JPH0598269A - Prevention of blockage of slurry preheater - Google Patents

Prevention of blockage of slurry preheater

Info

Publication number
JPH0598269A
JPH0598269A JP25921391A JP25921391A JPH0598269A JP H0598269 A JPH0598269 A JP H0598269A JP 25921391 A JP25921391 A JP 25921391A JP 25921391 A JP25921391 A JP 25921391A JP H0598269 A JPH0598269 A JP H0598269A
Authority
JP
Japan
Prior art keywords
catalyst
coal
liquefaction
slurry
preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25921391A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Hayashi
重嘉 林
Nobuhiro Tamura
亘弘 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP25921391A priority Critical patent/JPH0598269A/en
Publication of JPH0598269A publication Critical patent/JPH0598269A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To prevent the blockage of a slurry preheater by using a pre-sulfided metal oxide as a catalyst for a coal liquefaction reaction. CONSTITUTION:A metal oxide (e.g. iron ore) as a catalyst, an oil (e.g. crystal- free anthracene oil) as a medium and a promoter (e.g. powdered sulfur) are fed to a preparation tank and subjected to pre-sulfidation. The promoter sulfur is used in an amount to give an atomic ratio to the iron atoms of the catalyst of 0.2-1. The presulfidation is performed for at least 15min at 50-500 deg.C in a hydrogen stream. After the presulfidation, powdered coal and powdered sulfur are mixed into the mixture to form a slurry. The coal (Pacific coal which can pass a 100-mesh screen) is used in a concentration of 30-50% and the catalyst is used in an amount to give an Fe/DAF coal weight ratio of 0.02-0.03 in the presulfidation. The promoter sulfur in the liquefaction is used in an amount to give an S/Fe atomic ratio of 0.02-3. The liquefaction is performed for 30-90min at 420-460 deg.C under a reaction pressure of 170-200kg/cm<2> in a hydrogen stream. According to this process, the liquefier can be operated continuously for a long time without blocking the slurry preheater.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石炭の液化におけるス
ラリ−予熱器の閉塞防止方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing clogging of a slurry preheater in coal liquefaction.

【0002】[0002]

【従来の技術】近年、燃料油資源等の問題や化学原料の
提供、化学品多様化、またエネルギ−多様化の中で直接
的に石油代替物を供給できる利点があるところから、石
炭液化の技術開発は必要不可欠である。この石炭液化に
関しては、石炭を粉砕して加熱し、必要に応じて水素を
加えてガスおよび固形物を含む液化物を得る方法が長年
研究され、多くの技術が知られている。
2. Description of the Related Art In recent years, coal liquefaction has been advantageous because it has the advantage of directly supplying petroleum alternatives in the face of problems such as fuel oil resources, provision of chemical raw materials, diversification of chemical products, and energy diversification. Technology development is essential. Regarding this coal liquefaction, a method of pulverizing coal, heating it, and adding hydrogen as necessary to obtain a liquefied product containing a gas and a solid substance has been studied for many years, and many techniques are known.

【0003】現在でも技術の開発は非常に盛んであり、
多くの新しい技術が開発されつつある。しかし、合成原
油の製造方式と液化収率等に見られる経済性で、また良
質の燃料油やガソリンあるいは化学原料油を効率よく得
る点で、まだ多くの問題点がある。例えば、高価な触媒
や装置の腐食または公害上望ましくない触媒の添加が必
要であったり、反応中に炭化物が生成したりすることで
ある。
Even today, the technological development is very active,
Many new technologies are being developed. However, there are still many problems in terms of the economical efficiency seen in the synthetic crude oil production method and the liquefaction yield, and the efficient production of high-quality fuel oil, gasoline or chemical feedstock oil. For example, it may be necessary to add expensive catalysts or catalysts that are not desirable in terms of pollution or pollution, or to form carbides during the reaction.

