JPH0598483A - Nonlinear vibrator - Google Patents

Nonlinear vibrator

Info

Publication number
JPH0598483A
JPH0598483A JP3257471A JP25747191A JPH0598483A JP H0598483 A JPH0598483 A JP H0598483A JP 3257471 A JP3257471 A JP 3257471A JP 25747191 A JP25747191 A JP 25747191A JP H0598483 A JPH0598483 A JP H0598483A
Authority
JP
Japan
Prior art keywords
concentration
matter
org
mixed
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3257471A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
博司 岡本
Naoki Tanaka
尚樹 田中
Masami Naito
正美 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3257471A priority Critical patent/JPH0598483A/en
Publication of JPH0598483A publication Critical patent/JPH0598483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To simplify the device and to reduce the cost by determining the two physical values among the current value, temp. of acidic soln. and concn. of org. matter and widening the range of the third physical value. CONSTITUTION:A semipermeable membrane 3 is provided almost in the middle of a vessel 2 filled in with an acidic soln. 1 to divide the vessel into two sections. Org. matter is mixed with the acidic soln. in the one section to obtain a mixed soln. 4 of the acid and org. matter. Electrodes 5 and 6 are inserted into both sections, and a constant current is applied between both electrodes from a constant-current power source 7. The two physical values among the current value, temp. of the acidic soln. and concn. of the org. matter to be mixed are determined, and the range of the third physical value is widened to stabilize the potential vibration for a long period. Formic acid or formaldehyde is used as the org. matter, and the electrodes are made of ruthenium, rhodium or palladium. An electrical control with the fuzziness having one-(f)-th fluctuation is conducted with one electrochemical element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はファジー制御等に有用
な、周期または振幅にゆらぎを持つ非線形振動子に係
り、特に化学的な方法でしかも振動周期が0.01〜1
800秒の範囲で安定に動作することを特徴とする非線
形振動子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonlinear oscillator having fluctuations in the period or amplitude, which is useful for fuzzy control and the like.
The present invention relates to a non-linear oscillator which operates stably in a range of 800 seconds.

【0002】[0002]

【従来の技術】従来、電気的な制御にファジー性やf分
の1ゆらぎを盛り込むためには、マイクロコンピュータ
とロム等のソフトウエアとが必要であった。
2. Description of the Related Art Conventionally, a microcomputer and software such as ROM have been required to incorporate fuzzy characteristics and 1 / f fluctuation in electric control.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は制御を
マイクロコンピュータで行うために、装置の複雑さおよ
びコストアップを招くという問題点があった。本発明は
これらの問題点を解決するために、長期間安定にゆらぎ
振動を発生する素子を提供することを目的とする。
The above-mentioned conventional technique has a problem that the control is performed by the microcomputer, which causes the complexity and cost of the device. In order to solve these problems, an object of the present invention is to provide an element that stably generates fluctuation vibration for a long period of time.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に有機物の酸化における電気化学的な振動現象を利用す
る。有機物の電気化学的酸化反応に電位や電流の振動が
見られることは古くから知られており、文献としては例
えばツァイトシュリフト フュア エレクトロヒェミー
34巻(1928年)256〜264ページ(Z.El
ectrochem.34,256−264(192
8))がある。しかし、文献では振動が長期安定に見ら
れる条件が明確でなく、また振動にゆらぎが存在するこ
とは指摘されていなかった。本発明では、長期安定に振
動を示すための有機物の限定および有機物の濃度および
反応温度等の条件を明らかにし、ゆらぎのある振動を発
生する素子を提供する。
In order to achieve the above object, an electrochemical vibration phenomenon in the oxidation of organic substances is used. It has been known for a long time that oscillations of electric potential and electric current are observed in the electrochemical oxidation reaction of organic substances, and as a reference, for example, Zeitschrift Fuhr Electrochemie 34 (1928) 256-264 (Z. El.
microchem. 34 , 256-264 (192
8)) However, in the literature, the conditions under which the vibration is stable for a long period of time have not been clarified, nor has there been any fluctuation in the vibration. The present invention clarifies the conditions such as the limitation of organic substances and the concentration of organic substances and the reaction temperature for long-term stable vibration, and provides an element that generates fluctuating vibration.

