JPH0598476A - Method for preventing corrosion of metal - Google Patents

Method for preventing corrosion of metal

Info

Publication number
JPH0598476A
JPH0598476A JP28911391A JP28911391A JPH0598476A JP H0598476 A JPH0598476 A JP H0598476A JP 28911391 A JP28911391 A JP 28911391A JP 28911391 A JP28911391 A JP 28911391A JP H0598476 A JPH0598476 A JP H0598476A
Authority
JP
Japan
Prior art keywords
metal
potential
corrosion
pitting
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28911391A
Other languages
Japanese (ja)
Inventor
Shoei Hirano
昭英 平野
Takao Tsuneki
孝男 常木
Yoshihiko Endo
由彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP28911391A priority Critical patent/JPH0598476A/en
Publication of JPH0598476A publication Critical patent/JPH0598476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To efficiently prevent the corrosion of a metal in a system in which the metal is kept in contact with water, especially in a system in which water is passed through a copper pipe and to make this method fit for a system using a heat transfer tube for a heat exchanger made of a copper pipe, copper piping for hot water supply or a copper pipe for an air conditioner. CONSTITUTION:In order to prevent the corrosion of a metal in a system in which the metal is kept in contact with water, the natural potential of the metal is monitored and a corrosion inhibitor is added to the system so that the potential is reduced to below pitting corrosion potential.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属の腐食防止方法の改
良に関するものである。さらに詳しくいえば、本発明
は、金属と水とが接触している系、特に銅管内に通水さ
れている系において、金属の自然電位をモニタリング
し、該電位が孔食電位未満となるように腐食抑制剤を添
加して金属の腐食を効率よく防止する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for preventing metal corrosion. More specifically, the present invention monitors the natural potential of a metal in a system in which a metal and water are in contact with each other, particularly a system in which water is passed through a copper tube, and the potential becomes less than the pitting potential. As described above, the present invention relates to a method for efficiently preventing metal corrosion by adding a corrosion inhibitor.

【0002】[0002]