【0004】石炭液化反応は非常に複雑であり、大別す
ると石炭の熱分解、生成したフリ−ラジカルの水素化、
芳香族環の開裂等を伴う水素化分解および水素化の三段
階にわかれる。従って、これらの反応をうまく調節する
には、石炭反応器中の反応条件、特にそのうち触媒の選
択は液化油の品質を決めるための重要な因子であるのは
勿論のこと石炭液化プロセスにおいて選択的な水素化と
水素化分解には触媒の寄与が最も大きいと言える。この
ためその化学種や物理的形状を変えた多種の触媒が添加
方法も含めて開発されてきた。
The coal liquefaction reaction is very complicated, and is roughly classified into thermal decomposition of coal, hydrogenation of free radicals produced,
It is divided into three steps, hydrogenolysis and hydrogenation, which involve the cleavage of aromatic rings. Therefore, in order to control these reactions well, the reaction conditions in the coal reactor, in particular the choice of the catalyst among them, is of course an important factor in determining the quality of the liquefied oil, and of course it is a selective factor in the coal liquefaction process. It can be said that the contribution of the catalyst is the largest in the complete hydrogenation and hydrocracking. For this reason, various catalysts having different chemical species and physical shapes have been developed, including addition methods.

【0005】従来公知である石炭液化の触媒は非常に多
いが、中でも代表的なものに塩化亜鉛、塩化スズ、塩化
アルミ、塩化ニッケル、塩化鉄等の例が多く、これらは
金属ハロゲン化触媒に属する。硫化物では硫化スズ、硫
化モリブデン、硫化鉛、硫化銅、硫化亜鉛、硫化ニッケ
ル、酸化物では酸化ニッケル、シリカ、アルミナ、酸化
鉄、酸化コバルト、酸化モリブデン、酸化チタン、酸化
タングステン、酸化バナジウム等があり、またそれらの
混合物や赤泥、鉄鉱石等の使用が知られている。
There are a great number of conventionally known coal liquefaction catalysts, but among them, there are many typical examples of zinc chloride, tin chloride, aluminum chloride, nickel chloride, iron chloride, etc. Belong to For sulfides, tin sulfide, molybdenum sulfide, lead sulfide, copper sulfide, zinc sulfide, nickel sulfide, for oxides nickel oxide, silica, alumina, iron oxide, cobalt oxide, molybdenum oxide, titanium oxide, tungsten oxide, vanadium oxide, etc. There are also known uses of mixtures thereof, red mud, iron ore and the like.

【0006】以上の触媒を大別すると三系統にわけられ
る。第一系統はハロゲン化物系、特に塩化物系で石炭液
化反応に優れた触媒効果を示す。なかでも高濃度で用い
る溶融塩法は軽質油の生成に富み、発生ガス量が少な
く、高い石炭液化率が得られるが、装置材質上おおきな
制約を受けることは勿論のこと、共存する塩化水素ガス
による腐食等の問題がある。 第二系統は石油系触媒で
あって主にCo、Mo、Ni、W等の遷移金属の酸化物
又は硫化物に見られるように重質油の水素化に効果的で
あるが、被毒を受けやすく苛酷な条件下で使用されるた
めに触媒活性の低下は著しく、触媒寿命が短いと言う欠
点がある。
The above catalysts can be roughly divided into three systems. The first system is a halide system, especially a chloride system, which exhibits an excellent catalytic effect for coal liquefaction. Among them, the molten salt method, which is used at high concentration, is rich in the production of light oil, produces a small amount of gas, and can obtain a high coal liquefaction rate, but of course there are major restrictions on the equipment materials, and coexisting hydrogen chloride gas. There is a problem such as corrosion due to. The second system is a petroleum-based catalyst, which is effective for hydrogenating heavy oils, as is mainly found in oxides or sulfides of transition metals such as Co, Mo, Ni, W, etc. Since it is easily received and used under severe conditions, there is a drawback that the catalyst activity is significantly reduced and the catalyst life is short.