【0005】[0005]

【作用】本発明では、外部から一定の電流を電極に通じ
ることによって電位が振動することを利用している。
The present invention utilizes the fact that the potential oscillates when a constant current is externally applied to the electrodes.

【0006】その作用機構は以下の通りである。一定の
電流を通ずることによって有機物の酸化反応が進行する
と同時に、副反応によって酸化反応を阻害する化学物質
が電極表面に吸着する。その結果、電流一定の条件では
電位が増加することになる。電位が高くなると吸着して
いた阻害物質は酸化除去され、表面が活性状態になり、
電位はもとの低い電位にもどる。以上のことが繰り返さ
れて電位が振動するものと考えられる。
The mechanism of action is as follows. By passing a constant current, the oxidation reaction of the organic substance proceeds, and at the same time, a chemical substance that inhibits the oxidation reaction by a side reaction is adsorbed on the electrode surface. As a result, the potential increases under the condition that the current is constant. When the potential becomes higher, the adsorbed inhibitor is removed by oxidation, and the surface becomes active,
The potential returns to the original low potential. It is considered that the above is repeated and the potential oscillates.

【0007】上記阻害物質の生成および消滅の速度は電
位に依存しているので、振動のパターンは正弦曲線とは
異なって、非線形振動パターンとなる。周期は動作条件
に応じて0.01から1800秒の範囲で制御できる。
また、周期および振幅がゆらぐ理由は、振動に非線形性
があるためであると考えられる。
Since the rate of generation and disappearance of the inhibitor depends on the electric potential, the vibration pattern is a non-linear vibration pattern, which is different from the sinusoidal curve. The cycle can be controlled in the range of 0.01 to 1800 seconds depending on operating conditions.
Further, it is considered that the reason why the period and the amplitude fluctuate is that the vibration has nonlinearity.

【0008】以下に実施例を用いて本発明を具体的に示
す。
The present invention will be specifically described below with reference to examples.

【0009】まず、装置の全体構成について図1および
図2を用いて説明する。実用的な装置の構成は図1に示
したように、酸性溶液1を満たした容器2の中ほどに半
透膜3を設け、容器2の一方の部屋のみ酸と有機物の混
合液4とし、容器2の両方の部屋に電極5,6を差し込
んで両者の間に定電流電源7による一定電流を通電して
得られる電位の振動を電極間電圧として出力端子8に出
力する構成である。しかし、以下の実施例に用いた装置
の構成は、図1に示す装置の動作を厳密に検証するため
図2に示したように、電極を3本に分けた。、1本は試
料電極20で図1の電極5に対応する。2本目は対極2
1である。3本目は水素基準電極22で図1の電極6に
対応する。試料電極20と対極21との間に定電流電源
7による一定電流を通じ、その時に現れる試料電極20
の電位を水素基準電極22に対して出力とする構成であ
る。これらの3個の電極が酸と有機物の混合液4に浸さ
れるが、対極21と水素電極22とは酸性溶液1を収納
したパイプ23と24とを介して酸と有機物の混合液4
に浸される。パイプ23は底面のフリットガラス25を
通して電子の流れができ、パイプ24では底面の微小孔
26を通して電気的な接続ができる。パイプ24は細管
27を通して水素ガスが供給されている。この構成によ
ると電極表面の様子を詳しく調べることができるもので
ある。
First, the overall structure of the apparatus will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, a practical apparatus has a semipermeable membrane 3 in the middle of a container 2 filled with an acidic solution 1 and a mixed solution 4 of an acid and an organic material is provided only in one chamber of the container 2. The electrodes 5 and 6 are inserted into both chambers of the container 2, and a vibration of a potential obtained by passing a constant current from the constant current power supply 7 between them is output to the output terminal 8 as an inter-electrode voltage. However, in the constitution of the device used in the following examples, the electrodes were divided into three as shown in FIG. 2 in order to strictly verify the operation of the device shown in FIG. One is a sample electrode 20 and corresponds to the electrode 5 in FIG. The second one is the opposite pole 2
It is 1. The third one is the hydrogen reference electrode 22 and corresponds to the electrode 6 in FIG. A constant current from the constant current power supply 7 is passed between the sample electrode 20 and the counter electrode 21, and the sample electrode 20 that appears at that time
The potential of is output to the hydrogen reference electrode 22. These three electrodes are immersed in the mixed liquid 4 of acid and organic substance, and the counter electrode 21 and the hydrogen electrode 22 are mixed with the mixed liquid 4 of acid and organic substance through the pipes 23 and 24 containing the acidic solution 1.
Be immersed in. In the pipe 23, electrons can flow through the frit glass 25 on the bottom surface, and in the pipe 24, electrical connection can be made through the microscopic holes 26 in the bottom surface. Hydrogen gas is supplied to the pipe 24 through a thin tube 27. With this configuration, the state of the electrode surface can be examined in detail.

