, a salt of an appropriate organic acid with an alkali metal such as naphthenic acid, octylic acid, and stearic acid can be used. As the salt of the element of the catalyst component, nitrate, acetate, and other appropriate water-soluble salts can be used.

次いで得られた混合有機酸塩の水溶液には、石
油ベンジン、石油エーテル等の適宜な有機溶媒を
加え、激しく攪拌して有機相と水相とに分離させ
る。この2相分離により、有機酸塩は有機相に移
行する。しばらく静置した後に、過剰の有機酸ア
ルカリ金属塩とアルカリ金属水酸化物を含む水相
を除去する。
Next, an appropriate organic solvent such as petroleum benzene or petroleum ether is added to the obtained aqueous solution of the mixed organic acid salt, and the mixture is vigorously stirred to separate into an organic phase and an aqueous phase. Due to this two-phase separation, the organic acid salt is transferred to the organic phase. After standing for a while, the aqueous phase containing excess organic acid alkali metal salt and alkali metal hydroxide is removed.

このようにして得られた触媒成分元素の有機酸
の塩を含有する有機溶媒溶液中に、触媒担体を分
散させる。この分散は、粉末または微粒子状、あ
るいは粒状の担体をホモジナイザー等を用いるこ
とにより充分に行い、この分散液を別またはゆ
つくりと蒸発乾固させることにより担体上に触媒
成分元素の塩を吸着させる。
The catalyst carrier is dispersed in the organic solvent solution containing the organic acid salt of the catalyst component element thus obtained. This dispersion is carried out sufficiently by using a homogenizer or the like to prepare a powder, particulate, or granular carrier, and the salt of the catalyst component element is adsorbed onto the carrier by separately or slowly evaporating this dispersion to dryness. .

これを焼成することによつて、所定の組成の複
合酸化物触媒を得る。
By firing this, a composite oxide catalyst having a predetermined composition is obtained.

触媒成分の担持量が少ない場合には、上記の方
法を繰り返すことができる。
If the amount of catalyst component supported is small, the above method can be repeated.

有機酸と有機溶媒とは、溶媒への溶解度の大き
い有機酸を用いるのが有利であり、その種類に格
別の限定はないが、ナフテン酸、オクチル酸、ス
テアリン酸と、石油ベンジン、石油エーテル、さ
らにはケトン、エーテル類等が好ましいものとし
て例示される。
As the organic acid and organic solvent, it is advantageous to use an organic acid with high solubility in the solvent, and there are no particular limitations on the type, but examples include naphthenic acid, octylic acid, stearic acid, petroleum benzine, petroleum ether, Further preferred examples include ketones and ethers.

この発明の方法は、複合酸化物担持触媒の製造
方法として有利なものであり、2元素、3元素、
さらにはそれ以上の活性成分組成からなる複合酸
化物触媒の製造に用いることのできるものであ
る。これらの触媒としては、たとえば、ヘテロポ
リ酸系の複合酸化物、ペロブスカイト構造化合物
からなる複合酸化物などが例示される。
The method of the present invention is advantageous as a method for producing composite oxide supported catalysts, and includes two-element, three-element,
Furthermore, it can be used to produce a composite oxide catalyst having a higher active component composition. Examples of these catalysts include heteropolyacid-based composite oxides and composite oxides composed of perovskite structure compounds.

担体についても特にその種類に限定はない。通
常使用されているシリカ、アルミナ、マグネシ
ア、酸化亜鉛をはじめ、複合酸化物、ベントナイ
ト、カオリンなどの広い範囲のものを使用するこ
とができる。これら種類に応じて、上記の有機酸
も適宜に選択することができる。
There are no particular limitations on the type of carrier. A wide range of materials can be used, including commonly used silica, alumina, magnesia, and zinc oxide, as well as composite oxides, bentonite, and kaolin. The above-mentioned organic acids can also be appropriately selected depending on these types.

次にこの発明の実施例を示し、さらに詳しくこ
の発明について説明する。もちろん、この発明
は、以下の実施例によつて限定されるものではな
い。
Next, examples of the present invention will be shown and the present invention will be explained in more detail. Of course, this invention is not limited to the following examples.

実施例 1 次の(A)(B)からなる水溶液を調製した。Example 1 An aqueous solution consisting of the following (A) and (B) was prepared.

(A) 有機酸アルカリ金属塩水溶液 ナフテン酸 200g(1モル) 水酸化ナトリウム 80g(2モル) 水 500g かななる混合溶液 (B) 混合金属塩水溶液 硝酸銅3水和物 18g(3/40モル) 硝酸バリウム 13g(2/40モル) 硝酸イツトリウム6水和物 9.6g(1/40モル) を含有する混合塩水溶液 この(A)(B)、および石油ベンジン1Kgを加えて充
分に混合攪拌した。
(A) Organic acid alkali metal salt aqueous solution Naphthenic acid 200g (1 mol) Sodium hydroxide 80g (2 mol) Water 500g Kananaru mixed solution (B) Mixed metal salt aqueous solution Copper nitrate trihydrate 18g (3/40 mol) A mixed salt aqueous solution containing 13 g (2/40 mol) of barium nitrate, 9.6 g (1/40 mol) of yttrium nitrate hexahydrate, (A) and (B), and 1 kg of petroleum benzine were added and thoroughly mixed and stirred.