【0007】これらの触媒は一般に高価であるためH−
Coalプロセス、二次水添、アップグレ−ディング等
に見られる沸騰床の如く反応器内で劣化触媒抜出し、再
生、供給システムからなる工夫、あるいはDow法の如
く、触媒を非常に低濃度で使い、かつ大半を再使用循環
するプロセスや独創的なエマルジョン触媒等の開発が行
なわれているが最適乳化法、乳化剤の選定など多くの問
題がある。即ち、いずれもまだ完成の域に達していな
い。 第三系統は鉄系触媒である。これは安価で使い捨
て触媒として用いられる場合が多い。なかでも水酸化
鉄、赤泥、鉄鉱石、酸化鉄、硫酸鉄等が代表的である。
通常これらの触媒は、石炭と溶媒からなるスラリ−中へ
懸濁させて使用するが、触媒上への灰分付着による劣化
は避けられない。従って活性維持のため微細で表面積を
大きくすることが要求され、また分散性を上げる所策、
あるいは使用量を多くする等の工夫が要る。これらの鉄
化合物は硫黄が共存すると活性が飛躍的に増大する。従
って硫黄含有量の少ない石炭においては硫黄を添加して
使用することも提案されている。
Since these catalysts are generally expensive, H-
Coal process, secondary hydrogenation, devised to remove deteriorated catalyst in the reactor like the boiling bed found in upgrading, regeneration, supply system, or using the catalyst at a very low concentration like Dow method, In addition, most of them are reused and recycled, and original emulsion catalysts are being developed, but there are many problems such as optimal emulsification method and selection of emulsifier. That is, none of them have reached the stage of completion. The third system is an iron-based catalyst. It is cheap and often used as a disposable catalyst. Among them, iron hydroxide, red mud, iron ore, iron oxide, iron sulfate, etc. are typical.
Usually, these catalysts are used by suspending them in a slurry composed of coal and a solvent, but deterioration due to ash deposition on the catalyst is inevitable. Therefore, in order to maintain activity, it is required to have a fine and large surface area, and a measure to improve dispersibility,
Alternatively, it is necessary to take measures such as increasing the amount used. The activity of these iron compounds increases dramatically when sulfur coexists. Therefore, it has also been proposed to add sulfur to coal for use in coal having a low sulfur content.

【0008】特に鉄鉱石、赤泥、ラテライト、有価物取
得後の副生物である酸化鉄、屑鉄等の利用は安価である
ことから非常に注目されている。従来この様な触媒は、
触媒性能をあげるのに微粉砕して使用するケースが主流
であった。この場合、もっとも問題になるのは、使用す
る炭種によっても多少様子が違ってくるが、鉄鉱石+
S、酸化鉄+S、赤泥+S、ラテライト+Sを触媒とし
て使用したものは、運転時間の経過とともにスラリー予
熱器の圧力損失が次第に増し、50時間経過時点では1
5kg/cm2前後になることである。さらに、運転を
続けると著しく圧力損失は大きくなり、ついには運転不
可能となり、長時間の運転は達成できない欠点がある。
[0008] In particular, the use of iron ore, red mud, laterite, iron oxide, scrap iron, and the like, which are by-products after the acquisition of valuable materials, has received much attention because they are inexpensive. Conventionally, such a catalyst is
In order to improve the catalyst performance, the case of using finely pulverized was the mainstream. In this case, the problem is that the iron ore +
With S, iron oxide + S, red mud + S, and laterite + S as catalysts, the pressure loss of the slurry preheater gradually increased with the passage of operating time, and after 50 hours,
It is about 5 kg / cm 2 . Further, when the operation is continued, the pressure loss becomes remarkably large, and finally the operation becomes impossible, so that the operation for a long time cannot be achieved.