【0010】〈実施例1〉1リットルあたり0.5モル
の硫酸および0.1から13モルのギ酸を含む23℃の
電解液と白金電極とを用いて、ギ酸を一定電流で酸化し
た。このときの電位振動の様子を調べた結果、表1に示
すようにギ酸濃度が1リットルあたり1モルから13モ
ルのときに、1時間以上安定な電位振動が見られた。電
流値を制御することによって周期を20〜300秒の間
で制御できることが、表1よりわかる。また、周期及び
振幅はすべての場合において、図3に本発明における典
型的な電位振動パターンの例を示すように約5%ゆらい
でいた。なお、周期及び振幅
Example 1 Formic acid was oxidized at a constant current by using an electrolytic solution containing 0.5 mol of sulfuric acid and 0.1 to 13 mol of formic acid per liter at 23 ° C. and a platinum electrode. As a result of examining the state of potential oscillation at this time, as shown in Table 1, when the concentration of formic acid was 1 to 13 moles per liter, stable potential oscillation was observed for 1 hour or more. It can be seen from Table 1 that the cycle can be controlled between 20 and 300 seconds by controlling the current value. Further, the period and the amplitude fluctuated in all cases by about 5% as shown in the example of the typical potential oscillation pattern in the present invention in FIG. The period and amplitude

【0011】[0011]

【表1】 [Table 1]

【0012】はゆっくりと経時的に増減していた。[0012] was slowly increasing and decreasing over time.

【0013】〈実施例2〉実施例1において電解液の温
度を、0℃または40℃または60℃または80℃にす
ること以外は同様にして実験を行ない、表2のような結
果を得た。表1および表2から、温度、ギ酸濃度、電流
値をそれぞれ制御することによって、周期を0.7〜1
800秒の範囲で制御できることがわかる。また、振動
パターンは図3と同じく、周期および振幅に約5%のゆ
らぎがあった。
Example 2 An experiment was conducted in the same manner as in Example 1 except that the temperature of the electrolytic solution was 0 ° C., 40 ° C., 60 ° C. or 80 ° C., and the results shown in Table 2 were obtained. .. From Table 1 and Table 2, by controlling the temperature, the formic acid concentration, and the current value, respectively, the cycle is 0.7 to 1
It can be seen that the control can be performed within the range of 800 seconds. Further, the vibration pattern had fluctuations of about 5% in the period and the amplitude as in FIG.

【0014】[0014]

【表2】 [Table 2]

【0015】〈実施例3〉実施例1において、ギ酸の代
わりにホルムアルデヒドを用いて実験を行なった結果、
表3のようにホルムアルデヒド濃度が1リットルあたり
0.01〜10モルにおいて1時間以上安定な電位振動が
見られた。電流値を制御することによって周期を0.5
〜13秒の間で制御できることが、表3よりわかる。ま
た、周期および振幅はすべての場合において図3のよう
にゆらいでいたが、そのゆらぎは約2%と小さかった。
<Example 3> As a result of performing an experiment in Example 1 using formaldehyde instead of formic acid,
As shown in Table 3, stable potential oscillation was observed for 1 hour or longer at a formaldehyde concentration of 0.01 to 10 mol per liter. The cycle is set to 0.5 by controlling the current value.
It can be seen from Table 3 that control can be performed within ~ 13 seconds. The period and the amplitude fluctuated as shown in FIG. 3 in all cases, but the fluctuation was as small as about 2%.