【従来の技術】従来、銅は他の金属材料と比較して伝熱
性及び耐食性に優れていることから、例えば熱交換器用
伝熱管や給湯用配管などの材料として広く利用されてい
る。しかしながら、このような用途に用いられる銅管に
おいては、時として孔食が生じ、漏水することがあるな
ど、好ましくない事態を招来する。このような銅の孔食
現象についての研究は、特にヨーロッパにおいて古くか
ら行われ、銅の自然電位がある値以上に達すると孔食が
生じることが知られており、そしてこの電位は孔食電位
と呼ばれている。例えばブルッセル市水道水を用いた研
究では、該孔食電位は金属表面の幾何学的形状によって
異なり、飽和甘汞電極(SCE)を基準とした場合、内
径16mmの銅管では170mV(SCE)、直径0.4mm
の銅線では150mV、直径0.2mmの銅線では100mV
(SCE)であることが報告されている「M.Pour
baix,Corrosion,第25巻、第267ペ
ージ、1969年」。また、温度60℃の給湯水が流れ
る内径11mmの銅管の孔食電位は150mV(SCE)で
あることも報告されている「馬場ら、防食技術、第30
巻、第113ページ、1981年」。さらに、給湯水に
フィチン酸を連続的に添加することにより銅管の自然電
位が150mV以下に抑えられ、孔食の発生が防止できる
こと、及びすでに孔食が発生している銅管の電位も次第
に下がることも報告されている「馬場ら、防食技術、第
34巻、第1号、第10ページ、1985年」。しかし
ながら、このように銅についての孔食電位は知られてい
るものの、実際の系において、金属の自然電位を測定し
て腐食抑制剤の添加を制御し、孔食を防止する思想は提
案されたことがなかった。
2. Description of the Related Art Conventionally, copper has been widely used as a material for heat transfer pipes for heat exchangers and pipes for hot water supply, for example, because it has excellent heat transfer properties and corrosion resistance as compared with other metal materials. However, in a copper pipe used for such an application, pitting corrosion sometimes occurs and water leaks, which causes an unfavorable situation. Studies of such copper pitting phenomena have been conducted for a long time, especially in Europe, and it is known that when the natural potential of copper reaches a certain value or more, pitting corrosion occurs, and this potential is the pitting potential. It is called. For example, in a study using city water in Brussel, the pitting potential differs depending on the geometrical shape of the metal surface, and when the saturated sweet-potato electrode (SCE) is used as a reference, a copper tube having an inner diameter of 16 mm is 170 mV (SCE), Diameter 0.4 mm
150 mV for copper wire and 100 mV for 0.2 mm diameter copper wire
(SCE) has been reported to be "M. Pour.
baix, Corrosion, Vol. 25, pp. 267, 1969 ". It has also been reported that the pitting corrosion potential of a copper tube having an inner diameter of 11 mm in which hot water having a temperature of 60 ° C flows is 150 mV (SCE).
Vol. 113, 1981 ". Furthermore, by continuously adding phytic acid to the hot water, the natural potential of the copper pipe can be suppressed to 150 mV or less, the occurrence of pitting corrosion can be prevented, and the potential of the copper pipe where pitting corrosion has already occurred gradually. "Baba et al., Anticorrosion Technology, Volume 34, No. 1, Page 10, 1985" has also been reported to decline. However, although the pitting potential for copper is known as described above, in an actual system, the idea of preventing corrosion by controlling the addition of the corrosion inhibitor by measuring the spontaneous potential of the metal was proposed. Never happened.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような事
情のもとで、金属と水とが接触している系、特に銅管内
に通水されている系において、金属の腐食を効率よく防
止する方法を提供することを目的としてなされたもので
ある。
Under the above circumstances, the present invention efficiently corrodes metal in a system in which metal and water are in contact, especially in a system in which water is passed through a copper pipe. The purpose of the method is to provide a method for preventing it.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記目的を
達成するために鋭意研究を重ねた結果、金属と水とが接
触している系、特に銅管内に通水されている系におい
て、金属の自然電位をモニタリングしながら、その値が
孔食電位未満となるように系に腐食抑制剤を添加するこ
とにより、その目的を達成しうることを見い出し、この
知見に基づいて本発明を完成するに至った。すなわち、
本発明は、金属と水とが接触している系において、腐食
抑制剤を添加して金属の腐食を防止するに当たり、該金
属の自然電位をモニタリングし、その値が孔食電位未満
となるように、系に腐食抑制剤を添加することを特徴と
する金属の腐食防止方法を提供するものである。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have found that a system in which a metal and water are in contact with each other, particularly a system in which water is passed through a copper pipe. In, while monitoring the self-potential of the metal, it was found that the object can be achieved by adding a corrosion inhibitor to the system so that the value becomes less than the pitting potential, and the present invention based on this finding. Has been completed. That is,
The present invention, in a system in which a metal and water are in contact with each other, adds a corrosion inhibitor to prevent corrosion of the metal, monitors the spontaneous potential of the metal, and makes the value less than the pitting potential. In addition, the present invention provides a method for preventing metal corrosion, which comprises adding a corrosion inhibitor to the system.

【0005】以下、本発明を詳細に説明する。本発明に
おける孔食電位は、金属と水とが接触している系におい
て、該金属に孔食が生じ始める金属の自然電位のことで
あって、金属の種類、金属表面の幾何学的形状、接触し
ている水の性質及び温度などにより左右される。したが
って、本発明方法を適用する場合には、あらかじめ該方
法が適用される系における孔食電位を求めておくことが
必要である。孔食電位を求めるための金属の自然電位の
測定方法については特に制限はなく、従来公知の方法、
例えば飽和銀・塩化銀電極(飽和甘汞電極)や飽和カロ
メル電極などを使用する方法を用いることができる。
The present invention will be described in detail below. The pitting potential in the present invention is a spontaneous potential of a metal in which pitting corrosion starts to occur in a system in which a metal and water are in contact with each other, and the kind of the metal, the geometrical shape of the metal surface, It depends on the nature and temperature of the contacting water. Therefore, when applying the method of the present invention, it is necessary to previously determine the pitting potential in the system to which the method is applied. There is no particular limitation on the method for measuring the spontaneous potential of the metal for determining the pitting potential, a conventionally known method,
For example, a method using a saturated silver / silver chloride electrode (saturated sweet potato electrode) or a saturated calomel electrode can be used.