【0009】終了後の開放点検では、液化反応中に、付
着物は予熱器の外周に沿って巻いたコイルヒーターに沿
って器内壁(管内壁)にほぼ均一に付着していた。この
現象は酸化鉄系の触媒を使用した場合はほぼ同様であっ
た。付着物を分析したところ、触媒成分と石炭中の灰分
と考えられるものであった。このことから器壁部分の酸
化鉄系触媒は高温下で、さらに粘着力が増し、さらには
器壁に付着し、付着した触媒をバインダーとして灰分が
付着、成長したものと推定される。酸化鉄系触媒は、ま
とめると以下のような問題点を持つ。 粘着力が強い。 活性が低く、液化性能を維持するために多量に必要。 予熱器で付着し、圧力損失が大きく閉塞気味となり、
運転不能となる。 液化プラントで長時間連続運転(1000〜2000
時間)の実績が少ない。 予熱器の伝熱ロスが大きい。 予熱器の局部過熱による液化物の物性が変動する。
In the open inspection after the completion, during the liquefaction reaction, the deposits were deposited almost uniformly on the inner wall of the vessel (inner wall of the tube) along the coil heater wound along the outer periphery of the preheater. This phenomenon was almost the same when an iron oxide catalyst was used. When the deposit was analyzed, it was thought to be the catalyst component and the ash content in the coal. From this, it is considered that the iron oxide-based catalyst on the vessel wall has a higher adhesive force at high temperature and further adheres to the vessel wall, and ash is adhered and grown using the adhered catalyst as a binder. Iron oxide catalysts have the following problems in summary. Strong adhesion. Low activity, required in large amount to maintain liquefaction performance. It adheres in the preheater, causing a large pressure loss and becoming a blockage,
It becomes impossible to operate. Continuous operation for a long time at a liquefaction plant (1000-2000
There are few results of (time). The heat transfer loss of the preheater is large. The physical properties of the liquefaction change due to local overheating of the preheater.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記問題点
を解決し、液化プラントの長時間連続運転を可能にする
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to enable a long-term continuous operation of a liquefaction plant.

【0011】[0011]

【課題を解決するための手段】本発明者等は、これらの
問題点を解消すべく鋭意研究を進めたところ、後述する
ように石炭液化における理想的な液化の方法を開発した
ものであり、この方法は鉄鉱石に代表されるように、最
大の利点であるコスト低減を含めて、前述した問題点の
いずれも解消する処理方法を確立したものである。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve these problems, and have developed an ideal liquefaction method in coal liquefaction, as will be described later. This method, as represented by iron ore, has established a treatment method that solves all of the above-mentioned problems including cost reduction, which is the greatest advantage.

【0012】予め媒体油中で使用する触媒の鉄鉱石等を
予備硫化した後に石炭を加えてスラリーとし、付着物の
器内壁への付着やボトムへの沈積を起こさず予熱器を経
てリアクターへと進め、長時間の安定した石炭液化を行
なう方法をここに提供することを可能にしたものであ
る。ちなみに50時間運転後の予熱器の圧力損失は全く
認められず、差圧は2kg/cm2程度であった。
[0012] After pre-sulfurizing the iron ore, etc., of the catalyst used in the medium oil in advance, coal is added to form a slurry, and the deposited matter does not adhere to the inner wall of the vessel or deposit on the bottom and goes through the preheater to the reactor. It has made it possible to provide a method of advancing and performing stable coal liquefaction for a long time here. By the way, no pressure loss was observed in the preheater after 50 hours of operation, and the differential pressure was about 2 kg / cm 2 .

【0013】すなわち、本発明は予備硫化した金属酸化
合物を触媒として用いることを特徴とする石炭液化にお
けるスラリー予熱器の閉塞防止方法である。本発明は、
使用する鉄鉱石等の触媒を予め媒体油中で予備硫化する
ことにより、石炭スラリー中へ高分散させ、触媒の粘着
性を緩和することから予熱器の内壁への付着をなくし、
さらには触媒をバインダーとする石炭中の灰分の付着を
防止でき、安定した液化を進めることができるのであ
る。
That is, the present invention is a method for preventing clogging of a slurry preheater in coal liquefaction, which is characterized by using a pre-sulfurized metal acid compound as a catalyst. The present invention is
By pre-sulfiding the catalyst such as iron ore to be used in the medium oil in advance, it is highly dispersed in the coal slurry and the adhesion of the catalyst is relaxed to eliminate the adhesion to the inner wall of the preheater,
Further, it is possible to prevent the ash content in the coal using the catalyst as a binder and to promote stable liquefaction.