【0016】[0016]

【表3】 [Table 3]

【0017】〈実施例4〉実施例3において電解液の温
度を、0℃または40℃または60℃にすること以外は
同様にして実験を行ない、表4のような結果を得た。表
3および表4から、
Example 4 An experiment was conducted in the same manner as in Example 3 except that the temperature of the electrolytic solution was 0 ° C., 40 ° C. or 60 ° C., and the results shown in Table 4 were obtained. From Table 3 and Table 4,

【0018】[0018]

【表4】 [Table 4]

【0019】温度、ホルムアルデヒド濃度、電流値をそ
れぞれ制御することによって、周期を0.01〜36秒
の範囲で制御できることがわかる。また、振動パターン
は図3と類似で、周期および振幅に約2%のゆらぎがあ
った。
It is understood that the cycle can be controlled in the range of 0.01 to 36 seconds by controlling the temperature, the formaldehyde concentration and the current value, respectively. Further, the vibration pattern was similar to that of FIG. 3, and the period and the amplitude had a fluctuation of about 2%.

【0020】〈実施例5〉実施例1において有機物を、
ギ酸とホルムアルデヒドの1対1混合物(それぞれ1リ
ットルあたり1モルずつ)を用いる以外は同じ条件で実
験を行なった結果、表5に示すような混合効果が見られ
た。すなわち、ギ酸だけの場合に比べて低い電流値から
安定な振動を示し、その周期は短くなる。また逆に、ホ
ルムアルデ
<Example 5> In Example 1, the organic substance was
As a result of conducting the experiment under the same conditions except that a 1: 1 mixture of formic acid and formaldehyde (1 mol per 1 liter each) was used, the mixing effect as shown in Table 5 was observed. That is, compared to the case of using formic acid alone, stable oscillation is exhibited from a low current value, and the cycle becomes short. On the contrary, Holmarde

【0021】[0021]

【表5】 [Table 5]

【0022】ヒドだけの場合に比べてその周期は長くな
り、表5では必ずしも明らかではないが、高い電流値か
ら振動を示す。ゆらぎ幅もギ酸だけの場合とホルムアル
デヒドだけの場合とのほぼ中間となった。
The period is longer than that of the case of only the ridge, and although it is not always clear in Table 5, the oscillation is shown from a high current value. The fluctuation width was almost halfway between formic acid only and formaldehyde only.

【0023】〈実施例6〉実施例5において、ホルムア
ルデヒドの濃度を1リットルあたり0.01モルと固定
してギ酸の濃度を1リットルあたり0.01モル、0.
1モル、1モルと増加させたとき、実施例5に類似した
混合効果が見られ、ギ酸濃度の増加に応じてギ酸の性質
がより強く表れた。
<Example 6> In Example 5, the concentration of formaldehyde was fixed at 0.01 mol per liter, and the concentration of formic acid was adjusted to 0.01 mol per liter.
When the amount was increased to 1 mol and 1 mol, a mixing effect similar to that in Example 5 was observed, and the property of formic acid was more strongly exhibited as the concentration of formic acid was increased.

【0024】〈実施例7〉実施例6とは逆に、ギ酸の濃
度を1リットルあたり0.1モルと固定し、ホルムアル
デヒドの濃度を1リットルあたり、0.001モル、
0.01モル、0.1モル、1モルと増加させたとき、
実施例5に類似した混合効果が見られ、ホルムアルデヒ
ドの濃度の増加に応じてホルムアルデヒドの性質がより
強く表れた。
Example 7 Contrary to Example 6, the concentration of formic acid was fixed at 0.1 mol per liter, and the concentration of formaldehyde was 0.001 mol per liter,
When increased to 0.01 mol, 0.1 mol, 1 mol,
A mixing effect similar to that of Example 5 was seen, with more pronounced formaldehyde properties with increasing formaldehyde concentration.