【0006】本発明方法においては、金属と水とが接触
している系における該金属の自然電位を連続的又は間欠
的にモニタリングし、その値が前記のようにして求めら
れた孔食電位未満となるように腐食抑制剤を添加するこ
とが必要である。自然電位のモニタリング方法としては
前記の各種電極を用いることができる。腐食抑制剤の添
加は連続的に行ってもよいし、間欠的に行ってもよく、
また、自然電位を検出し、自動添加方式により添加して
もよい。該腐食抑制剤の種類については自然電位を降下
させるものなら特に制限はなく、金属の種類に応じて適
宜選ばれる。例えば本発明方法が適用される金属が銅で
ある場合には、ヒドラジン、亜硫酸塩、ハイドロキノン
やL−アスコルビン酸、エリソルビン酸などの脱酸素
剤、ホスホン酸類やペンタエチレンヘキサミンなどのポ
リエチレンポリアミン、チオ硫酸塩、プロピオンアミ
ド、グリシン、チオ尿素、チオグリコール酸などのキレ
ート剤などが好ましく用いられる。本発明方法が適用さ
れる、金属と水とが接触している系としては、特に銅管
内に通水されている系が好ましく、該銅管としては、例
えば熱交換器用伝熱管、給湯用配管、空調機器用配管な
どが挙げられる。
In the method of the present invention, the spontaneous potential of the metal in a system in which the metal and water are in contact is continuously or intermittently monitored, and the value is less than the pitting potential determined as described above. It is necessary to add a corrosion inhibitor so that The various electrodes described above can be used as a method for monitoring the natural potential. The addition of the corrosion inhibitor may be performed continuously or intermittently,
Alternatively, the self-potential may be detected and added by an automatic addition method. The type of the corrosion inhibitor is not particularly limited as long as it lowers the natural potential, and is appropriately selected depending on the type of metal. For example, when the metal to which the method of the present invention is applied is copper, hydrazine, sulfite, oxygen scavengers such as hydroquinone, L-ascorbic acid, and erythorbic acid, polyethylene polyamines such as phosphonic acids and pentaethylene hexamine, and thiosulfate. Chelating agents such as salts, propionamide, glycine, thiourea and thioglycolic acid are preferably used. As the system in which the method of the present invention is applied and the metal and water are in contact, a system in which water is passed through a copper pipe is particularly preferable, and examples of the copper pipe include a heat transfer pipe for a heat exchanger and a hot water supply pipe. Examples include piping and piping for air conditioning equipment.

【0007】[0007]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらの例によってなんら限定される
ものではない。なお、38台のエアハンドリングユニッ
トの内、29台に設置後約3年でユニットの熱交換器銅
コイルに孔食が生じ、漏洩した蓄熱冷水系の現場で本発
明方法を適用することを想定して試験を行った。現場の
熱交換器銅コイルは内径14.88mm、肉厚0.5mmのリ
ン脱酸銅管が使用されており、その長さは大型ユニット
では502mであった。
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto. It is assumed that, out of 38 air handling units, the method of the present invention is applied to the site of the stored cold water system where pitting occurs in the heat exchanger copper coil of the unit about 3 years after installation in 29 units. And conducted the test. The copper coil of the heat exchanger in the field used the phosphorus deoxidized copper pipe of inner diameter 14.88 mm and wall thickness 0.5 mm, and the length was 502 m in the large unit.