分液ロートに移した後に静置し、水相を除去し
た。有機相中に担体としてMgO(表面積50m2
g)264g(6.6モル)を超音波振動を与えながら
懸濁させ、次いでロータリーエバポレータを用い
て蒸発乾固した。
After transferring to a separating funnel, the mixture was allowed to stand and the aqueous phase was removed. MgO (surface area 50 m 2 /
g) 264 g (6.6 mol) was suspended under ultrasonic vibration and then evaporated to dryness using a rotary evaporator.

得られた粉末を電気炉中で、850℃の温度で4
時間焼成した。
The obtained powder was heated in an electric furnace at a temperature of 850℃ for 4 hours.
Baked for an hour.

この触媒は、その比表面積が30m2/gであり、
反応温度800℃、SV1500hr-1(3%NO/Heガ
ス)、触媒使用量3gの条件下での反応による
NOの分解に使用したところ、反応開始後10時間
たつても、そのNO分解率は98.4%と活性は極め
て高く、活性の経時劣化はほとんど認められなか
つた。
This catalyst has a specific surface area of 30 m 2 /g,
By reaction under the conditions of reaction temperature 800℃, SV1500hr -1 (3% NO/He gas), amount of catalyst used 3g
When used to decompose NO, even 10 hours after the start of the reaction, the NO decomposition rate was 98.4%, an extremely high activity, with almost no deterioration of activity over time.

得られた触媒組成は、5%−YBa2Cu3O7
MgOに担持した混合酸化物触媒であつた。
The resulting catalyst composition was 5%-YBa 2 Cu 3 O 7
It was a mixed oxide catalyst supported on MgO.

担体MgOを用いることなく共沈法によつて製
造したものは、比表面積が約10m2/gで、同様の
条件下でのNOの分解率は約75%であつた。
The product produced by the coprecipitation method without using MgO as a carrier had a specific surface area of about 10 m 2 /g, and the NO decomposition rate under similar conditions was about 75%.

実施例 2 次の(A)(B)の水溶液を調製した。Example 2 The following aqueous solutions of (A) and (B) were prepared.

(A) 有機酸アルカリ金属塩水溶液 オクチル酸 140g(1モル) 水酸化ナトリウム 80g(2モル) 水 500g かななる混合溶液 (B) 混合金属塩水溶液 酢酸ランタン()1.5水和物
7.3g(8.5/40モル) 酢酸ストロンチウム0.5水和物
0.8g(1.5/40モル) 酢酸コバルト()4水和物
6.2g(10/40モル) 水 100g からなる混合溶液 この(A)(B)、および石油ベンジン1Kgを充分に混
合攪拌し、分液ロートに移して静置した。
(A) Organic acid alkali metal salt aqueous solution Octylic acid 140g (1 mol) Sodium hydroxide 80g (2 mol) Water 500g Kananaru mixed solution (B) Mixed metal salt aqueous solution Lanthanum acetate () 1.5 hydrate
7.3g (8.5/40mol) Strontium acetate 0.5 hydrate
0.8g (1.5/40mol) Cobalt acetate () tetrahydrate
Mixed solution consisting of 6.2 g (10/40 mol) and 100 g of water These (A) and (B) and 1 kg of petroleum benzine were thoroughly mixed and stirred, transferred to a separatory funnel, and left to stand still.

水相を除去し、有機相に、担体粉末として
CoAl2O4(スピネル構造、表面積15m2/g)113g
(0.64モル)を超音波振動を与えながら懸濁させ、
攪拌しながら蒸発乾固した。
Remove the aqueous phase and transfer to the organic phase as a carrier powder
CoAl 2 O 4 (spinel structure, surface area 15m 2 /g) 113g
(0.64 mol) was suspended while applying ultrasonic vibration,
It was evaporated to dryness while stirring.

得られた粉末を電気炉中で、800℃の温度にお
いて2時間焼成した。
The obtained powder was fired in an electric furnace at a temperature of 800° C. for 2 hours.

比表面積12m2/gの次の組成からなる複合酸化
物を得た。
A composite oxide having a specific surface area of 12 m 2 /g and having the following composition was obtained.

5%−La0.85Sr0.15CoO3/CoAl2O3 実施例 3〜5 実施例1と同様にして、次の各種の複合酸化物
触媒を得た。
5%-La 0.85 Sr 0.15 CoO 3 /CoAl 2 O 3 Examples 3 to 5 In the same manner as in Example 1, the following various composite oxide catalysts were obtained.