【0025】〈実施例8〉実施例1あるいは実施例3に
おいて、白金電極の代わりにルテニウム、またはロジウ
ム、またはパラジウム、またはオスミウム、またはイリ
ジウム、または白金とパラジウムとの合金を用いても、
実施例1あるいは実施例3と類似の結果を得た。また、
これらの結果から本実施例に述べた金属間の合金も同様
の性質を示すことは容易に類推できる。
<Embodiment 8> In the first or third embodiment, ruthenium, rhodium, palladium, osmium, iridium, or an alloy of platinum and palladium may be used instead of the platinum electrode.
Results similar to those of Example 1 or Example 3 were obtained. Also,
From these results, it can be easily inferred that the intermetallic alloy described in this example also exhibits similar properties.

【0026】〈実施例9〉実施例1あるいは実施例3に
おいて、希硫酸濃度として1リットルあたり0.5モル
の代わりに0.01モル、または0.1モル、または5
モルの溶液を用いても、この順序で安定な電位振動が出
やすい傾向はあるものの、類似の結果を得た。また、希
硫酸の代わりに過塩素酸を同じ濃度で用いた場合もほぼ
同じ結果を得た。
<Embodiment 9> In Embodiment 1 or Embodiment 3, the concentration of dilute sulfuric acid is 0.01 mol, or 0.1 mol, or 5 instead of 0.5 mol per liter.
Even when a molar solution was used, stable potential oscillation tended to occur in this order, but similar results were obtained. Also, almost the same results were obtained when perchloric acid was used at the same concentration instead of dilute sulfuric acid.

【0027】〈実施例10〉実施例1において、電気化
学装置全体の大きさを10mm立方にし各電極の太さを
1mmにしても、ほぼ同様の結果を得た。
<Example 10> In Example 1, substantially the same result was obtained even if the size of the entire electrochemical device was 10 mm cubic and the thickness of each electrode was 1 mm.

【0028】[0028]

【発明の効果】本発明によれば、ファジー性やf分の1
ゆらぎを有する電気制御が一つの電気化学的素子で行な
えるので、装置の簡略化およびコストダウンの効果があ
る。
EFFECTS OF THE INVENTION According to the present invention, fuzzyness and 1 / f
Since electric control having fluctuations can be performed by one electrochemical element, there is an effect of simplification of the device and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における実用的な全体構成。FIG. 1 is a practical overall configuration of the present invention.

【図2】実験に用いた測定装置の全体構成。FIG. 2 is an overall configuration of the measuring device used in the experiment.

【図3】本発明における典型的な電位振動パターン。FIG. 3 is a typical potential oscillation pattern according to the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸性溶液を満たした容器、この容器の中ほ
どに設けた半透膜、前記半透膜で仕切られた一方の部屋
の酸性溶液にのみ有機物を混合し、両方の部屋に電極を
差し込んで両者の間に一定電流を通電する装置であっ
て、前記電流値、前記酸性溶液の温度、混合する有機物
の濃度の三者のうち二者を決め三番目の物理量に範囲を
持たせることによって電位振動を長期安定に生じさせる
ことを特徴とする非線形振動子。
1. A container filled with an acidic solution, a semipermeable membrane provided in the middle of the container, and an organic solution mixed only in the acidic solution in one of the chambers partitioned by the semipermeable membrane, and electrodes in both chambers. Is a device for inserting a constant current between the two by inserting an electric current value, the temperature of the acidic solution, and the concentration of the organic matter to be mixed, and decides two of them to give a range to the third physical quantity. A non-linear oscillator characterized by causing potential oscillation stably over a long period of time.
【請求項2】請求項1において、ギ酸またはホルムアル
デヒドまたはこれらの混合物を有機物として用いること
を特徴とする非線形振動子。
2. A nonlinear oscillator according to claim 1, wherein formic acid, formaldehyde or a mixture thereof is used as an organic substance.
【請求項3】請求項1において、ルテニウムまたはロジ
ウムまたはパラジウムまたはオスミウムまたはイリジウ
ムまたは白金またはこれらの合金を電極として用いるこ
とを特徴とする非線形振動子。
3. A nonlinear oscillator according to claim 1, wherein ruthenium, rhodium, palladium, osmium, iridium, platinum, or an alloy thereof is used as an electrode.
【請求項4】請求項1において、1リットルあたり0.
01から5モルの濃度を有する硫酸または過塩素酸の水
溶液を電解液として用いることを特徴とする非線形振動
子。
4. The method according to claim 1, wherein 0.
A non-linear oscillator characterized in that an aqueous solution of sulfuric acid or perchloric acid having a concentration of 01 to 5 mol is used as an electrolytic solution.
【請求項5】請求項1において、ギ酸濃度が1リットル
あたり0.1から13モルであること、またはホルムア
ルデヒド濃度が1リットルあたり0.01から10モル
であることを特徴とする非線形振動子。
5. The non-linear oscillator according to claim 1, wherein the formic acid concentration is 0.1 to 13 mol per liter, or the formaldehyde concentration is 0.01 to 10 mol per liter.
JP3257471A 1991-10-04 1991-10-04 Nonlinear vibrator Pending JPH0598483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257471A JPH0598483A (en) 1991-10-04 1991-10-04 Nonlinear vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257471A JPH0598483A (en) 1991-10-04 1991-10-04 Nonlinear vibrator