【0008】比較例1 図1の概略図に示す試験装置を用いて、腐食抑制剤を使
用しない場合の銅管の自然電位の変化と孔食発生との関
係を求めた。冷水(12℃)の戻り配管5にヘッダーを
付け、内径14.88mm、肉厚0.5mm、長さ2mのリン
脱酸銅管1を並列に接続し、バルブ4で管内を流れる流
速を0.3m/sec、1m/sec、1.5m/secに調整す
るとともに、蓄熱槽6にKCl飽和銀・塩化銀照合電極
2を浸漬し、銅管の自然電位を電位差計3により毎日1
回測定した。試験期間は56日間である。各流速におけ
る試験期間と銅管の自然電位との関係を図2に示す。図
2から分かるように、いずれの流速の場合も自然電位は
190mV(飽和銀・塩化銀電極)以上に達し、孔食が生
じていた。一方、銅管を5cmに区切り、各区間の最大孔
食深さを求め、こうして得られたデータを極値統計手法
により処理した(本手法については、例えば(社)腐食防
食協会編「装置材料の寿命予測入門」を参照のこと)。
その結果、銅管の長さが502mの場合について最大孔
食深さを推定すると、0.3m/secの場合、243μm
となり、56日間で肉厚の44%に孔食が達することが
推定された。
Comparative Example 1 Using the test apparatus shown in the schematic view of FIG. 1, the relationship between the change in spontaneous potential of a copper pipe and the occurrence of pitting corrosion when no corrosion inhibitor was used was determined. A header is attached to the return pipe 5 for cold water (12 ° C.), a phosphorus deoxidized copper pipe 1 having an inner diameter of 14.88 mm, a wall thickness of 0.5 mm and a length of 2 m is connected in parallel, and a valve 4 is used to reduce the flow velocity in the pipe. Adjusting to 0.3 m / sec, 1 m / sec, 1.5 m / sec, dipping KCl saturated silver / silver chloride reference electrode 2 in heat storage tank 6, and measuring the natural potential of copper tube 1 by potentiometer 3 every day.
Measured twice. The test period is 56 days. The relationship between the test period and the natural potential of the copper tube at each flow rate is shown in FIG. As can be seen from FIG. 2, the spontaneous potential reached 190 mV (saturated silver / silver chloride electrode) or more at any flow rate, and pitting corrosion occurred. On the other hand, the copper pipe is divided into 5 cm, the maximum pitting depth of each section is obtained, and the data obtained in this way is processed by the extreme value statistical method. Life Prediction Primer ").
As a result, when the maximum pit depth was estimated for a copper pipe length of 502 m, it was 243 μm for 0.3 m / sec.
Therefore, it was estimated that pitting corrosion reaches 44% of the wall thickness in 56 days.

【0009】実施例1 比較例1と同様の試験装置を用い、比較例1と同様にし
て、腐食抑制剤を使用した場合の自然電位の変化と孔食
深さとの関係を求めた。なお、腐食抑制剤として、ヒド
ラジンを用い、試験期間は578日間とした。試験期間
と自然電位との関係を図3に示す。図3において(a)
は流速が1m/secの場合、(b)は0.3m/secの場
合である。図3から分かるように、流速が1m/secで
は腐食抑制剤の添加により、自然電位は190mV(飽和
銀・塩化銀電極)未満に抑制され、578日間の試験を
終了したのち、銅管を半割りにし、表面の腐食状況を観
察したが、金属光沢を示しており、孔食は認められなか
った。一方、流速が0.3m/secでは1回の腐食抑制剤
の添加では不十分で、試験開始初期に自然電位は190
mv(飽和銀・塩化銀電極)以上になり孔食が生じた。し
かし2回目の添加により、自然電位は190mV未満とな
り、その後は100mV(飽和銀・塩化銀電極)前後の電
位を示した。また、104日目、263日目、578日
目に2m銅管の一部を切り出し、孔食深さの測定を行っ
た。5cmの区間の最大孔食深さを求め、前述と同様に極
値統計手法により処理した結果から、銅管の長さが50
2mの場合について最大孔食深さを推定すると、104
日では35μm、263日間で43μm、578日間で
66μmとなった。また、孔食深さYの進行が経過日数
Tに対して式Y=aTb(ただし、aは5、bは0.4で
ある)に従って進行するものと仮定し、肉厚0.5mmの
銅管が貫通するに要する期間を推定すると30年以上と
なった。この結果より、孔食の進行は極めて遅いとみな
すことができる。なお、実際の系において本防食方法を
適用して約3年近くなるが、その後銅コイルの孔食によ
る漏洩は再発していない。したがって、自然電位をモニ
タリングし、自然電位の挙動に応じて腐食抑制剤を添加
し、金属の自然電位を孔食電位未満に制御することによ
り、孔食の進行を抑制する本発明方法は、金属の腐食防
止方法として極めて有効であることが分かる。
Example 1 Using the same test apparatus as in Comparative Example 1, the relationship between the change in spontaneous potential and the pitting depth when a corrosion inhibitor was used was determined in the same manner as in Comparative Example 1. In addition, hydrazine was used as a corrosion inhibitor, and the test period was 578 days. The relationship between the test period and the natural potential is shown in FIG. In FIG. 3, (a)
Shows the case where the flow velocity is 1 m / sec, and (b) shows the case where it is 0.3 m / sec. As can be seen from Fig. 3, at a flow rate of 1 m / sec, the spontaneous potential was suppressed to less than 190 mV (saturated silver / silver chloride electrode) by the addition of a corrosion inhibitor, and after the test for 578 days was completed, the copper tube was cut into half. Although the surface was observed for corrosion, it showed metallic luster and no pitting corrosion was observed. On the other hand, when the flow velocity is 0.3 m / sec, it is not enough to add the corrosion inhibitor once, and the spontaneous potential is 190 at the beginning of the test.
Pitting corrosion occurred above mv (saturated silver / silver chloride electrode). However, by the second addition, the spontaneous potential became less than 190 mV, and thereafter, the potential was around 100 mV (saturated silver / silver chloride electrode). Further, on the 104th day, the 263th day, and the 578th day, a part of the 2m copper pipe was cut out and the pitting depth was measured. The maximum depth of pitting in the 5 cm section was calculated and processed by the extreme value statistical method in the same manner as described above.
Estimating the maximum pit depth for 2m is 104
It was 35 μm by day, 43 μm by 263 days, and 66 μm by 578 days. Further, assuming that the pitting depth Y progresses in accordance with the equation Y = aT b (where a is 5 and b is 0.4) with respect to the elapsed days T, the thickness of 0.5 mm The estimated time required for the copper pipe to penetrate is over 30 years. From this result, it can be considered that the progress of pitting corrosion is extremely slow. It should be noted that the corrosion prevention method was applied to an actual system for about 3 years, but thereafter, leakage due to pitting corrosion of the copper coil did not recur. Therefore, by monitoring the self-potential, adding a corrosion inhibitor according to the behavior of the self-potential, by controlling the self-potential of the metal to less than the pitting potential, the method of the present invention for suppressing the progress of pitting corrosion, metal It can be seen that it is extremely effective as a method of preventing corrosion.