5%−SmBaCa(Cu1.5Mn1.5)O7/ZnO (比
表面積25m2/g) 6%−CeSr2CoFe2O7/BaTiO3 (比表面積
28m2/g) 5%−YBaSrCu2CoO7/ZnAl2O4 (比表面
積23m2/g) これらの触媒は、いずれも炭化水素の酸化反
応、NOの分解反応に極めて高い活性を示した。
5% -SmBaCa (Cu 1.5 Mn 1.5 ) O7 /ZnO (specific surface area 25m2 /g) 6% -CeSr2CoFe2O7 / BaTiO3 (specific surface area
28 m 2 /g) 5%-YBaSrCu 2 CoO 7 /ZnAl 2 O 4 (specific surface area 23 m 2 /g) All of these catalysts showed extremely high activity in hydrocarbon oxidation reactions and NO decomposition reactions.

Claims (1)

【特許請求の範囲】 1 有機酸アルカリ金属塩水溶液と触媒組成元素
の混合塩水溶液を混合して得られる混合有機酸塩
を有機溶媒で抽出し、有機溶媒溶液中に担体を分
散させ、担体に塩を吸着後に焼成することを特徴
とする複合酸化物触媒の製造方法。 2 有機酸アルカリ金属塩がナフテン酸塩、オク
チル酸塩、またはステアリン酸塩である請求項1
記載の複合酸化物触媒の製造方法。 3 複合酸化物がペロブスカイト化合物である請
求項1記載の複合酸化物触媒の製造方法。 4 請求項1記載の方法によつて製造した複合酸
化物触媒。
[Claims] 1. A mixed organic acid salt obtained by mixing an aqueous solution of an alkali metal salt of an organic acid and an aqueous solution of a mixed salt of catalyst composition elements is extracted with an organic solvent, and a carrier is dispersed in the organic solvent solution. A method for producing a composite oxide catalyst, which comprises calcination after adsorbing a salt. 2. Claim 1 wherein the organic acid alkali metal salt is a naphthenate, octylate, or stearate.
A method for producing the composite oxide catalyst described above. 3. The method for producing a composite oxide catalyst according to claim 1, wherein the composite oxide is a perovskite compound. 4. A composite oxide catalyst produced by the method according to claim 1.
JP63072716A 1988-03-25 1988-03-25 Manufacture of compound oxide catalyst Granted JPH01245858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072716A JPH01245858A (en) 1988-03-25 1988-03-25 Manufacture of compound oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072716A JPH01245858A (en) 1988-03-25 1988-03-25 Manufacture of compound oxide catalyst

Publications (2)

Publication Number Publication Date
JPH01245858A JPH01245858A (en) 1989-10-02
JPH0598B2 true JPH0598B2 (en) 1993-01-05

Family

ID=13497354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072716A Granted JPH01245858A (en) 1988-03-25 1988-03-25 Manufacture of compound oxide catalyst

Country Status (1)

Country Link
JP (1) JPH01245858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343453A (en) * 1993-06-08 1994-12-20 Sumitomo Bakelite Co Ltd Small piece for culture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051025C (en) * 1995-02-17 2000-04-05 段忠善 Catalyst for purifying waste industrial gas and exhausted gas of automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343453A (en) * 1993-06-08 1994-12-20 Sumitomo Bakelite Co Ltd Small piece for culture

Also Published As

Publication number Publication date
JPH01245858A (en) 1989-10-02

Similar Documents

Publication Publication Date Title
CA2033354C (en) Perovskite - type rare earth complex oxide combustion catalysts
RU2136364C1 (en) Metal oxide-based catalyst for oxidative ammonolysis of ethylenically unsaturated compounds, method of preparation thereof, and method of oxidative ammonolysis of ethylenically unsaturated compounds
US4988661A (en) Steam reforming catalyst for hydrocarbons and method of producing the catalyst
KR0166148B1 (en) Preparing method of high dispersed-mixed metal oxide supported catalyst
WO2004005194A1 (en) Process for producing perovskite-type composite oxide
JPH0852352A (en) Oxidative catalyst withstanding high temperature,method for preparation thereof and method for combustion using said catalyst
DE2342909A1 (en) CATALYST
JPH0345025B2 (en)
JP3865848B2 (en) Catalyst for methanol synthesis
US5503815A (en) Method for the preparation of a lanthanum manganite powder
FI119500B (en) Catalysts with extremely finely divided active components
JPH0598B2 (en)
EP1233002B1 (en) Methods for producing ruthenium perovskite
JPH0559048B2 (en)
JP2001089230A (en) Powdery composition for production of barium titanate- base sintered compact and sintered compact
Vergés et al. Synthesis and characterization of zinc ferrite particles prepared by hydrothermal decomposition of zinc chelate solutions
JP5147573B2 (en) Method for producing perovskite complex oxide
JP3289358B2 (en) Method for producing magnetic oxide powder
JP2557344B2 (en) Method for treating inorganic hydroxide precipitate
JP2584519B2 (en) Method for producing perovskite-type composite oxide powder
JPH0826833A (en) Production of ceramic raw material
DE2501810A1 (en) CATALYST AND METHOD FOR REDUCING NITROGEN OXIDES
JPH013019A (en) Method for producing perovskite ceramic fine powder
JP2994065B2 (en) Method for producing metal composite oxide powder
JPH0556287B2 (en)