【0014】ところで、本発明に言う予備硫化について
説明をする。通常、石炭液化反応は、H2 流通下で43
0〜500℃、150〜250kg/cm2 に保たれた
反応器に予め、媒体油に粉末状の石炭、触媒と助触媒の
硫黄を添加して調整したスラリーを送入して行なわれる
が、予備硫化とは石炭塩化を行なう前に予め、媒体油中
に石炭液化に使う触媒と助触媒の硫黄を添加し、石炭液
化の温度よりも低い200〜400℃で硫化反応を行な
うことを言う。
By the way, the presulfurization referred to in the present invention will be described. Usually, the coal liquefaction reaction is 43 under H 2 flow.
The slurry prepared by adding powdered coal to medium oil and sulfur as a catalyst and a cocatalyst in advance is fed into a reactor kept at 0 to 500 ° C. and 150 to 250 kg / cm 2 , Pre-sulfurization means that a catalyst used for coal liquefaction and sulfur as a co-catalyst are added to medium oil in advance before coal chlorination, and a sulfurization reaction is performed at 200 to 400 ° C. which is lower than the temperature of coal liquefaction.

【0015】この場合、助触媒の硫黄量を調節して、加
えた触媒の全量または一部の硫化反応を行なうことがで
きるが、好ましくは2割〜5割程度の硫化でよい。ま
た、反応終了後は触媒の分離をすることなく、石炭を添
加しスラリーとなし予熱器を経て反応器へ送り、石炭の
液化反応を行なうことができる。さらに詳しく検討した
ところ、予熱器へのスケール付着を防止できる方法は予
備硫化だけに限定されるものではないことがわかった。
例えば、触媒として鉄鉱石に少量の黄鉄鉱を混合して用
いた液化反応では、丁度、予備硫化したケースと類似の
効果を示した。
In this case, the sulfur content of the cocatalyst can be adjusted to carry out the sulfurization reaction of all or part of the added catalyst, but sulfurization of about 20 to 50% is preferable. Further, after the reaction is completed, coal can be liquefied by adding coal to form a slurry and sending it to the reactor through a preheater without separating the catalyst. Further detailed study revealed that the method of preventing scale adhesion to the preheater is not limited to presulfurization.
For example, the liquefaction reaction using iron ore mixed with a small amount of pyrite as a catalyst showed a similar effect to the case of presulfiding.

【0016】本発明に言う金属酸化物とは鉄、ニッケ
ル、コバルト、モリブデン、亜鉛、スズ等の酸化物、鉄
鉱石、屑鉄、イルミナイト、ラテライト、鉱石等を示
し、これらを単独で加えて用いてもあるいは担体に担持
して加えられたものであってもよい。使用にあたっては
一種または二種以上の混合物であってもかまわない。ま
た鉄鉱石とは褐鉄鉱(キャロル)、磁鉄鉱(イタビラ、
ロブリバ−)のいずれでもよく、もちろん特定するもの
でない。また触媒の比例製造費を低減させるためには、
鉄の出発原料として鉄屑等を利用することができる。特
にイタビラ、ロブリバ−は予備硫化が容易である。鉄鉱
石の粒径は50%平均粒径として2〜5μm程度でよ
く、比表面積は5〜50m2/g程度である。
The metal oxide referred to in the present invention means oxides of iron, nickel, cobalt, molybdenum, zinc, tin, etc., iron ore, scrap iron, illuminite, laterite, ore, etc. Alternatively, it may be added on a carrier. When used, it may be one kind or a mixture of two or more kinds. And iron ore is limonite (carol), magnetite (itabira,
Any of the loblibers) may be used and is not of course specified. In order to reduce the proportional manufacturing cost of the catalyst,
Iron scrap or the like can be used as a starting material for iron. In particular, itabila and lobliber are easy to pre-sulfide. The particle size of the iron ore may be about 2 to 5 μm as a 50% average particle size, and the specific surface area is about 5 to 50 m 2 / g.