【0010】[0010]

【発明の効果】本発明方法は、金属と水とが接触してい
る系、特に銅管内に通水されている系において、該金属
の自然電位をモニタリングし、その値が孔食電位未満に
なるように系に腐食抑制剤を添加する方法であって、極
めて効果的に金属の腐食を防止することができる。本発
明方法は、例えば銅管から成る熱交換器用伝熱管や給湯
用配管、さらには空調機器用銅管などを用いる系に好適
に適用することができる。
INDUSTRIAL APPLICABILITY The method of the present invention monitors the self-potential of a metal in a system in which a metal and water are in contact with each other, particularly a system in which water is passed through a copper pipe, and the value is less than the pitting potential. It is a method of adding a corrosion inhibitor to the system so that the metal corrosion can be prevented very effectively. INDUSTRIAL APPLICABILITY The method of the present invention can be suitably applied to a system using, for example, a heat exchanger tube for a heat exchanger, a hot water supply tube made of a copper tube, and a copper tube for an air conditioner.

【0011】[0011]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施例及び比較例で用いた試
験装置の概略図である。
FIG. 1 is a schematic diagram of a test apparatus used in Examples and Comparative Examples of the present invention.

【0012】[0012]

【図2】図2は、比較例1における試験期間と銅管の自
然電位との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the test period and the natural potential of the copper tube in Comparative Example 1.

【0013】[0013]

【図3】図3は、実施例1における試験期間と銅管の自
然電位との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the test period and the natural potential of the copper tube in Example 1.

【0014】[0014]

【符号の説明】[Explanation of symbols]

1 銅管 2 電極 3 電位差計 4 バルブ 5 冷水戻り配管 6 蓄熱槽 1 Copper Tube 2 Electrode 3 Potentiometer 4 Valve 5 Cold Water Return Pipe 6 Heat Storage Tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属と水とが接触している系において、腐
食抑制剤を添加して金属の腐食を防止するに当たり、該
金属の自然電位をモニタリングし、その値が孔食電位未
満となるように、系に腐食抑制剤を添加することを特徴
とする金属の腐食防止方法。
1. In a system in which a metal and water are in contact with each other, when a corrosion inhibitor is added to prevent corrosion of the metal, the spontaneous potential of the metal is monitored and the value becomes less than the pitting potential. As described above, a method for preventing metal corrosion, which comprises adding a corrosion inhibitor to the system.
JP28911391A 1991-10-08 1991-10-08 Method for preventing corrosion of metal Pending JPH0598476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28911391A JPH0598476A (en) 1991-10-08 1991-10-08 Method for preventing corrosion of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28911391A JPH0598476A (en) 1991-10-08 1991-10-08 Method for preventing corrosion of metal