Publications (1)

Publication Number Publication Date
JPH0598483A true JPH0598483A (en) 1993-04-20

Family

ID=17306771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257471A Pending JPH0598483A (en) 1991-10-04 1991-10-04 Nonlinear vibrator

Country Status (1)

Country Link
JP (1) JPH0598483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021507987A (en) * 2017-12-19 2021-02-25 レプソル,エス.エー. Electrochemical process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021507987A (en) * 2017-12-19 2021-02-25 レプソル,エス.エー. Electrochemical process

Similar Documents

Publication Publication Date Title
Lee et al. Electrochemical oscillations in the methanol oxidation on Pt
Cooper et al. Mass transport in sonovoltammetry with evidence of hydrodynamic modulation from ultrasound
Krstajić et al. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism
Gordon et al. Application of an electrochemical quartz crystal microbalance to a study of water adsorption at gold surfaces in acidic media
Rao et al. Studies of electrooxidation of dextrose in neutral media
Yosypchuk et al. Use of solid amalgam electrodes in nucleic acid analysis
Razmi-Nerbin et al. Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine
Tian et al. Phenomenology of oscillatory electro-oxidation of formic acid at Pd: role of surface oxide films studied by voltammetry, impedance spectroscopy and nanogravimetry
US4786373A (en) Voltammetric method of measuring
Van Berkel Insights into analyte electrolysis in an electrospray emitter from chronopotentiometry experiments and mass transport calculations
Holt et al. Sonoelectrochemistry at platinum and boron-doped diamond electrodes: achieving ‘fast mass transport’for ‘slow diffusers’
Gao et al. Electrochemical impedance spectroscopy of cobalt (II)-hexacyanoferrate film modified electrodes
JPS638423B2 (en)
Jusys et al. Electrochemical quartz crystal microgravimetry of gold in perchloric and sulfuric acid solutions
Tsionsky et al. Response of the EQCM for electrostatic and specific adsorption on gold and silver electrodes
Bozdech et al. 1/f 2 noise in bistable electrocatalytic reactions on mesoscale electrodes
JPH0598483A (en) Nonlinear vibrator
Kosohin et al. Electrochemical oxidation of thiocyanate on metal oxide electrodes
Bishop et al. Anodic generation of cerium (IV). Charge-transfer kinetic parameters and conditional potentials at platinum, gold and glassy carbon
Compton et al. An improved cell for in-situ electrochemical ESR
Li et al. Electrochemical quartz crystal microbalance studies of potentiodynamic electrolysis of aqueous chloride solution: surface processes and evolution of H2 and Cl2 gas bubbles
Kreysa et al. Experimental study of the gas bubble effects on the IR drop at inclined electrodes
Neshkova et al. Real-time stoichiometry monitoring of electrodeposited chalcogenide films via coulometry and electrochemical quartz-crystal microgravimetry with hydrodynamic control. Ag2+ δSe case
Okamoto et al. Potential oscillations related to proton concentration in formaldehyde oxidation
Pezzatini et al. Influence of specific adsorption of reactant and product upon charge-transfer processes in polarography. The azobenzene–hydrazobenzene system