【0017】予備硫化の場合、使用する媒体油は石炭の
液化油または液化油を水添した油が好ましいが、クレオ
ソ−ト油、アントラセン油、石油溜分等を単独に用いて
もこれらの混合油であってもかまわない。媒体油の沸点
は150〜600℃程度がよい。予備硫化を行なう時の
触媒量と媒体油量は実際には任意の比率でよいが、石炭
液化の際、設定されるスラリ−濃度、触媒量を満足する
ものであれば都合がよい。
In the case of pre-sulfurization, the medium oil used is preferably liquefied oil of coal or an oil obtained by hydrogenating liquefied oil, but creosote oil, anthracene oil, petroleum distillate and the like may be used alone or a mixture thereof. It may be oil. The boiling point of the medium oil is preferably about 150 to 600 ° C. The amount of catalyst and the amount of medium oil at the time of presulfiding may actually be any ratios, but it is convenient as long as the slurry concentration and the amount of catalyst that are set are set at the time of coal liquefaction.

【0018】助触媒Sの添加量は触媒のFeに対し原子
比で0.2〜1でよいが、必要以上に加えることもなく
0.2〜0.5で十分である。予備硫化の反応温度は5
0〜500℃であればよく、好ましくは200〜400
℃がよい。予備硫化の反応時間は15分以上であれば長
時間であっても悪い影響はない。多くの場合30〜60
分で十分である。また硫化の雰囲気は必ずしもH2流通
下である必要はないが、硫化後の液化反応を考えればH
2流通下の雰囲気での方が都合がよい。
The amount of the co-catalyst S added may be 0.2 to 1 in atomic ratio with respect to Fe of the catalyst, but 0.2 to 0.5 is sufficient without adding more than necessary. The reaction temperature for presulfiding is 5
It may be 0 to 500 ° C., preferably 200 to 400
℃ is good. If the reaction time of presulfurization is 15 minutes or more, there is no adverse effect even if it is a long time. 30-60 in most cases
Minutes are enough. Also, the sulfurization atmosphere does not necessarily have to be under H 2 flow, but considering the liquefaction reaction after sulfurization, H 2
2 It is more convenient to use an atmosphere under circulation.

【0019】また、この予備硫化反応が終了すると、粉
末の石炭を投入して30〜50%濃度に保つが、多くの
場合流動性から見て40%以下が好ましい。触媒量は予
備硫化の際、予め無水無灰炭(以下DAFと言う)基準
でFe/DAFは0.02〜0.03(重量比)にして
おく。液化反応における助触媒SはS/Feとして原子
比で0.5〜3程度でよく、好ましくは1〜1.4がよ
いが、通常は1.2程度がよい。
When the pre-sulfurization reaction is completed, powdery coal is added to maintain the concentration at 30 to 50%, but in many cases, 40% or less is preferable in view of fluidity. The amount of catalyst is set to 0.02 to 0.03 (weight ratio) of Fe / DAF on the basis of anhydrous ashless coal (hereinafter referred to as DAF) at the time of presulfiding. The co-catalyst S in the liquefaction reaction may have an atomic ratio of S / Fe of about 0.5 to 3, preferably 1 to 1.4, but usually about 1.2.

【0020】液化における性能を高めるためには多くの
場合、H2流通下に温度は420〜460℃、反応時間
は30〜90分、反応圧は170〜200kg/cm2
に維持するのがよい。この条件は用いる炭種によって適
正な条件を設定しなければならない。以下、実施例によ
り本発明を具体的に説明する。
In order to enhance the performance in liquefaction, the temperature is usually 420 to 460 ° C., the reaction time is 30 to 90 minutes, and the reaction pressure is 170 to 200 kg / cm 2 under H 2 flow.
Better keep it at. This condition must be set appropriately according to the type of coal used. Hereinafter, the present invention will be specifically described with reference to examples.