Publications (1)

Publication Number Publication Date
JPH0598476A true JPH0598476A (en) 1993-04-20

Family

ID=17738956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28911391A Pending JPH0598476A (en) 1991-10-08 1991-10-08 Method for preventing corrosion of metal

Country Status (1)

Country Link
JP (1) JPH0598476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075388A (en) * 2001-09-03 2003-03-12 Kurita Water Ind Ltd Method of monitoring local corrosion in carbon steel, and method of preventing local corrosion in carbon steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141393A (en) * 1982-02-15 1983-08-22 Mitsubishi Heavy Ind Ltd Method for preventing stress corrosion cracking
JPS61186486A (en) * 1985-02-13 1986-08-20 シーメンス、アクチエンゲゼルシヤフト Method and apparatus for preventing corrosion of steam generator
JPS63238291A (en) * 1987-03-26 1988-10-04 Mitsubishi Alum Co Ltd Method for preventing pitting corrosion of aluminum or aluminum alloy material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141393A (en) * 1982-02-15 1983-08-22 Mitsubishi Heavy Ind Ltd Method for preventing stress corrosion cracking
JPS61186486A (en) * 1985-02-13 1986-08-20 シーメンス、アクチエンゲゼルシヤフト Method and apparatus for preventing corrosion of steam generator
JPS63238291A (en) * 1987-03-26 1988-10-04 Mitsubishi Alum Co Ltd Method for preventing pitting corrosion of aluminum or aluminum alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075388A (en) * 2001-09-03 2003-03-12 Kurita Water Ind Ltd Method of monitoring local corrosion in carbon steel, and method of preventing local corrosion in carbon steel
JP4581306B2 (en) * 2001-09-03 2010-11-17 栗田工業株式会社 Carbon steel local corrosion monitoring method and carbon steel local corrosion prevention method

Similar Documents

Publication Publication Date Title
Syrett Erosion-corrosion of copper-nickel alloys in sea water and other aqueous environments—a literature review
US2529177A (en) Corrosion and tuberculation inhibition in water systems
US3248269A (en) Scale removal
JP3431165B2 (en) Control of carbon dioxide corrosion of metals
JPH0141705B2 (en)
JPH0598476A (en) Method for preventing corrosion of metal
JP2005036060A (en) Cold heat transportation medium
JPH06212459A (en) Method for suppressing corrosion and living organism in cooling water system containing copper and copper alloy
JP2004331935A (en) Cold versus warm transport medium
EP0866148B1 (en) Method for inhibiting corrosion in water systems
Ezuber et al. A review of corrosion failures in shell and tube heat exchangers: roots and advanced counteractive
US2224095A (en) Tube for heat exchanging apparatus
JPH0561558B2 (en)
US3963472A (en) Process for preventing corrosion by incorporative soluble metal chromates in fertilizer solutions
JP3362434B2 (en) Pitting corrosion inhibitor for copper
JP4089648B2 (en) Corrosion prevention method
JPH0382783A (en) Method for preventing corrosion in internal surface of stainless steel tube
JP3945202B2 (en) Corrosion prevention method
JP3064093B2 (en) Corrosion protection for stainless steel piping flanges
Booth et al. Corrosion behaviour of aluminium in fresh waters with special reference to pipelines
WO1996011169A1 (en) Composition and method for inhibiting chloride-induced corrosion of and limescale formation on ferrous metals and alloys
JP2006063366A (en) Corrosion prevention method for carbon steel piping of heat exchanger
ME Controlling corrosion in marine refrigeration systems
Drugli et al. Cathodic Protection of Stainless Steel AISI 316L in Sea Water Systems. Theoretical Considerations and Practical Experience
JP3203797B2 (en) Corrosion protection for copper and iron materials