【0021】[0021]

【実施例】【Example】

【0022】[0022]

【実施例1および比較例1】予備硫化、石炭液化は図1
に示した20kg/日の連続式反応装置を使用した。運
転条件は以下の通りである。 予備硫化 (1) 触媒濃度:鉄鉱石(Feとして)/アントラセン油
=0.02(重量比) (2) S添加量:S/Fe=0.5(原子比) (3) 反応温度:300℃ (4) 反応時間:30分 石炭液化 (1) 石炭:太平洋炭(100メッシュパス) (2) 媒体油:予備硫化に使用した脱晶アントラセン油 (3) スラリ−濃度:40Wt% (4) 触媒濃度:Fe/DAF=0.03(重量比) S
/Fe=1.2(原子比) (5) 反応圧力:170kg/cm22流通下 (6) 反応温度:450℃ (7) 反応時間:80分 平均粒径15μmに粉砕した鉄鉱石(ロブリバ−、Fe
として64.7Wt%)と脱晶アントラセン油、粉末S
(200メッシュパス)を調合槽2に仕込、予備硫化し
た。次いで太平洋炭と粉末S投入してスラリーを調製し
た。計量槽3に移し、循環ラインからペ−ストポンプ5
で予熱器6を経由して反応器7へ送入し、50時間の連
続運転を行なった。予熱器の入、出間の温度勾配は18
0〜410℃であった。反応器を出たスラリ−は気液分
離器8で分離し、液化粗油は貯槽9へ抜出した。気液分
離器を出たガスはミストセパレ−タ−10、11を経て
放出した。運転中におけるスラリ−予熱器の圧力損失の
経時変化は表1に示す通りである。
Example 1 and Comparative Example 1 Pre-sulfurization and coal liquefaction are shown in FIG.
The continuous reactor shown in 20 kg / day was used. The operating conditions are as follows. Presulfidation (1) Catalyst concentration: Iron ore (as Fe) / anthracene oil = 0.02 (weight ratio) (2) S addition amount: S / Fe = 0.5 (atomic ratio) (3) Reaction temperature: 300 ℃ (4) Reaction time: 30 minutes Coal liquefaction (1) Coal: Pacific charcoal (100 mesh pass) (2) Medium oil: Decrystallized anthracene oil used for pre-sulfurization (3) Slurry concentration: 40Wt% (4) Catalyst concentration: Fe / DAF = 0.03 (weight ratio) S
/Fe=1.2 (atomic ratio) (5) Reaction pressure: 170 kg / cm 2 H 2 flowing (6) Reaction temperature: 450 ° C. (7) Reaction time: 80 minutes Iron ore crushed to an average particle size of 15 μm ( Robliber, Fe
64.7Wt%) and decrystallized anthracene oil, powder S
(200 mesh pass) was charged into the mixing tank 2 and pre-sulfided. Then, Taiheiyo charcoal and powder S were added to prepare a slurry. Transfer to measuring tank 3 and paste pump 5 from circulation line.
Then, it was fed into the reactor 7 through the preheater 6 and continuously operated for 50 hours. The temperature gradient between the inlet and outlet of the preheater is 18
It was 0-410 degreeC. The slurry discharged from the reactor was separated by the gas-liquid separator 8 and the liquefied crude oil was extracted into the storage tank 9. The gas leaving the gas-liquid separator was discharged through the mist separators 10 and 11. Table 1 shows changes over time in the pressure loss of the slurry preheater during operation.

【0023】[0023]

【表1】 [Table 1]

【0024】予備硫化なしでは表1に示したように液化
時間と共に次第に圧力損失が大きくなり、長時間の連続
運転はできないことが分った。終了後の開放点検では配
管壁、ボトム等に付着し、かなり閉塞の様子が見られた
が、予備硫化を行なった場合はスケ−ルの付着は見られ
なかった。
It was found that without pre-sulfurization, the pressure loss gradually increased with the liquefaction time as shown in Table 1, and continuous operation for a long time was not possible. In the open inspection after the completion, there was a considerable blockage due to adhesion to the pipe wall, bottom, etc., but no scale adhesion was observed when presulfiding was performed.

【0025】[0025]

【発明の効果】本発明の方法はスラリ−の予熱器を閉塞
することなく、長時間の連続運転を可能にしたものであ
るが、本来この種の目的を達成するには合成パイライト
(FeS2)はもっとも有効な触媒であったが、最大の
欠点は製造コストが高いことである。本発明は格段に安
い鉄鉱石の利用を可能にしたものである。
The method of the present invention enables continuous operation for a long period of time without closing the preheater of the slurry, but in order to achieve the purpose of this kind, synthetic pyrite (FeS 2 ) Was the most effective catalyst, but the biggest drawback is the high production cost. INDUSTRIAL APPLICABILITY The present invention enables the use of much cheaper iron ore.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の予備硫化、石炭液化装置についての
工程図である。
FIG. 1 is a process diagram of a pre-sulfurization and coal liquefaction apparatus of Example 1.

【符号の説明】[Explanation of symbols]

1.水素コンプレッサー 2.調合槽 3.計量槽 4.循環ポンプ 5.ペーストポンプ 6.予熱器 7.反応器 8.気液分離器 9.貯槽 10.シストセパレーター 11.シストセパレーター 12.畜圧器 13.ガスメーター 1. Hydrogen compressor 2. Mixing tank 3. Weighing tank 4. Circulation pump 5. Paste pump 6. Preheater 7. Reactor 8. Gas-liquid separator 9. Storage tank 10. Cyst separator 11. Cyst separator 12. Storage device 13. Gas meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 予備硫化した金属酸化物を石炭液化反応
における触媒として用いることを特徴とするスラリ−予
熱器の閉塞防止方法。
1. A method for preventing clogging of a slurry preheater, which comprises using a pre-sulfided metal oxide as a catalyst in a coal liquefaction reaction.
JP25921391A 1991-10-07 1991-10-07 Prevention of blockage of slurry preheater Withdrawn JPH0598269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25921391A JPH0598269A (en) 1991-10-07 1991-10-07 Prevention of blockage of slurry preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25921391A JPH0598269A (en) 1991-10-07 1991-10-07 Prevention of blockage of slurry preheater

Publications (1)

Publication Number Publication Date
JPH0598269A true JPH0598269A (en) 1993-04-20

Family

ID=17330971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25921391A Withdrawn JPH0598269A (en) 1991-10-07 1991-10-07 Prevention of blockage of slurry preheater

Country Status (1)

Country Link
JP (1) JPH0598269A (en)

Similar Documents

Publication Publication Date Title
US4370221A (en) Catalytic hydrocracking of heavy oils
US4066530A (en) Hydroconversion of heavy hydrocarbons
EP1799343B1 (en) Highly active slurry catalyst composition
US4214977A (en) Hydrocracking of heavy oils using iron coal catalyst
US4376695A (en) Simultaneous demetalization and hydrocracking of heavy hydrocarbon oils
WO1998044077A1 (en) Fluid hydrocracking catalyst precursor and method
WO2006031575A1 (en) Highly active slurry catalyst composition
JPH0641551A (en) Method of pretreatment and hydroconversion of heavy residual oil
DE3237002C2 (en)
CN102380396A (en) Bimetal or multi-metal high-dispersion composite coal tar hydrogenation catalyst and preparation method thereof
CN110237851A (en) A kind of oil-soluble catalyst and the preparation method and application thereof
WO2014183429A1 (en) Heterogeneous suspension-bed hydrogenation method for coal-based oil product
GB1593007A (en) Hydrogenation catalysts
US2938857A (en) Split hydrorefining of feed to catalytic cracking operation
CA1202588A (en) Hydrocracking of heavy oils in presence of dry mixed additive
JPS5853983A (en) Coal liquification
CN106311341A (en) Preparation method of hydrogenation catalyst for slurry bed of heavy oil as well as catalyst and application thereof
US4999328A (en) Hydrocracking of heavy oils in presence of petroleum coke derived from heavy oil coking operations
CN103059984B (en) Heavy oil processing method adopting catalyst grading
JPS5879092A (en) Hydrogenation of heavy hydrocarbon oil
CN101468309B (en) Method for preparing non-supported hydrogenation catalyst
CA2366424C (en) A process for hydroconverting a heavy hydrocarbon chargestock
JPH0598269A (en) Prevention of blockage of slurry preheater
CA1117887A (en) Catalytic hydrocracking of heavy oils
JPS60120791A (en) Conversion of heavy hydrocarbon to light hydrocarbon

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107